
PHYSICAL REVIEW A 88, 022325 (2013)

Entangled-state engineering of vibrational modes in a multimembrane optomechanical system
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We propose an efficient method to generate entangled states of vibrational modes of membranes which are
coupled to a single-mode cavity field via the radiation pressure. By using sideband excitations, we show that
arbitrary entangled states of vibrational modes in different membranes can be produced in principle by sequentially
applying a series of classical pulses with desired frequencies, phases, and durations. As examples, we show how
to synthesize several typical entangled states, such as Bell states, NOON states, Greenberger-Horne-Zeilinger
states, and W states. The environmental effect, information leakage, and experimental feasibility are briefly
discussed. Our proposal can be applied to different setups of optomechanical systems, in which vibrating modes
of many mechanical resonators are coupled to a single-mode cavity.
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I. INTRODUCTION

Quantum entanglement plays a very important role in
quantum information processing [1]. Entanglement between
internal degrees of freedom in microscopic systems has already
been produced experimentally [2], for example, polarizations
of photons [3], electronic states of atoms [4], and spin states of
ions [5]. The entangled states in macroscopic superconducting
quantum systems have been experimentally demonstrated
[6,7]. Recently, the quantum properties of mechanically
vibrational modes have been extensively studied from external
degrees of freedom in microscopic particles (e.g., trapped
ions [8]) to macroscopic objects [9].

The entanglement generation and arbitrary quantum-state
preparation of vibrational modes in microscopic systems (e.g.,
trapped ions [8]) have been studied both experimentally and
theoretically (e.g., see Refs. [10–13]) in recent years. Thus
a question is whether entanglement can be generated in
systems of macroscopic mechanical resonators. The research
on the coupling between superconducting quantum devices
and macroscopic mechanical resonators shows that arbitrary
phonon states of vibrating modes can be produced, in principle,
by using a proposed method [14] where a macroscopic
mechanical resonator is coupled to a superconducting qubits
[15]; also, the squeezed and entangled states of two vibrational
modes have been proposed to be generated by coupling
two macroscopic mechanical resonators to superconducting
quantum devices [16]; and the readout and writing for these
states have also been explored [17]. However, experimental
realization is still very challenging. The main obstacle is
whether the macroscopic mechanical resonators can be in their
quantum ground state.

Ground-state cooling [18–33] of macroscopic mechanical
resonators has been theoretically studied and experimentally
demonstrated in optomichanical systems (see reviews [34]
and [35]). Stationary entanglement between mechanical and
optical modes in optomechanical systems has been studied
[36–41], and such continuous variable entanglement can be

*yuxiliu@tsinghua.edu.cn

used for implementing quantum teleportation [42–44]. Also,
both tripartite and bipartite entanglement between mechanical
modes and other degrees of freedom can be generated in
optomechanical systems [45–51] or hybrid optomechanical
systems with an atomic ensemble [52–61] or a single atom
[62,63] inside the cavity. Moreover, cavity-field-mediated en-
tanglement between two macroscopic mechanical resonators
in the steady state [64–75] has also been theoretically explored.
However, the coherent engineering of arbitrarily entangled
phonon states of macroscopic mechanical resonators is still an
open question.

We have studied a deterministic method, which is different
from the proposals on measurement-based phonon-state gen-
eration [76–78], to synthesize arbitrary nonclassical phonon
states in optomechanical systems [79]. Recent studies show
that many mechanical resonators can be coupled to a common
single-mode cavity field [80–86] via the radiation pressure.
These systems have been theoretically studied for selected
entanglement generation [69], synchronization [84], and me-
chanical analogs of nonlinear quantum optics [85] of many
mechanical modes. Tripartite mixing has been experimentally
demonstrated in a system where a single-mode microwave
cavity field is coupled to two or more mechanical resonators
[86]. Motivated by this research, we use multiple-membrane
optomechanical systems [80–83] as an example to study the
engineering of arbitrarily entangled phonon states via sideband
excitations and single-photon effect [87]. Although our method
can be reduced to that usually used in trapped ions, our study
shows that many detailed steps are very different from each
other.

Our paper is organized as follows. In Sec. II, the theoretical
model of the multiple-membrane optomechanical system is
introduced. In Sec. III, we study a method to generate
entangled states for system parameters with the so-called
Lamb-Dicke approximation. As examples, we show how to
generate Bell, NOON, Greenberger-Horne-Zeilinger (GHZ),
and W states. In Sec. IV, we study the generation of entangled
phonon states beyond the Lamb-Dicke approximation for
strong single-photon optomechanical coupling. Finally, brief
discussions of experimental feasibility and conclusions are
given in Sec. V.
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FIG. 1. (Color online) Schematic of an optomechanical system
with N mechanical membranes inside the cavity which is driven by
a classical field. Here, the two mirrors of the cavity are fixed. q0 and
qN+1 denote the positions of the cavity mirrors, q1, . . . ,qi , . . . ,qN

denote the positions of the N membranes.

II. THEORETICAL MODEL

A. Mode equations and transfer matrix theory

The mode equations of optomechanical systems with one
and two membranes inside a cavity have been studied by
using the boundary conditions and the Helmholtz equations
[66,80,81]. However, the mode equations become difficult
to solve when there are more than three membranes inside
the cavity. The transfer-matrix method has been extensively
used in optics to analyze the propagation of electromagnetic
fields, especially in multilayer structures [88]. Recently, it has
also been used to study scattering problems in optomechanical
systems [89–91]. For completeness of the paper, we first derive
intrinsic mode equations of optomechanical systems with N

membranes inside a cavity using the transfer-matrix method.
As shown schematically in Fig. 1, we focus on an optome-

chanical system with a cavity containing N nonabsorptive
membranes, which each has reflection coefficient R, mass Mi ,
position qi , and vibrational frequency ωi (i = 1, . . . ,N). We
assume that the thickness of each membrane is much smaller
than the wavelength of the cavity mode, so the total dielectric
permittivity in the cavity can be approximatively described
as [92,93]

ε (x) = ε0

(
1 + ζ

k

N∑
i=1

δ (x − qi)

)
, (1)

with ζ = 2
√

R/(1 − R). Here, ε0 is the vacuum permittivity
and k = ω/c is the wave vector of the electric field with mode
frequency ω and speed of light in the vacuum c.

