
PHYSICAL REVIEW A 88, 022323 (2013)
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We study coherent adiabatic quantum state transfer through a multipath data bus by means of controlling on-site
energies, and analyze the effect of pathway number on transfer efficiency. We first introduce a simple spacial
geometry and demonstrate that the multipath data bus which contributes to the quantum state transfer can reduce
to a tight-binding chain with three quantum dots. Simulation results show that the electron can be transferred more
efficiently by properly increasing the number of transfer paths under the same shape of controlling pulses. The
optimal pathway number and the corresponding high-fidelity transfer time scale are determined by the numerical
analysis. Finally, we extend our proposal to a more general system. The results show that such a scheme is
relatively insensitive to imperfect fabrications. Our discussions illuminate the possibility of system engineering
to enhance control and transfer times.
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I. INTRODUCTION

Nowadays quantum state transfer (QST) based on adiabatic
passage has attracted increasing attention. A variety of adia-
batic schemes for high-fidelity transfer have been proposed.
Compared to other mechanisms of QST, adiabatic passage for
coherent QST has the following advantages. First, the adiabatic
way of QST has the property of being robust against weak
variations of the Hamiltonian. Hence, this method is more
feasible in experiment. Second, as long as the change of the
system parameters is adiabatic, the transfer timing does not
need to be controlled precisely. Once the transfer has been
accomplished, the system will be frozen to a steady state.

In a three-level quantum system, stimulated Raman adia-
batic passage (STIRAP) [1] is a robust technique for coherent
population transfer, in which the population is transferred
adiabatically between two internal quantum states of an atom
by maintaining the system in the dark state. Recently this
adiabatic method has been extended to a variety of solid-state
systems to realize coherent QST. The solid-state system makes
it possible for scale-up of quantum computing devices. Among
these, coherent tunneling via adiabatic passage (CTAP) [2]
is a typical scheme for coherently spatial particle transfer
in quantum dot (QD) systems. A similar scheme has been
independently proposed for neutral atoms in optical traps [3].
In such a scheme, the particle is driven by slowly changing
the tunneling interaction between the nearest neighboring
quantum units, which has been demonstrated in an engineered
optical waveguide system to control light propagation [4,5].
The CTAP technique has been proposed for creating a
maximally coherent superposition in a two-state atom [6], and
manipulating single atoms in optical lattice [7–9], electron spin
states in two-dimensional architecture [10], and Bose-Einstein
condensates [11,12]. It has also been applied to the problem
of transferring quantum state across the chain for realizing
long-range QST [13–15], quantum fan-out [16], and electron
interferometry [17]. More realistic problems have also been
discussed for the experimental observation of CTAP in QDs
system [18,19].
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Another way to realize high-fidelity QST can be achieved
via adiabatic manipulation of the on-site energy applied on
QDs. Reference [20] has shown a method for the creation
of spatially separated spin entanglement. Based on the fact
that the tunneling dynamics of the electron depends strongly
on the on-site energy, Ref. [21] has presented a scheme to
adiabatically transfer an electron from one end to the other
end of a three-dot array using the ground state of the system.
Different from the CTAP process, the protocol in Ref. [21]
considered a system with time-independent interactions, in-
stead, the on-site energies of the two external dots (sender and
receiver) could be manipulated and the transfer dynamics was
more stable by maintaining the system in the ground state.
It was a high-fidelity process for a proper choice of system
parameters and also robust against experimental parameter
variations. Moreover, this protocol can be easily extended to
the problem of long-range QST [22,23].

In this paper we present a detailed analysis of adiabatic
QST through a multipathway data bus, which is schematically
illustrated in Fig. 1(a). A similar scheme has been realized
in an optical waveguide system [5]. In our scheme, the
sender (A) and receiver (B) are controlled by the external
gate voltages, respectively. Our aim is to move the particle
from one end of the system to the other efficiently in the
shortest possible time. We show that the overall dynamics of
this scheme is equivalent to that in a five-dot tight-binding
chain. We first investigate the effect of system parameters
on the minimum energy gap between lowest two eigenstates
and the transfer fidelity. We then show that the electron can
be robustly transported from one end of the chain to the
other, by slowly varying the gate voltages. Finally, the optimal
parameter values and the time scale to realize high-efficiency
transfer are determined. The scheme in this paper are not
proposed as realistic experimental devices. Rather, the point
is to illustrate through constructive, analytic, protocols how
the desired solutions can arise efficiently for some class of
schemes.