It is well known that the transfer matrix describing the
electric field through empty space of length l is given as [88]

M (k,l) =
(

cos kl 1
k

sin kl

−k sin kl cos kl

)
. (2)

Let us now study the transfer matrix of the whole system
by exploring the properties of the electric fields across a
membrane. The boundary conditions of E (x) at the position
of the ith membrane (e.g., x = qi) are given as

E(q+
i ) = E(q−

i ), (3)

where E(q−
i ) and E(q+

i ) are the notations of the left- and
right-hand limits of E (x) when x approaches qi . Using the

Helmholtz equations, ∂2E(x)/∂x2 = −ω2μ0ε (x) E (x), the
derivative relations of E(x) on the left- and right-hand sides
of the ith membrane at position qi is given as

E′(q+
i ) = E′(q−

i ) − kζE(qi), (4)

with E′ (x) = ∂E (x) /∂x. Equations (3) and (4) can be written
in matrix form as(

E(q+
i )

E′(q+
i )

)
= Q (k,ζ )

(
E(q−

i )

E′(q−
i )

)
, (5)

where

Q (k,ζ ) =
(

1 0

−kζ 1

)
(6)

is the transfer matrix of the electric field through the ith
membrane. Using Eqs. (2) and (6), the relation of the electric
fields at the left and right mirrors can be given as(

E (qN+1)

E′ (qN+1)

)
= XN

(
E(q0)

E′(q0)

)
, (7)

with the transfer matrix

XN =
(

x11 x12

x21 x22

)

=
N∏

i=1

[M (k,qi+1 − qi) Q (k,ζ )] M (k,q1 − q0) . (8)

Equation (7) can be rewritten as

E (qN+1) = x11E (q0) + x12E
′ (q0), (9)

E′ (qN+1) = x21E (q0) + x22E
′ (q0). (10)

If we assume that the electric field satisfies the standing-wave
boundary conditions,

E (q0) = E (qN+1) = 0, (11)

then we obtain the intrinsic mode equation,

x12 (k,q0,q1, . . . ,qN+1) = 0. (12)

We further study the intrinsic mode equation in Eq. (12)
by several concrete examples. For N = 1, the wave vector k

obeys the intrinsic mode equation

C1,0 + ζC1,1 = 0, (13)

with

C1,0 = sin k (q2 − q0) ,

C1,1 = sin k (q1 − q2) sin k (q1 − q0) .

For N = 2, the intrinsic mode equation for k is

C2,0 + ζC2,1 + ζ 2C2,2 = 0, (14)

with

C2,0 = sin k(q3 − q0),

C2,1 = sin k(q1 − q0) sin k(q1 − q3),

+ sin k(q2 − q0) sin k(q2 − q3),

C2,2 = sin k(q1 − q0) sin k(q2 − q1) sin k(q3 − q2).
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FIG. 2. (Color online) Frequency shift of the intrinsic optical
modes (ω − ω0

n)/ω0
1 for two membranes in the cavity as a function

of displacements of the membranes, (q1 − q0
1 )/λn and (q2 − q0

2 )/λn,
where λn = 2L/n, ω0

1 = πc/L, ω0
n = nπc/L, and q3 − q0

2 = q0
2 −

q0
1 = q0

1 − q0 = L. Parameters are R = 0.7 and n = 105 which are
the same as those in Refs. [24,81].

If there are N membranes inside the cavity, the wave vector k

obeys the equation

N∑
i=0

ζ iCN,i = 0, (15)

where CN,i are functions of the membrane positions qi , with
i = 1,2, . . . ,N .

The frequency dependence of the cavity modes ω ({qi})
on the positions of the N membranes can be obtained by
solving the intrinsic mode equation in Eq. (12) numerically
or analytically using perturbation theory. Here, {qi} is an
abbreviation for {q1, . . . ,qi, . . . ,qN } for the set of positions
of the membranes. For example, in Fig. 2, several intrinsic
mode frequencies are numerically simulated and plotted as
functions of the displacements of the membranes for the case
where there are two membranes inside the cavity. Analytically,
the frequencies of the cavity modes can be given as

ω ({qi}) = ω
({

q0
i

}) +
N∑

i=1

g
(1)
i

(
qi − q0

i

)
+

N∑
i,j=1

g
(2)
i,j

(
qi − q0

i

) (
qj − q0

j

) + · · ·, (16)

under the condition (qi − q0
i )/λ � 1, where

g
(1)
i =

[
∂ω ({qi})

∂qi

]
{qi=q0

i }
, (17)

g
(2)
i,j = 1

2

[
∂2ω ({qi})
∂qi∂qj

]
{qi=q0

i ,qj =q0
j }

, (18)

λ is the wavelength of the optical mode, and q0
i (i = 1, . . . ,N)

is the position of the ith membrane when there is no radiation
pressure.

B. Hamiltonian of the system

Based on the above discussion, the Hamiltonian of an
optomechanical system with N membranes inside the cavity
can be written as [94]

H = h̄ω ({qi}) a†a +
N∑

i=1

[
p2

i

2Mi

+ 1

2
Miω

2
i

(
qi − q0

i

)2
]

,

(19)

where a (a†) is the annihilation (creation) operator of the
single-mode cavity field and pi is the momentum of the ith
vibrational membrane. Substituting Eq. (16) into Eq. (19), we
have

H = h̄ω
({

q0
i

})
a†a +

N∑
i=1

[
p2

i

2Mi

+ 1

2
Miω

2
i

(
qi − q0

i

)2
]

+ h̄a†a
N∑

i=1

g
(1)
i

(
qi − q0

i

)
+ h̄a†a

N∑
i,j=1

g
(2)
i,j

(
qi − q0

i

) (
qj − q0

j

) + · · · . (20)

The third and fourth terms are the linear and quadratic
interactions between the cavity mode and the vibrational
modes of the membranes.

In our study below, we only consider that the frequency shift
of the cavity mode is linearly dependent on the membranes’
displacements, and we also assume that the cavity is driven by
an external field with frequency ωd and phase φd . Thus, we
have the Hamiltonian of the driven system as

Hd = h̄ωaa
†a +

N∑
i=1

h̄ωib
†
i bi + h̄a†a

N∑
i=1

gi(b
†
i + bi)

+ h̄
[a†e−i(ωd t+φd ) + aei(ωd t+φd )]. (21)

Here, 
 denotes the Rabi frequency of the driven field. We
assume that both the frequency ωd and the phase φd are con-
trollable parameters such that they can be chosen as different
values in the steps of the state preparation described below. For
simplicity, the frequency of the cavity mode is denoted ωa ≡
ω({q0

i }), and the coupling strength between the cavity field
and the ith membrane is simply written as gi . The operators
of the membranes are rewritten by the annihilation and
creation operators bi = √

Miωi/2h̄(qi − q0
i ) + ipi/

√
2h̄Miωi

and b
†
i = √

Miωi/2h̄(qi − q0
i ) − ipi/

√
2h̄Miωi . We now ap-

ply a unitary transformation to Eq. (21):

U = exp

(
a†a

N∑
i=1

[
gi

ωi

(b†i − bi)

])
. (22)

Then the Hamiltonian in Eq. (21) becomes

Heff = h̄(ωa − �0a
†a)a†a + h̄

N∑
i=1

ωib
†
i bi

+ h̄


{
a†exp

[
N∑

i=1

ηi(b
†
i − bi) −i(ωdt + φd )

]
+ H.c.

}
,

(23)
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where �0 = ∑N
i=1(g2

i /ωi) characterizes the nonlinearity of
the cavity field induced by the vibrational membranes and
increases when the number of membranes inside the cavity is
increased. We call ηi = gi/ωi the Lamb-Dicke parameter in
analogy to the trapped ions [10]. Both the strong optomechani-
cal coupling and the higher number of membranes guarantee a
big nonlinear parameter �0 such that the photon blockade can
occur. In this case, the cavity field is reduced to the two lowest
energy levels, |0〉 and |1〉, and the Hamiltonian in Eq. (23)
becomes

Htwo = h̄
ω0

2
σz + h̄

N∑
i=1

ωib
†
i bi + h̄


{
σ+ exp

[
N∑

i=1

ηi(b
†
i − bi)

− i(ωdt + φd )

]
+ H.c.

}
, (24)

by using the operators σz = |1〉 〈1| − |0〉 〈0| and σ+ = |1〉 〈0|.
Here, ω0 = ωa − �0. Hereafter, we denote the photon number
states |1〉 ≡ |e〉 and |0〉 ≡ |g〉. The Hamiltonian in Eq. (24) can
be further written as

Htwo = H0 + Hint, (25)

with

H0 = h̄
ω0

2
σz +

N∑
i=1

h̄ωib
†
i bi, (26)

and

Hint = h̄
σ+e−i(ωd t+φd )
N∏

i=1

⎡⎣e− 1
2 η2

i

+∞∑
ji ,ki=0

(−1)ki η
ji+ki

i

ji!ki!
b
†ji

i b
ki

i

⎤⎦
+ H.c. (27)

From Eq. (27), we find that |ki − ji | phonons can be created
(ki > ji) or annihilated (ki < ji) from the ith membrane when
one photon is annihilated in the cavity with the assistance of
the external field. Below, we show how to engineer different
entangled states of vibrational modes of the membranes for
two cases with and without the Lamb-Dicke approximation.

III. ENGINEERING ENTANGLED STATES WITH THE
LAMB-DICKE APPROXIMATION

We first study the entangled-state engineering under the
Lamb-Dicke approximation condition gi/ωi � 1 as for the
trapped ion case [10], thus the Hamiltonian in Eq. (27) can be
written as

Hint = h̄
σ+e−i(ωd t+φd )

[
1 +

N∑
i=1

ηi(b
†
i − bi)

]
+ H.c., (28)

up to the first order of ηi . In the interaction picture with V =
exp(iH0t/h̄)Hint exp(−iH0t/h̄), we have

V = h̄
σ+e−iφd

[
e−i�ct +

N∑
i=1

ηi

(
b
†
i e

−i�i
bt − bie

−i�i
r t
)]

+ H.c., (29)

with �c = ωd − ω0, �i
b = ωd − ω0 − ωi , and �i

r = ωd −
ω0 + ωi . If the system satisfies the resonant condition �c = 0

or �i
b = 0 or �i

r = 0, then we have

V = h̄
 ×

⎧⎪⎨⎪⎩
σ+e−iφc + H.c., ωd = ω0,

ηiσ+b
†
i e

−iφi
b + H.c., ωd = ω0 + ωi,

ηiσ+bie
−iφi

r + H.c., ωd = ω0 − ωi

(30)

with the rotating-wave approximation. For convenience, the
minus sign before ηiσ+bie

−iφi
r is absorbed by the phase φi

r .

A. Time evolution operators

From the Schrödinger equation, the wave function of the
system at time t can be written as

|ψ (t)〉 = U (t) |ψ (0)〉, (31)

where U (t) = exp (−iV t/h̄) is the time evolution operator
[13]. By using the completeness relation

+∞∑
{mj }=0

e∑
s=g

|s,{mj }〉〈s,{mj }| = I, (32)

the time evolution operator can be written as

U (t) =
+∞∑

{mj }=0

e∑
s=g

U (t)|s,{mj }〉〈s,{mj }|, (33)

where |{mi}〉 is an abbreviation of the state |m1〉 ⊗ · · · ⊗
|mi〉 ⊗ · · · ⊗ |mN 〉 ≡ |m1, . . . ,mN 〉 for N membranes. Here-
after |s,{mj }〉 implies that the cavity field is in state s (s = e or
s = g) and there are mj phonons in the j th membranes. {mj }
denotes a number series; that is, {mj } ≡ m1,m2, . . . ,mN .

If the frequency of the driving field is resonant with the
red sideband excitation corresponding to the frequency of the
ith membrane, i.e., ωd = ω0 − ωi , then the Hamiltonian in
Eq. (30) becomes

V i,r
mi

= h̄
ηiσ+bie
−iφi

r + H.c. (34)

In this case, the time evolution operator is given as

Ui,r
mi

(t) =
+∞∑
mi=0

Ũ i,r
mi

(t)
+∞∑

{mj }=0

(|{mj }〉〈{mj }|)j 
=i , (35)

where

Ũ i,r
mi

(t) = cos
(

i

mi
t
) |g,mi〉 〈g,mi |

− ie−iφi
r sin

(

i

mi
t
) |e,mi − 1〉 〈g,mi |

+ cos
(

i

mi+1t
) |e,mi〉 〈e,mi |

− ieiφi
r sin

(

i

mi+1t
) |g,mi + 1〉 〈e,mi | , (36)

with the Rabi frequencies


i
mi

= 
ηi

√
mi, 
i

mi+1 = 
ηi

√
mi + 1. (37)

When the frequency of the driving field is resonant with
the blue sideband excitation corresponding to the frequency
of the ith membrane, i.e., ωd = ω0 + ωi , the Hamiltonian in
Eq. (30) becomes

V i,b
mi

= h̄
ηiσ+b
†
i e

−iφi
b + H.c. (38)
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The time evolution operator of the blue sideband excitation is

Ui,b
mi

(t) =
+∞∑
mi=0

Ũ i,b
mi

(t)
+∞∑

{mj }=0

(|{mj }〉〈{mj }|)j 
=i , (39)

with

Ũ i,b
mi

(t) = cos
(

i

mi+1t
) |g,mi〉 〈g,mi |

− ie−iφi
b sin

(

i

mi+1t
) |e,mi + 1〉 〈g,mi |

+ cos
(

i

mi
t
) |e,mi〉 〈e,mi | 〈e,mi |

− ieiφi
b sin

(

i

mi
t
) |g,mi − 1〉 〈e,mi | . (40)

Finally, if the cavity is driven by a classical field with
frequency ωd = ω0, then the carrier process is switched on,
and the Hamiltonian in Eq. (30) is given as

V c = h̄
σ+e−iφc + H.c. (41)

The time evolution operator of the carrier process is given as

Uc (t) = Ũ c (t)
+∞∑

{mj }=0

|{mj }〉〈{mj }| (42)

and

Ũ c(t) = [cos(
t)|g〉 − ie−iφc sin(
t)|e〉]〈g|
+ [cos(
t)|e〉 − ieiφc sin(
t)|g〉]〈e|. (43)

Based on the above three controllable processes, any entangled
phonon state can be prepared, in pinciple. However, our goal
below is to show how to prepare several typical entangled
phonon states. Our target state is |g〉|ψ〉 with the cavity in
its ground state |g〉 and mechanical modes in their entangled
state |ψ〉.

B. Generation of Bell and NOON states of
two mechanical modes

We first study the generation of entangled phonon states,

|ϕ〉 = 1√
2

(|N,0〉 + |0,N〉), (44)

of two mechanical modes when two membranes are placed
inside the cavity. Here, |N,0〉 means N phonons in the first
mode and 0 phonons in the second mode, and vice versa. |ϕ〉
denotes a Bell state with N = 1. However, |ϕ〉 with N � 2
represents the NOON state, which plays an important role in
quantum metrology [95]. The state generation studied below
starts from the initial state |ψ (t0)〉 = |g,0,0〉 of the whole
system. The generation of a Bell state can be described as
follows.