This paper is organized as follows: In Sec. II the QST
protocol is setup and the property of the ground state is
investigated via a Bethe ansatz method. In Sec. III the transport
of the quantum state based on this scheme is discussed. Finally,
we summarize the results in Sec. IV.
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FIG. 1. (Color online) (a) Schematic illustration of a multipath
data bus for adiabatic QST consisting of N noninteraction QDs, each
coupled with both the data bus ends QD-L, R. The sender A and the
receiver B are coupled with two ends of the data bus, respectively.
The system is controlled by gate voltages μα(t) (α = A, B). The
coupling strength between all QDs is −J . By adiabatically varying
the gate voltages, the particle is moved from QD-A to QD-B. (b)
The equivalent model of (a) after applying linear transformation. The
whole system can reduce to N − 1 noninteraction single sites and a
five-site tight-binding chain. The coupling strengths between three
inner sites are −√

NJ .

II. MULTIPATH SYSTEM

The multipath transfer scheme is illustrated in Fig. 1(a).
The whole quantum system consists of two QDs (the sender
A and the receiver B) which are controlled by external gate
voltages and coupled with a N-path quantum data bus that is
formed by two ends coupled with N-independent QDs. The
total Hamiltonian reads

H(t) = −J (a†
AaL + a

†
BaR) −

N∑

j=1

Jj (a†
L + a

†
R)aMj

+μA(t)a†
AaA + μB(t)a†

BaB + H.c., (1)

where J and Jj are ferromagnetic coupling constants. For
simplicity we assume that the coupling strengths between
the nearest neighboring QDs are all equal and negative,
Ji = J . And aj is the annihilation operator on site j for
j = A,L,M1, . . . ,MN,R,B; μA(t) and μB(t) are the on-site
energy (externally controlled) applied on the QDs. We write

μA(t) = −μ0f (t), (2a)

μB(t) = −μ0f (t − tmax), (2b)

where tmax (tmax � 1/J ) is the total evolution time; μ0 is
peak amplitude of the pulses; f (t) is the general pulse-shape
function which satisfies

f (0) = 1, (3)

and monotonically goes to zero at t → ±∞,

lim
t→±∞ f (t) = 0. (4)

In this scheme we will consider the single particle case
and denote the state with the particle occupying site j by
|j 〉 ≡ a

†
j |0〉. First we initialize the particle occupied in QD-A,

and keep the other QDs all empty at t = 0. The aim of this
scheme is to transport the particle from the left end to the right
end by maintaining the system in its ground state.

To find an analytical expression of the ground state, we
simplify the Hamiltonian (1) by introducing the Fourier
transformation

ãMp
= 1√

N

N∑

j=1

eipj aMj
, (5)

where p = 2mπ/N , m ∈ [1,N ] denotes the momentum. Sub-
stituting Eq. (5) into Eq. (1), the Hamiltonian can be reduced
to be

H(t) = −J [a†
AaL +

√
N (a†

L + a
†
R)ãMN

+ a
†
BaR + H.c.]

+μA(t)a†
AaA + μB(t)a†

BaB. (6)

Note that Eq. (6) is equivalent to (N − 1) noninteracting
empty sites and a five-site tight-binding chain, which is
schematically shown in Fig. 1(b). We see that the subsequent
system evolution is confined to a Hilbert space spanned by the
five vectors {|j 〉|j = A,L,M̃N,R,B}, which is only a subspace
of the original (N + 4)-dimensional Hilbert space. It is worth
mentioning that a special case of this equivalence of actions
was recently noted for the XY Hamiltonian [24,25].