(i) A driving field satisfying the carrier process is applied to
the cavity, then after interaction time �t1 = π/2
, the system
evolves from the initial state to the state

|ψ (t1)〉 = |e,0,0〉 (45)

at time t1 = t0 + �t1. Here the global phase has been ne-
glected.

(ii) The frequency of the driving field is turned to red side-
band excitation corresponding to the mechanical frequency of

the first membrane, i.e., ωd = ω0 − ω1. With an evolution time
�t2, the system evolves to

|ψ(t2)〉 = (1 − |C1,0|2)1/2|e,0,0〉 + C1,0|g,1,0〉 (46)

at time t2 = t1 + �t2 with the parameter

C1,0 = −ieiφ1
r sin

(

1

1�t2
)
. (47)

If the time duration and the phase of the driving field are chosen
as �t2 = π/4
1

1, phase φ1
r = π/2, then C1,0 = 1/

√
2, and the

state of the system becomes

|ψ (t2)〉 = 1√
2

|e,0,0〉 + 1√
2

|g,1,0〉 . (48)

(iii) The frequency of the driving field is tuned to the red
sideband corresponding to the mechanical frequency of the
second membrane, i.e., ωd = ω0 − ω2. With evolution time
�t3, the system evolves to

|ψ(t3)〉 = 1√
2

[(1 − |C0,1|2)1/2|e,0,0〉 + C0,1|g,0,1〉]

+ 1√
2
|g,1,0〉 (49)

at time t3 = t2 + �t3 with the parameter

C0,1 = −ieiφ2
r sin

(

2

1�t3
)
. (50)

If we choose time duration �t3 = π/2
2
1 and phase φ2

r = π/2,
then the state of the system becomes

|ψ (t3)〉 = |g〉 ⊗ 1√
2

(|0,1〉 + |1,0〉). (51)

Thus the system is deterministically prepared as a product state
of the Bell state of two mechanical resonators and the ground
state |g〉 of the cavity field.

We now describe the detailed steps for generating the
NOON state of two vibrational membranes by the simplest
example with N = 2.

(i) A driving field is applied to the cavity with the
blue sideband excitation corresponding to the mechanical
frequency of the second membrane, i.e., ωd = ω0 + ω2, with
evolution time �t1 = π/2
2

1, and the phase is chosen as
φ2

b = 3π/2, the system evolves to

|ψ (t1)〉 = |e,0,1〉 (52)

at time t1 = t0 + �t1.
(ii) The frequency of the driving field is tuned to the

red sideband excitation corresponding to the mechanical
frequency of the first membrane, i.e., ωd = ω0 − ω1. With
evolution time �t2 = π/4
1

1 and phase φ1
r = π/2, the state of

the system becomes

|ψ (t2)〉 = 1√
2

(|g,1,1〉 + |e,0,1〉). (53)

at time t2 = t1 + �t2.
(iii) The frequency of the driving field is tuned to the

red sideband excitation corresponding to the mechanical
frequency of the second membrane, i.e., ωd = ω0 − ω2, with
time duration �t3 satisfying

sin
(

2

1�t3
) = ±1, sin

(

2

2�t3
) = ±1, (54)
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FIG. 3. Schematics for generating the NOON state (|2,0〉 +
|0,2〉)/√2. R, B, and C represent that the driving field is tuned to
the red sideband excitations, blue sideband excitations, and carrier
processes, respectively. Each number in the subscript denotes the
sideband excitations corresponding to the mechanical frequency of
the ith membrane.

in the infinite approximation for 
2
2/
2

1 = √
2, which is an

irrational number (see Appendix A), the state of the whole
system becomes

|ψ (t3)〉 = 1√
2

(|e,1,0〉 + |g,0,2〉) (55)

at time t3 = t2 + �t3.
(iv) The driving field is tuned to the red sideband excitation

corresponding to the mechanical frequency of the first mem-
brane, i.e., ωd = ω0 − ω1. With evolution time �t4 = π/2
1

2
and phase φ1

r = π/2, the state of the system becomes

|ψ (t4)〉 = |g〉 ⊗ 1√
2

(|2,0〉 + |0,2〉) (56)

at time t4 = t3 + �t4. Thus the NOON state for N = 2 is
generated with the cavity field in its ground state |g〉. We give
a schematic summarizing all steps for generation of the NOON
state with N = 2 in Fig. 3.

Using steps similar to those for generating the NOON
state with N = 2, arbitrary NOON states of two mechanical
resonators can also be generated (see Appendix B).

C. Generating GHZ and W states of three mechanical modes

Let us study how to generate the GHZ and W states [96]
of vibrational modes for three membranes inside a cavity with
initial state |ψ (t0)〉 = |g,0,0,0〉. The GHZ state |ψ〉GHZ and
W state |ψ〉W of the three mechanical modes are defined as

|ψ〉GHZ = 1√
2

(|0,0,0〉 + |1,1,1〉) (57)

and

|ψ〉W = 1√
3

(|1,0,0〉 + |0,1,0〉 + |0,0,1〉) . (58)

The detailed steps for generating the W state are as follows.
(i) The cavity field is driven by the external field with the

carrier frequency. With an evolution time �t1 = π/2
 and
choosing phase φc = 3π/2, the state of the system becomes

|ψ (t1)〉 = |e,0,0,0〉 . (59)

(ii) The frequency of the driving field is tuned to the
red sideband excitation corresponding to the mechanical
frequency of the first membrane such that ωd = ω0 − ω1.
With evolution time �t2 = [arcsin(1/

√
3)]/
1

1 and phase

FIG. 4. Schematic for generating the GHZ state (|0,0,0〉 +
|1,1,1〉)/√2 of three mechanical resonators. The numbers in the
superscript denote the times of the red sideband excitation (R), blue
sideband excitation (B), and carrier process (C). The subscript denotes
the sideband excitations corresponding to the mechanical frequency
of the ith membrane.

φ1
r = π/2, the state of the system evolves to

|ψ (t2)〉 = 1√
3

|g,1,0,0〉 +
√

2

3
|e,0,0,0〉 . (60)

(iii) The frequency of the driving field is tuned to the
red sideband excitation corresponding to the mechanical
frequency of the second membrane such that ωd = ω0 − ω2.
With evolution time �t3 = π/4
2

1 and phase φ2
r = π/2, the

state of the system becomes

|ψ (t3)〉 = 1√
3

(|g,1,0,0〉 + |g,0,1,0〉 + |e,0,0,0〉) . (61)

(iv) The frequency of the driving field is tuned to the
red sideband excitation corresponding to the mechanical
frequency of the third membrane such that ωd = ω0 − ω3.
With time duration �t4 = π/2
3

1 and phase φ3
r = π/2, the

state of the system evolves to

|ψ (t4)〉 = |g〉 ⊗ 1√
3

(|1,0,0〉 + |0,1,0〉 + |0,0,1〉) . (62)

With the above four steps, the system is prepared as a
product state of the W state of three mechanical modes and
the ground state |g〉 of the cavity field.