For a single-particle problem, we can write down all the
eigenstates of Eq. (6) via the Bethe ansatz method which we
write as |Dk(t)〉 = f k

A|A〉 + ∑
j=L,M,R f k

j |j 〉 + f k
B |B〉. Sub-

stituting the discrete superposition state in the eigenequation
H(t)|Dk(t)〉 = εk|Dk(t)〉, we can get the relations among all
the expansion parameters,

−Jf k
L + μA(t)f k

A = εf k
A, (7a)

−Jf k
A −

√
NJf k

M = εf k
L, (7b)

−
√

NJ
(
f k

L + f k
R

) = εf k
M, (7c)

−
√

NJf k
M − Jf k

B = εf k
R, (7d)

−Jf k
R + μB(t)f k

B = εf k
B. (7e)

From the equations above, we can write down all the
eigenstates of Hamiltonian (6). In this proposal we will use
the ground state |Dg(t)〉 of Hamiltonian H(t) to implement
the population transfer from state |A〉 to state |B〉. By
straightforward calculation, we get the normalized ground
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state |Dg(t)〉, which is

|Dg(t)〉 = 1√
�

{
√

N [N sinh 5κg + (N − 1) sinh 3κg + ξB(t)
√

N sinh 4κg]|A〉 + [N sinh 4κg + (N − 1) sinh 2κg

+ ξB(t)
√

N sinh 3κg]|L〉 + [N sinh 3κg + (N − 1) sinh κg + ξB(t)
√

N sinh 2κg]|M〉
+ [N sinh 2κg + ξB(t)

√
N sinh κg]|R〉 +

√
N sinh κg|B〉}, (8)

with the eigenvalue ε = −2
√

NJ sinh κg . Here � is the
normalization coefficient and κg is determined by the condition

N (ξA − ε)(ξB − ε) sinh 4κg + J 2 sinh 2κg

=
√

NJ (ξB + ξA − 2ε) sinh 3κg, (9)

with ξl = μl(t)/J , l = A,B, respectively.
Starting from t = 0, we have μA(0) = −μ0 and μB(0) ≈ 0.

The initial instantaneous ground state |Dg(0)〉 reads

|Dg(0)〉 = 1√
�0

{
√

N [N sinh 5κ0 + (N − 1) sinh 3κ0]|A〉
+ [N sinh 4κ0 + (N − 1) sinh 2κ0]|L〉
+ [N sinh 3κ0 + (N − 1) sinh κ0]|M〉
+N sinh 2κ0|R〉 +

√
N sinh κ0|B〉}. (10)

In this scheme, the transfer efficiency depends on various
factors, one of which is the probability of finding |A〉 in
|Dg(0)〉, i.e., ρA = N [N sinh 5k0 + (N − 1) sinh 3k0]2 /�0.
Large ρA is necessary to achieve high-fidelity transfer. The
value of ρA is determined by two parameters: the ratio μ0/J

and the number of pathways N . In Fig. 2 we show the
difference 1 − ρA as a function of μ0/J and N . We can see that
for a given number of pathway N , 1 − ρA decreases as μ0/J

grows, but increases as N increases. This is because strong
coupling strength will increase the probability of a particle
occupying three middle sites. By choosing a sufficiently large
value of μ0, the ground state |Dg(0)〉 can be approximately
reduced to |A〉. If we choose the peak value μ0/J = 20, and
assume the probability of |A〉 in |Dg(0)〉 greater than 0.996,
the biggest allowed value of pathway number is 50.

In the time limit t = tmax, the parameter μA(t) goes
to zero and μB(t) goes to −μ0. For a proper choice of
parameters we can see that the ground state of Eq. (10)
evolves to be |Dg(tmax)〉 ≈ |B〉 with the same reasoning as
the above paragraph. One can see that initializing the system
in state |	 (t = 0)〉 = |A〉 and adiabatically changing μA(t)
and μB(t), the population will smoothly change to be |B〉, i.e.,

|	 (t = 0)〉 = |A〉 → |	 (t = tmax)〉 = |B〉 . (11)

III. DYNAMICAL EVOLUTION

The above analysis shows that if the time-dependent change
is introduced slowly enough, the population remains in the
ground state |Dg〉 and is adiabatically transferred from state
|A〉 to state |B〉 completely at t = tmax. It is worth mentioning
that in the adiabatic limit, the process does not depend on
the shape of the pulses. However, this will not be the case in
practice in such a scheme. For a given tolerable transfer error, a
proper choice of the pulse can greatly reduce the possible time

for implementing the transfer of the state. The pulse separation
is an important factor affecting the transfer efficiency. We are
now ready to consider the case that controlling pulses are
modulated in Gaussian shape [shown in Fig. 3(a)]

f (t) = exp
[− 1

2α2t2
]
, (12)