Now, we describe the detailed steps for generating the GHZ
state, as shown schematically in Fig. 4.

(i) The cavity field is driven by the carrier frequency. With
evolution time �t1 = π/2
 and phase φc = 3π/2, the system
evolves to

|ψ (t1)〉 = |e,0,0,0〉 . (63)

(ii) The frequency of the driving field is tuned to the
red sideband excitation corresponding to the mechanical
frequency of the first membrane such that ωd = ω0 − ω1. With
evolution time �t2 = π/2
1

1 and phase φ1
r = π/2, the state of

the system evolves to

|ψ (t2)〉 = |g,1,0,0〉 . (64)

(iii) The cavity field is driven again by the carrier process.
With evolution time �t3 = π/4
 and phase φc = 3π/2, the
state of the system evolves to

|ψ (t3)〉 = 1√
2

|g,1,0,0〉 + 1√
2

|e,1,0,0〉 . (65)

(iv) The frequency of the driving field is tuned to the
blue sideband excitation corresponding to the mechanical
frequency of the first membrane such that ωd = ω0 + ω1. For
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evolution time �t4 which satisfies the condition

sin
(

1

1�t4
) = ±1, sin

(

1

2�t4
) = ±1, (66)

with the infinite approximation (see Appendix A), the state of
the system evolves to

|ψ(t4)〉 = 1√
2
|g,0,0,0〉 + 1√

2
|e,2,0,0〉. (67)

(v) The driving field is tuned to the red sideband excitation
corresponding to the mechanical frequency of the third
membrane such that ωd = ω0 − ω3. With evolution time
�t5 = π/2
3

1 and phase φ3
b = π/2, the state of the system

evolves to

|ψ(t5)〉 = 1√
2
|g,0,0,0〉 + 1√

2
|g,2,0,1〉. (68)

(vi) The driving field is tuned to the red sideband ex-
citation corresponding to the mechanical frequency of the
first membrane such that ωd = ω0 − ω1. With evolution time
�t6 = π/2
1

2 and phase φ1
b = 3π/2, the state of the system

evolves to

|ψ (t6)〉 = 1√
2

|g,0,0,0〉 + 1√
2

|e,1,0,1〉 . (69)

(vii) The driving field is tuned to the red sideband excitation
corresponding to the mechanical mode of the second mem-
brane such that ωd = ω0 − ω2. With evolution time �t7 =
π/2
2

1 and phase φ1
b = π/2, the state of the system evolves to

|ψ (t7)〉 = |g〉 ⊗ 1√
2

(|0,0,0〉 + |1,1,1〉) . (70)

Thus the whole system is prepared as a product state of the
GHZ state of three mechanical modes and the ground state |g〉
of the cavity field.

In principle, our method can be generalized to produce the
W and GHZ states of N membranes by sequentially applying
a series of red sideband excitations, blue sideband excitations,
and carrier processes with well-chosen time intervals and
phases of the driving field. We summarize the detailed steps
for the generation of these states in Appendix C.

IV. PREPARATION OF ENTANGLED STATES BEYOND
THE LAMB-DICKE APPROXIMATION

Above, we have studied a method for generating entangled
phonon states in the Lamb-Dicke regime with ηi � 1. How-
ever, in some optomechanical systems, e.g., a Bose-Einstein
condensate serving as a mechanical oscillator coupled to the
cavity field [97,98], the condition ηi � 1 is broken; also, with
the experimental progress, a parameter ηi outside the Lamb-
Dicke regime is possible in other types of optomechanical
systems. For a parameter ηi outside the Lamb-Dicke regime,
the higher orders of ηi should be taken into account. We now
show how to generate entangled phonon states beyond the
Lamb-Dicke approximation by using a method similar to, but
not the same as, the method given in Ref. [12]. Because the
generation of the Bell and W states can use the same method as
in the Lamb-Dicke approximation described in Sec. III, below
we focus on the generation of the NOON and GHZ states.

Beyond the Lamb-Dicke regime, the Hamiltonian in
Eq. (27) with ki = ji + ni can be rewritten as

Hint = h̄
σ+e−i(ωd t+φd )
N∏

i=1

e− 1
2 η2

i Hi + H.c., (71)

with

Hi =
+∞∑

ni=−∞

+∞∑
ji=max[0,−ni ]

αi
ji ,ni

(b†i )ji (bi)ji+ni

ji!(ji + ni)!
, (72)

where αi
ji ,ni

= (−1)ji+ni η
2ji+ni

i . The Hamiltonian in Eq. (71)
in the interaction picture can be given by V (t) =
eiH0t/h̄Hinte

−iH0t/h̄, thus we have

V (t) = h̄
σ+e−i(�dt+φd )
N∏

i=1

e− 1
2 η2

i Hi(t) + H.c., (73)

with

Hi(t) =
+∞∑

ni=−∞

+∞∑
ji=max[0,−ni ]

αi
ji ,ni

(b†i )ji (bi)ji+ni

ji!(ji + ni)!
e−iniωi t ;

(74)

here �d = ωd − ω0. Off-resonant transitions have been ne-
glected in the resonant or near-resonant driving condition.
When the driving field satisfies the condition ωd = ω0 −∑N

i=1 niωi , we have

V {ni } = h̄
σ+e−iφd

N∏
i=1

e− 1
2 η2

i Hi,ni
+ H.c., (75)

with Hi,ni
given by

Hi,ni
=

+∞∑
ji=max[0,−ni ]

αi
ji ,ni

(b†i )ji (bi)ji+ni

ji!(ji + ni)!
. (76)

The time evolution operator with the Hamiltonian in
Eq. (75) can be given as

U {ni } (t) =
+∞∑

{mi }=0

U
{ni }
{mi } (t) , (77)

with

U
{ni }
{mi } (t) =

e∑
s=g

U {ni } (t) |s, {mi}〉 〈s, {mi}| . (78)

Hereafter {ni} denotes a number series; that is, {ni} ≡
n1,n2, . . . ,nN . The operator U

{ni }
{mi } (t) can be further written

as

U
{ni }
{mi } (t) = (

1 − ∣∣C{ni }
{mi−ni }

∣∣2)1/2|g,{mi}〉〈g,{mi}|
+C

{ni }
{mi−ni } |e, {mi − ni}〉 〈g, {mi}|

+ (
1 − ∣∣C̃{ni }

{mi }
∣∣2)1/2|e,{mi}〉〈e,{mi}|

+ C̃
{ni }
{mi }|g,{mi + ni}〉〈e,{mi}|, (79)

where

C
{ni }
{mi } = −ie−iφd (−1)

∑N
i=1 ni sin

(



{ni }
{mi }t

)
, (80)
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FIG. 5. (Color online) ξni
mi

in Eq. (83) is plotted as a function of ni

for values of η = 0.1, 0.3, 0.5, 0.7, and 0.9 in (a) m = 0, (b) m = 1,
(c) m = 10, and (d) m = 30. Here, for convenience, we assume that
ni ≡ n and mi ≡ m.

with

C̃
{ni }
{mi } = −(

C
{ni }
{mi }

)∗
, (81)

and the Rabi frequency



{ni }
{mi } = 


N∏
i=1

ξni

mi
. (82)

If ni � 0, ξni
mi

is given as

ξni

mi
= e− 1

2 η2
i η

ni

i

√
mi!