where α is standard deviation of the control pulse. The
advantage of such pulse is that the pulse separation is
varied as a function of α. To choose optimal parameters for
QST, it would be useful to discuss the relationship between
adiabaticity and system parameters.
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FIG. 2. (Color online) The probability of finding |A〉 in the
instantaneous ground state |Dg(0)〉 as a function of (a) the peak
value μ0/J for three different path numbers: N = 1 (circle), N = 5
(triangle), and N = 40 (diamond); and (b) the path number N for
three peak values: μ0/J = 20 (circle), μ0/J = 18 (triangle), and
μ0/J = 16 (diamond). As the path number grows, larger peak values
are needed to ensure large occupation probability of |A〉 in |Dg(0)〉.
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FIG. 3. (a) Gate voltages (in units of μ0) as a function of time (in
units of tmax) described in Eq. (11). μA(t) is the solid line and μB (t)
is the dashed line. (b) Energies of the lowest three eigenstates of
20-path quantum system as a function of time for the pulses shown in
(a) with μ0 = 20J and α = 4/tmax. The eigenvalues exhibit avoided
crossings during the evolution.

A. Adiabaticity

In this section we will derive the condition to realize optimal
transfer, which is measured by the adiabaticity parameter
between the ground state and the first excited state

A (t) =
∣∣∣∣
〈Ḋg(t)|D1(t)〉
εg(t) − ε1(t)

∣∣∣∣ . (13)

For adiabatic evolution, the crucial requirement is A (t) �
1 throughout the evolution, which suppresses the quantum
transition from |Dg(t)〉 to |D1(t)〉 during the transfer process.
The necessary condition for this requirement is that the ground
state and the first-excited state are nondegenerate during all
the time evolution process. Taking the pathway number N =
20 as an example, to calculate instantaneous eigenvalues of
the Hamiltonian (1) due to modulation of the gate voltages
according to pulse equation (12) is generally only possible
numerically. The energies of the lowest three eigenstates are
calculated, which are plotted in Fig. 3(b). We observe there is
no level crossing in our structure.

To illustrate the behavior more clearly, Fig. 4(a) presents
the energy gap between two lowest eigenstates, i.e., δ (t) =
ε1(t) − εg(t), as a function of time for different pathways
N = 1, 2, 3, 4, 5, 10, 15, and 20. Note that the gap approaches
a nonzero minimum value, which plays a significant role in
the transfer. This minimum energy gap plays an important
role in our adiabatic scheme, which depends both on the
pulse separations and number of pathways. In Fig. 4(b) the
minimum gap is plotted as a function of the standard deviation
α for three different values of pathways N . We can see that
the minimum gap increases as α increases, and tends to a
constant value which is related to the pathway number. The
relation between the minimum gap and pathway number N for
α = 5/tmax is plotted in Fig. 4(c). It shows that the minimum
gap can be improved by increasing the number of pathway N

and tends asymptotically towards a limiting value J . In a sense,
increasing the number of path N can increase the value of min-
imum gap in a limited range but not for the transfer efficiency
completely. The reason is that, as mentioned above, the final
instantaneous eigenstate is not the desired one for large N .

To determine the optimal pathway number N for maximum
transfer efficiency via our scheme, the adiabaticity of the
evolution needs to be verified. As an example, we show in
Fig. 5(a) A (t) tmax as a function of time for a system with
N = 20 pathways. Comparing with Fig. 4(a), one can see
that the adiabaticity is largest at the time of the energy gap
reaching minimum. For a given finite transfer time tmax, it
it necessary to discuss the effect of N on adiabaticity. In
Fig. 5(b), the maximal adiabaticity has now been determined
in terms of N , which remains a free parameter, and therefore

FIG. 4. (Color online) (a) The energy difference δ(t) between ε1(t) and εg(t) as a function of time for different pathways N = 1, 2, 3, 4, 5,
10, 15, and 20. The parameters μ0 = 20 and tmax = 150/J , and the pulse deviation is α = 4/tmax. The energy difference approaches an nonzero
minimum gap during the evolution, which varies with pathway number. Effects of the (b) α and (c) path number on the minimum gap. It shows
the gap can be increased by increasing α and N .
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FIG. 5. (Color online) (a) Adiabaticity A(t)tmax (in units of 1/J )
as a function of time. Parameters are the same as those in Fig. 4(a).
The adiabaticity is largest at the time of the energy gap reaching
minimum. (b) The maximal adiabaticity parameter max {A(t)tmax} as
a function of path number N for α = 4/tmax (circle), and α = 5/tmax