(mi + ni)!
Lni

mi

(
η2

i

)
(83)

and if −mi � ni < 0, we have

ξni

mi
= e− 1

2 η2
i (−ηi)

−ni

√
(mi + ni)!

mi!
L

−ni

mi+ni

(
η2

i

)
= (−1)|ni |ξ |ni |

mi−|ni |. (84)

Here, Lni
mi

(η2
i ) is the associated Laguerre polynomials. ξni

mi

is related to the effective Rabi frequency, it is plotted as a
function of ni in Fig. 5. We find that ξni

mi
decreases rapidly to 0

with an increase in ni when ηi � 1, thus the Lamb-Dicke
approximation is valid in this regime. However, with an
increase in ηi , ξni

mi
oscillates with the increase in ni and, finally,

approaches 0. Thus if ηi is beyond the Lamb-Dicke regime,
the terms for ni > 1 should be taken into account and these
terms will make the state preparation much easier. It should be
noted that ξni

mi
decreases to 0 within a finite number ni for the

given ηi , e.g., ηi = 0.9. That is, there is a maximum phonon
number that we can create in one step even for the case where
ηi is beyond the Lamb-Dicke regime.

Let us first study the preparation of the NOON state of
two mechanical resonators beyond the Lamb-Dicke regime.
The time evolution operator of the system for two membranes
inside the cavity can be written out from Eq. (79) with the
subscripts and superscripts {mi} ≡ m1,m2, {mi ± ni} ≡ m1 ±
n1,m2 ± n2, and {ni} ≡ n1,n2. The coefficients in Eq. (80) for
the case with two membranes inside the cavity are

Cn1,n2
m1,m2

= −ie−iφd (−1)n1+n2 sin
(

n1,n2

m1,m2
t
)
, (85)

with

C̃n1,n2
m1,m2

= − (
Cn1,n2

m1,m2

)∗
(86)

and the effective Rabi frequency


n1,n2
m1,m2

= 


2∏
i=1

ξni

mi
. (87)

Here, ξni
mi

is given by Eq. (83) or Eq. (84). We assume that the
system is initially in state |ψ (t0)〉 = |g,0,0〉. Then the steps
for generating NOON state can be described as follows.

(i) The cavity field is driven by the external field to the
carrier process. For phase φd = 3π/2 and evolution time
�t1 = π/2


0,0
0,0 with the evolution operator U

0,0
0,0 (�t1), the

state of the system becomes

|ψ (t1)〉 = |e,0,0〉 . (88)

(ii) The frequency of the driving field is tuned to the
N th red sideband excitation corresponding to the mechanical
frequency of the first membrane with �d = −Nω1. With
evolution time �t2 = π/4


N,0
0,0 and phase φd = π/2 + Nπ ,

the state of the system evolves to

|ψ (t2)〉 = 1√
2

|e,0,0〉 + 1√
2

|g,N,0〉 . (89)

(iii) The frequency of the driving field is tuned to the
N th red sideband excitation corresponding to the mechanical
frequency of the second membrane such that �d = −Nω2.
With evolution time �t3 = π/2


0,N
0,0 and phase φd = π/2 +

Nπ , the state of the system evolves to

|ψ (t3)〉 = |g〉 ⊗ 1√
2

(|N,0〉 + |0,N〉). (90)

Thus the NOON state of two mechanical modes is prepared
with the cavity field in its ground state |g〉.

We now show the detailed steps of generating the GHZ
state of the three membranes inside the cavity by taking the
subscripts and superscripts as {mi} ≡ m1,m2,m3, {mi ± ni} ≡
m1 ± n1,m2 ± n2,m3 ± n3, and {ni} ≡ n1,n2,n3 in Eq. (79).
In this case, the coefficients in Eq. (80) are given as

Cn1,n2,n3
m1,m2,m3

=
[
−ie−iφd

3∏
i=1

(−1)ni

]
sin

(

n1,n2,n3

m1,m2,m3
t
)

(91)

and

C̃n1,n2,n3
m1,m2,m3

= − (
Cn1,n2,n3

m1,m2,m3

)∗
, (92)

with the Rabi frequency


n1,n2,n3
m1,m2,m3

= 


3∏
i=1

ξni

mi
. (93)

Here, ξni
mi

is given by Eq. (83) or Eq. (84). We now assume that
the system is initially prepared as the ground state |ψ (t0)〉 =
|g,0,0,0〉. The GHZ-state generation is described below.

(i) The cavity field is driven to the carrier process. With
interaction time �t1 = π/4


0,0,0
0,0,0 and phase φd = 3π/2, the

state of the system evolves to

|ψ (t1)〉 = 1√
2

(|g,0,0,0〉 + |e,0,0,0〉) , (94)

with the time evolution operator U
0,0,0
0,0,0 (�t1).
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(ii) The frequency of the driving field is tuned to the red
sideband excitation such that �d = −ω1 − ω2 − ω3. With
time duration �t2 = π/2


1,1,1
0,0,0 and phase φd = 3π/2, the state

of the system evolves to

|ψ (t2)〉 = |g〉 ⊗ 1√
2

(|0,0,0〉 + |1,1,1〉), (95)

with the time evolution operator U
1,1,1
0,0,0 (�t2).

Thus the system is prepared as a product state of the ground
state |g〉 of the cavity field and the GHZ state of the three
membranes. It is obvious that the preparation processes for
both NOON and GHZ states are more efficient than those
shown in the Lamb-Dicke regime.

V. DISCUSSION AND CONCLUSIONS

We discuss the experimental feasibility of the method by
qualitatively considering environmental effect and information
leakage. (i) The generation of entangled phonon states is
based on the sideband excitations, which are extensively
used in the optomechanical systems. Our proposal should
work in the resolved-sideband regime, which requires that
every frequency ωi of the vibrational mode of the mechanical
membrane should be higher than the decay rate γc of the
cavity field, i.e., ωi > γc. (ii) The two-level approximation
in our proposal is guaranteed by the photon blockade effect,
and thus our method is more efficient when the single-photon
strong-coupling strength gi is much higher than the decay
rates γc and γm,i (i = 1, 2, . . . ,N) of the cavity field and the
mechanical modes, i.e., gi � γc, γm,i . Also, Eq. (23) shows
that a higher number of mechanical resonators corresponds to
a larger nonlinear parameter

∑
i(2g2

i /ωi) and better two-level
approximation of the cavity field. (iii) During state preparation
processes, negligible information leakage from the ground
or the first excited state to other upper states of the cavity
field requires that the anharmonicity

∑
i(2g2

i /ωi) of the cavity
field induced by the mechanical modes should be much larger
than the strength 
 of the classical driving field in the
carrier process [79], i.e.,

∑
i(2g2

i /ωi) � 
. (iv) To prevent
information leakage due to nearly resonant transitions induced
by different mechanical resonators, all of the transitions from
the ground to the first excited state of the cavity field induced by
the driving field and different mechanical resonators should be
well separated in the frequency domain. In the Lamb-Dicke ap-
proximation, the frequency differences between any two mem-
branes should satisfy the condition |ωi − ωj | � 
. However,
beyond the Lamb-Dicke approximation as shown in Ref. [12],
the frequency differences between the mechanical resonators
should satisfy the condition |ωi − ωj | � min(ωi,ωj ) � 
 �
γc,γm,i or min(ωi,ωj ) � |ωi − ωj | � 
 � γc,γm,i . From iv,
we can find that the membrane number that we can efficiently
operate beyond the Lamb-Dicke approximation is much lower
than that in the Lamb-Dicke approximation.

In summary, we have proposed a method for generation of
entangled states of vibrational modes of multiple membranes
inside a cavity via the radiation pressure. In particular,
we carefully study the steps for generating several typical
entangled phonon states, e.g., the Bell and NOON states
of two mechanical modes and the GHZ and W states of
three mechanical modes for parameters with and without

the Lamb-Dicke approximation. We should emphasize the
following. (i) Basically, our method can be applied to other
optomechanical systems in which many mechanical modes are
coupled to a single-mode cavity field, such as an optical cavity
with levitating dielectric microspheres [99–102] or trapped
atomic ensembles [97,98], optomechanical crystals [31,103],
and a microwave cavity with nanomechanical resonators [86].
(ii) Our proposal can, in principle, be used to produce any
kind of entangled state. (iii) We only qualitatively discuss
the environmental effect and the effect of other information
leakage on the state preparation. A quantitative analysis of
these factors will be given elsewhere. (iv) Our proposal is
experimentally possible when the optomechanical coupling
strength approaches the single-photon strong-coupling limit.
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APPENDIX A: INFORMATION LEAKAGE CAUSED
BY NONSYNCHRONIZATION

In the processes of generating the NOON and GHZ states
in the Lamb-Dicke regime, we need to prepare two different
states simultaneously in certain steps. For example, in the
process of generating state (|2,0〉 + |0,2〉) /

√
2, the transitions

fromstate |g,1,1〉 to state |e,1,0〉 and from state |e,0,1〉 to
state |g,0,2〉 should be synchronized. In other words, the time
duration should satisfy Eq. (54). However, we find that Eq. (54)
can only be satisfied in an approximation. In this appendix,
we discuss the information leakage caused by this type of
nonsynchronization.

Without loss of generality, we assume that the state of the
system at time t is

|ψ(t)〉 = 1√
2
|e,n − 1,n′〉 + 1√

2
|g,m,m′〉, (A1)

and at the following time t ′, we expect to prepare the state

|ψ(t ′)〉 = 1√
2
|g,n,n′〉 + 1√

2
|e,m − 1,m′〉. (A2)

Thus the cavity field is driven by an external field corre-
sponding to the red sideband excitation frequency of the first
membrane for a time duration �t = t ′ − t , and the system
evolves into

|ψ(t ′)〉 = 1√
2

[
cos

(

1

n�t
) |e,n − 1,n′〉

− ieiφ1
r sin

(

1

n�t
) |g,n,n′〉

+ cos
(

1

m�t
) |g,m,m′〉

− ie−iφ1
r sin

(

1

m�t
) |e,m − 1,m′〉], (A3)

where 
1
n = 
η1

√
n, 
1

m = 
η1
√

m.
To make sure that the system at the time t ′ is in the state

given by Eq. (A2), the time duration �t should simultaneously
satisfy the equations

sin
(

1

n�t
) = ±1, sin

(

1

m�t
) = ±1. (A4)
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From Eq. (A4), we have the equations(

1

n ± 
1
m

)
�t = pπ, 
1

m�t = (
q + 1

2

)
π, (A5)

where p and q are positive integers. Taking 
1
n/
1

m = √
n/m

(suppose n � m), Eq. (A5) can be rewritten as(√
n

m
± 1

)(
q + 1

2

)
= p (A6)

by choosing appropriate positive integers p and q. According
to the rate 
1

n/
1
m, the solutions can be classified into three

cases.
(i) If

√
n/m is a rational number, we can rewrite it as√

n

m
= n′

m′ , (A7)

where n′ and m′ are positive integers and they have no common
factors. Substituting Eq. (A7) into Eq. (A6), we have(

n′ ± m′

m′

)(
2q + 1

2

)
= p. (A8)

If both n′ and m′ are odd numbers, then there are integers p

and q that satisfy Eq. (A8) exactly.
(ii) If

√
n/m = n′/m′ is a rational number, and one of them

(n′ and m′) is even, there are no integers satisfying Eq. (A8).
However, there are integers which can satisfy the following
equations for an appropriate value of �t ,

sin
(

1

n�t
) = ± sin

(

1

m�t
) = ±α, (A9)

where α is given by

α =
∣∣∣∣sin

(
m′

n′ ± m′ pπ

)∣∣∣∣ , (A10)

which oscillates periodically with a period n′ ± m′ with the
integer p. The maximal value of α as a function of n′ and
m′, denoted αmax(n′,m′), is shown in Fig. 6. From Fig 6, we
find that αmax(n′,m′) � 0.86, and αmax(n′,m′) = 1 for the case
where both n′ and m′ are odd numbers. This agrees with the
result discussed for case i.

(iii) If
√

n/m is an irrational number, there are no positive
integers (p and q) that satisfy Eq. (A6) exactly, but there is
a rational number n′/m′ (both n′ and m′ are odd numbers)
that can be infinitely close to

√
n/m. So we can get an

FIG. 6. Maximal value of α versus n′ and m′.

FIG. 7. Schematic for generating NOON states when (I) N is
an even number and (II) N is an odd number. The numbers in the
superscript denote the times of the red sideband excitation (R), blue
sideband excitation (B), and carrier process (C). The subscript denotes
the sideband excitations corresponding to the frequency of the ith
membrane.

appropriate value of �t which can satisfy Eq. (A6) in the
infinite approximation.

APPENDIX B: GENERATION OF AN ARBITRARY
NOON STATE

By using steps similar to those used for generating the
NOON state with N = 2, an arbitrary NOON state of two
mechanical resonators can also be generated by using the steps
shown schematically in Fig. 7. Each step is summarized below.

In step i, by alternatively applying a series of red sideband
excitations and carrier processes, we have the state

|ψ (t1)〉 =
∣∣∣∣e,N2 − 1,

N

2

〉
(B1)

for an even number N or

|ψ (t1)〉 =
∣∣∣∣e,N − 1

2
,
N − 1

2

〉
(B2)

for an odd number N .
In step ii, for an even number N , we assume that the

cavity field is driven by the red sideband excitation R1 for
the mechanical frequency of the first membrane with time
duration �t2 = π/4
1

N/2; then we have

|ψ (t2)〉 = 1√
2

(∣∣∣∣g,
N

2
,
N

2

〉
+

∣∣∣∣e,N2 − 1,
N

2

〉)
. (B3)

For an odd number N , we assume that the cavity field is driven
by the red sideband excitation R2 for the second membrane
with time duration �t2 = π/4
2

(N+1)/2; then we have

|ψ(t2)〉 = 1√
2

(∣∣∣∣e,N − 1

2
,
N − 1

2

〉
+

∣∣∣∣g,
N − 1

2
,
N + 1

2

〉)
.