(diamond). We can see that there is an optimal choice of the pathway
number that makes the transfer process most efficient by reducing the
adiabaticity parameter and the transfer time to minimum. The optimal
value of pathway number is N = 5 for α = 4/tmax, and N = 2 for
α = 5/tmax.

allows for further optimization. For α = 4/tmax, the maximal
adiabaticity decreases rapidly by increasing pathway number
N and reaches minimum value at N = 5. As we know, the
smaller the adiabaticity, the shorter the time for high-fidelity
transfer in a realistic experiment. In the present scheme, one
can see that the optimal choice of path number is N = 5 for
α = 4/tmax. On the other hand, the adiabaticity also depends
on the parameter α. The adiabaticity range is different for the
different values of α as shown in Fig. 5(b). Obviously the
optimal value of pathway number is N = 2 for α = 5/tmax.
This suggests that the optimal value of pathway number varies
with the pulse shape.

B. The Schrödinger equation

Given an initial state |	 (0)〉, the consequent time evolution
of the state is given by the Schrödinger equation

i
d

dt
|	 (t)〉 = H(t) |	 (t)〉 . (14)

The state |	 (t)〉 is expressed as a superposition of the five
basis states

|	 (t)〉 = cA (t) |A〉 +
∑

j=L,M,R

cj (t) |j 〉 + cB (t) |B〉 . (15)

Equation (14) is solved with the initial conditions: cA (0) = 1
and cm (0) = 0, m �= A. The probability of finding the target
state |B〉 at time t is given by |cB (t)|2 and the transfer fidelity
of the transfer process is defined as

F = |〈B| 	 (tmax)〉|2 = |cB (tmax)|2 . (16)

To illustrate the process of QST, we numerically integrate
Eq. (14) to highlight the dynamics. In order to show the effect
of pathway number on the transfer efficiency, we choose tmax =
150/J and α = 4/tmax, 5/tmax. The top row of Fig. 6 shows the
time-dependent populations for α = 4/tmax and two different
values of pathways: N = 1 (a) and N = 5 (b), respectively. For
N = 1, the transfer fidelity is approximately 3.6% and most
population remains in the pathways (dotted, green curves).
In contrast, the populations of the states |A〉 (dashed, black
curves) and |B〉 (solid, red curves) are exchanged with a fidelity
of 99.5% for N = 5. From Fig. 6(c) one can see that for a given
transfer period tmax, the adiabatic transfer can be achieved by
increasing the pathway number N and the scheme is successful
in transferring about 99.5% of the population from QD-A
to QD-B. Too large N , however, as mentioned above, will
eventually destroy the transfer efficiency. It is clear that N = 5
is an optimum pathway number for adiabatic transfer, which
is the coincident with the conclusion of Fig. 5(b). Similarly,
we plot the time-dependent populations for α = 5/tmax in
the bottom row of Fig. 6. The transfer fidelity is 99.5%
for N = 2 [as shown in Fig. 5(d)] and 99% for N = 5
[as shown in Fig. 5(e)]. Figure 5(f) shows that the transfer
dynamics becomes unstable as the pathway number increases
for α = 5/tmax.

Figure 7 shows the transfer fidelity as a function of the
total transfer time tmax for 1-, 2-, 3-, 4-, and 5-path systems
by solving the Schrödinger equations with varying tmax for
μ0 = 20J . The most economical choice of transfer time
to achieve high-fidelity transfer is tmax = 150/J with the
pathway number N = 5. Comparing with the case N = 1, we
can see that by adding four additional paths the transfer time
can be greatly reduced while still preserving the high-transfer
fidelity, so adding a multipath data bus can improve the transfer
efficiency greatly.