(B4)

In step iii, for an even number N , we alternatively apply
the driving field for N/2 and (N/2) − 1 red sideband exci-
tations corresponding to mechanical frequencies of the first
and second membranes with the appropriate time durations,
respectively; that is, the operation operator R2(R1R2)N/2−1

022325-10



ENTANGLED-STATE ENGINEERING OF VIBRATIONAL . . . PHYSICAL REVIEW A 88, 022325 (2013)

FIG. 8. (Color online) Fidelity for generating the NOON state
(|N,0〉 + |0,N〉) /

√
2 from N = 2 to N = 20.

acts on state |ψ(t2)〉. Then we have

|ψ (t3)〉 = 1√
2

(|e,N − 1,0〉 + |g,0,N〉) . (B5)

However, for an odd number N , we assume that (N − 1)/2 red
sideband excitations R1 and R2 are applied for the mechanical
frequencies of the first and second membranes, respectively;
then we can also obtain the state shown in Eq. (B5).

In step iv, we assume that the cavity field is driven for the
red sideband excitation R1 corresponding to the mechanical
frequency of the first membrane with time duration �t4 =

π/2
1
N ; then we have

|ψ (t4)〉 = |g〉 ⊗ 1√
2

(|N,0〉 + |0,N〉) . (B6)

Thus, the NOON state of two mechanical resonators is
generated with the cavity field in its ground state |g〉. We
note that there is information leakage in the third step because
the times to two states |e,N − 1,0〉 and |g,0,N〉 are not
synchronized. The fidelities of prepared NOON states from
N = 2 to N = 20 due to such information leakage are given in
Fig. 8, which shows that some states cannot be generated with
100% accuracy. Detailed discussion of this type of information
leakage is given in Appendix A.

APPENDIX C: PREPARATION OF W AND GHZ STATES
OF N MEMBRANES

Following the method given in Sec. III, the W and GHZ
states of N vibrating membranes inside the cavity as

|ψ〉W = 1√
N

(|1,0,0, . . . ,0〉 + |0,1,0, . . . ,0〉
+ · · · + |0,0, . . . ,0,1〉), (C1)

|ψ〉GHZ = 1√
2

(|0〉⊗N + |1〉⊗N ) (C2)

can be generated by sequentially applying a series of red
sideband excitations, blue sideband excitations, and carrier
processes. In this Appendix, we describe the detailed steps for

FIG. 9. Schematic for preparing GHZ states of N membranes: (I) both N and (N − 1)/2 are odd numbers; (II) both N and N/2 are even
numbers; (III) N is an odd number and (N − 1)/2 is an even number; and (IV) N is an even number and N/2 is an odd number.
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generating the W and GHZ states of N vibrating membranes
under the Lamb-Dicke approximation. We assume that the
system for N membranes inside a cavity is initially prepared
as state |ψ (t0)〉 = |g〉 ⊗ |0〉⊗N .

The W state of the N membranes can be generated by a
carrier process followed by N red sideband excitations. For a
carrier process with time duration �t1 = π/2
, the state of
the system is prepared as

|ψ (t1)〉 = |e〉 ⊗ |0〉⊗N (C3)

at time t1 = t0 + �t1. After the carrier process, the driving
fields are applied to the cavity sequentially for mechanical
frequencies of red sideband excitations from the first to the N th
membranes with frequencies ωd = ω0 − ωi , time durations
�ti+1 = [arcsin(1/

√
N + 1 − i)]/
i

1, and phase φi
r = π/2

for i = 1, . . . ,N . At time t2 = t1 + ∑N
i=1 �ti+1, the state of

the system becomes

|ψ (t2)〉 = |g〉 ⊗ 1√
N

(|1,0,0, . . . ,0〉 + |0,1,0, . . . ,0〉
+ · · · + |0,0, . . . ,0,1〉) . (C4)

As shown in Fig. 9, the GHZ state of N membranes can
also be generated as follows. In step i, by sequentially applying
a series of red sideband excitations and carrier processes, we
have the state

|ψ (t1)〉 = |g〉 ⊗
∣∣∣∣N − 1

2

〉
⊗ |0〉⊗(N−1) (C5)

for an odd number N , or

|ψ (t1)〉 = |e〉 ⊗
∣∣∣∣N2 − 1

〉
⊗ |0〉⊗(N−1) (C6)

when both N and N/2 are even numbers, or

|ψ (t1)〉 = |g〉 ⊗
∣∣∣∣N2 − 1

〉
⊗ |0〉⊗(N−1) (C7)

for an even number N and odd number N/2. In step ii, if N is
an odd number, the system can be prepared as the state

|ψ (t2)〉 = 1√
2

(|g〉 + |e〉) ⊗
∣∣∣∣N − 1

2

〉
⊗ |0〉⊗(N−1), (C8)

with the carrier process for time duration �t2 = π/4
; if both
N and N/2 are even numbers, the system can be prepared as

FIG. 10. (Color online) Fidelities for generating the GHZ state
(|0〉⊗N + |1〉⊗N )/

√
2 from N = 3 to N = 22.

the state

|ψ (t2)〉 = 1√
2

(∣∣∣∣e,N2 − 1

〉
+

∣∣∣∣g,
N

2

〉)
⊗ |0〉⊗(N−1) , (C9)

by the red sideband excitation corresponding to the mechanical
frequency of the first membrane for time duration �t2 =
π/4
1

N/2; and if N is an even number but N/2 is an odd
number, the system can be prepared as the state

|ψ (t2)〉 = 1√
2

(∣∣∣∣e,N2
〉
+

∣∣∣∣g,
N

2
− 1

〉)
⊗ |0〉⊗(N−1) , (C10)

by the blue sideband excitation corresponding to the me-
chanical frequency of the first membrane for time duration
�t2 = π/4
1

N/2. In step iii, we can prepare the state

|ψ (t3)〉 = 1√
2

(|g,0〉 + |e,N − 1〉) ⊗ |0〉⊗(N−1) (C11)

for all cases in step ii by a series of processes as shown in
Fig. 9. There is information leakage in this step for preparing
states |g,0〉 ⊗ |0〉⊗(N−1) and |e,N − 1〉 ⊗ |0〉⊗(N−1), and the
fidelity is shown in Fig. 10 (see Appendix A). In step iv,
by the action of R2R1R3R1 . . . RN−1R1RN for time duration
�t4 = ∑N−1

i=2 π/2
1
i + ∑N

i=2 π/2
i
1, we obtain

|ψ(t4)〉 = |g〉 ⊗ 1√
2

(|〉0⊗N + |1〉⊗N ). (C12)

Thus, the GHZ state of N vibrating membranes is generated
with the cavity field in its ground state |g〉.
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A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter,
Nature (London) 478, 89 (2011).
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