C. Robustness to disorder

Next we will discuss the robustness of this scheme against
fabrication disorder. Assume that the tunnel coupling of
pathway in Hamiltonian (1) has a random but constant offset
δεj , i.e.,

Jj = J (1 − δεj ), (17)

where δ is the maximum coupling offset bias, εj is drawn
from the standard uniform distribution on the open interval
(0,1), and all εj are completely uncorrelated for all sites along
the chain. In Fig. 8 we show the fidelity as a function of N ,
with μ = 20J , tmax = 150/J , α = 5/tmax, and δ = 0.1J and
0.2J . Comparing with ideal, i.e., δ = 0, we can see that weak
fluctuation in the coupling strengths has little effect on the
performance around the optimal data bus configuration.
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FIG. 6. (Color online) Time evolution of the initial state |	 (0)〉 = |A〉. Population transfer as a function of time obtained for two different
standard deviation of the control pulse: α = 4/tmax (a)–(c) and α = 5/tmax (d)–(f). Population transfer as a function of time obtained for two
path number: (a) N = 1 and (b) N = 5. The dashed, black curve represents the probability of |A〉 on state |	 (t)〉. The red, solid curve represents
the probability of state |B〉 on state |	 (t)〉. The population on other media dots is shown as blue, dotted curve. (c) Final population of state |B〉
plotted against the path number N . The small rectangular part is magnified in the inset. (d)–(f) are the same as in (a)–(c), but for α = 5/tmax

and N = 2 (d) and N = 5 (e). The transfer fidelity in part (d) is 99.5% and 99% in (e). (f) The transfer dynamics becomes unstable as the
pathway number increases. The values of parameters chosen are shown in the figure.

D. Discussion

We have proposed a scheme for transporting a single
electron between two nonadjacent QDs through slowly ma-
nipulating the on-site energies. Initially, the electron is loaded
into the left QD and driven by the external gate voltages to
the aim dot. Strictly speaking, the multipath data bus we
introduced here acts like a beam splitter. Our scheme may
make some contributions to fundamental issues in physics
like quantum control, the interference of single electron, and
especially quantum state transfer.
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FIG. 7. (Color online) Fidelity as a function of tmax (in units of
1/J ) for (bottom to top along fidelity axis) 1-, 2-, 3-, 4-, 5-path
systems with peak value μ0 = 20J .

We choose a Gaussian pulse to modulate the gate voltages.
The parameters are μ0 = 20J , tmax = 150/J , and α = 4/tmax,
5/tmax. For α = 4/tmax, one can see the transfer fidelity
increases as the pathway number grows, as shown in Fig. 6(c).
However, the fidelity for the case N > 5 nearly has not been
improved compared with the case N = 5. Therefore, this
case will not be considered further. The results show that it

FIG. 8. (Color online) Plot of transfer fidelity as a function of
pathway number by considering the fabrication errors for maximum
coupling offset bias δ = 0 (open square), δ = 0.1J (open diamond),
and δ = 0.2J (open circle). The parameters we chosen are μ0 = 20J ,
tmax = 150/J , and α = 4/tmax.
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is possible to enhance the transfer efficiency by introducing
a multipath data bus, which is one of the main results of
this work. Compared with Fig. 6(c), Fig. 6(f) shows that
the optimal value for the number of paths is different for
different controlling protocols. Moreover, we also investigate
our proposal in a more realistic QD system in the presence of
inevitable fabrication imperfections. Based on the parameters
previously discussed in Fig. 6(c), we add a random offset bias
δεj to the couplings in each pathway. As an example, the
effect of offset on adiabatic QST is shown in Fig. 8 for two
cases: δ = 0.1J and 0.2J . One can see that small offset is
unimportant in this proposal.

IV. CONCLUSION

Limited by the inevitable decoherence of the quantum
system, a quantum computer should be able to perform a
large number of high-fidelity quantum state transfers within
the finite decoherence time. Therefore, much attention should
be devoted to explore a high-efficiency data bus or proposal
for adiabatic QST.

In such a scheme, all the system parameters are time
independent except for two-end on-site energies. This makes it

possible to investigate a variety of special geometry in Hilbert
spaces. In this proposal we introduce a multipath data bus for
adiabatic QST and discuss its transfer efficiency. First, we have
shown that the evolution of the system is restricted on a five-
dimensional Hilbert subspace by using linear transformation.
Then we have numerically demonstrated that it is possible to
enhance the quantum state transfer efficiency by setting up
a multipath data bus. The optimal path number and corre-
sponding shortest possible time for high-fidelity transfer are
determined from the numerical way. Moreover, the robustness
of the scheme to fabrication disorder is demonstrated.
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