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We show, under natural assumptions for qubit systems, that measurement-based quantum computations
(MBQCs) which compute a nonlinear Boolean function with a high probability are contextual. The class of
contextual MBQCs includes an example which is of practical interest and has a superpolynomial speedup over
the best-known classical algorithm, namely, the quantum algorithm that solves the “discrete log” problem.
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I. INTRODUCTION

While numerous quantum algorithms have been found
that offer polynomial or superpolynomial speedups over their
classical counterparts [1–3], the precise quantum mechanical
origin of this speedup remains unknown. The prominent
candidates—entanglement [4], superposition and interference
[5], and largeness of Hilbert space—provide an intuitive
understanding in many situations. Yet, as a whole, the
phenomenology so far uncovered does not lend itself to a
simple interpretation [6–12].

Here we turn our attention to a different characterization
of nonclassicality, namely, contextuality [13,14], and study its
relation to computational power. We choose measurement-
based quantum computation (MBQC) [15] as our setting.
The starting point for this investigation is the observation by
Anders and Browne [16] that one of Mermin’s proofs [17]
of the Kochen-Specker theorem [13] can be converted into
a simple MBQC. We are led to ask whether the connection
between MBQC and contextuality exhibited by this example
is accidental or whether it holds in general. The main finding
of this paper is that, under quite natural assumptions for
multiqubit systems, all MBQCs which compute a nonlinear
Boolean function with a sufficiently high success probability
are contextual.

For MBQC, the separation between linear and nonlinear
functions is fundamental. Every MBQC requires a classical
control computer for adjusting measurement bases according
to the computational input and for converting measurement
outcomes into computational output. This classical side pro-
cessing is all linear. Evaluating nonlinear functions is out of
reach for such a classical control computer without access to
additional resources.

This paper is organized as follows. In Sec. II, we review
Anders and Browne’s example and define the setting of MBQC
and notions of contextuality we use. In Sec. III we present
three results on the interplay between contextuality and the
nonlinearity of the computational output, Theorems 2, 3, and
5 . We point out that the class of contextual MBQCs contains
a computation which is of actual algorithmic interest, i.e.,
achieves a superpolynomial speedup over the best-known
classical algorithm. It is the MBQC variant of the quantum
algorithm for the “discrete log” problem [1,18]. In Sec. IV, we
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discuss experimental tests of contextuality. We conclude with
a discussion in Sec. V.

II. THE SETTING

We discuss the link between contextuality and quantum
computation for MBQC [15]. MBQC is a model of quantum
computation in which a quantum algorithm is implemented
solely by local measurements on a fixed initial state. The
choice of measurement bases determines the algorithm to be
implemented, and correlations among the measurement out-
comes reveal the result of the computation. The computational
power of this scheme is fully determined by the initial quantum
state.1 For suitable initial states such as cluster states, MBQC
is universal.

A. Computation and contextuality: A first example

Following Anders and Browne [16], we consider a three-
party Greenberger-Horne-Zeilinger (GHZ) [21] state |GHZ〉 =
|000〉+|111〉√

2
, which can be used to execute a deterministic OR

gate within the framework of MBQC. While standard elec-
tronic devices routinely perform OR gates without quantum-
mechanical action, this result offers a structural insight into
MBQC. Namely, it is known that every MBQC requires a
classical control computer that converts the classical input
into measurement settings and the measurement outcomes
into computational output. This classical control computer is
capable of doing only one type of operation: addition mod 2. It
is thus not classically universal and, indeed, very limited. Now,
having access to GHZ states and local projective measurements
promotes this control computer to classical universality. Thus,
in the described setting, the access to quantum resources vastly
increases the set of computable functions.

What is more, Anders and Browne’s construction repur-
poses an existing proof [17] of the Kochen-Specker theorem
[13] into a quantum mechanical computation. The computation
takes two bits of input, i1 and i2, and outputs a single bit
o ≡ i1 ∨ i2. It proceeds as follows. Step 1: The settings for the
local measurements on the three qubits are calculated from the
input i1 and i2. For either of the three qubits, a priori the Pauli

1Note, however, that other schemes of universal quantum com-
putation by measurement exist in which the measurements are not
local [19,20]. For such schemes, the initial quantum state of the
system is irrelevant.
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observables Ok = Xk,Yk can be measured (here and in the
following, σx ≡ X, σy ≡ Y, σz ≡ Z), and we use the binary
variable qk to encode the choice. If qk = 0 (1), then Xk (Yk) is
measured. The measurement setting q = (q1,q2,q3) is related
to the input i = (i1,i2) via q1 = i1, q2 = i2, q3 = i1 + i2 mod 2.
Step 2: The observables Ok(qk) are being measured, whereby
the measurement outcomes sk ∈ {0,1} are obtained. Here, if the
observed value of the Pauli observable Ok was +1 (−1), then
sk = 0 (sk = 1). Step 3: The parity o ≡ s1 + s2 + s3 mod 2 of
the three measurement outcomes is computed and outputted.

It is easily verified that this procedure does indeed compute
the desired OR gate. First note that |GHZ〉 is an eigenstate with
eigenvalue 1 of the following operators:

X1X2X3, −X1Y2Y3, −Y1X2Y3, −Y1Y2X3. (1)

The outcomes of the local X and Y measurements selected
by the input i in the above procedure are thus strictly
correlated or anticorrelated. Specifically, if i1 = i2 = 0, then
the measured observables are X1, X2, X3. The measurement
outcomes s1, s2, s3 are individually random, but because
of X1X2X3|GHZ〉 = |GHZ〉, o(0,0) = s1 + s2 + s3 mod 2 =
0 with certainty. Likewise, if i1 = 0, i2 = 1, then the measured
observables are X1, Y2, Y3. As before, the local measurement
outcomes s1, s2, s3 are individually random, but because of
the relation X1Y2Y3|GHZ〉 = −|GHZ〉 we find that o(0,1) =
s1 + s2 + s3 mod 2 = 1 with certainty. The remaining two
cases are analogous, and we thus verify the logical table of
the OR gate.

The present implementation of the OR gate is quan-
tum mechanical, and one may ask whether contextual-
ity of quantum mechanics is brought to bear in this
process. Let us try to construct a noncontextual hidden
variable model (HVM) for the “predetermined” measure-
ment outcomes x1, x2, x3, y1 y2, y3 ∈ Z2 of the observables
X1, X2, X3, Y1, Y2, Y3 potentially measured in the realization
of the gate. Since the measured observables are all local, such
an HVM is also local (a special case of being noncontextual
[17]). Going through each entry in the logical table of the OR
gate, the following relations are imposed:

x1 + x2 + x3 mod 2 = 0,

x1 + y2 + y3 mod 2 = 1,

y1 + x2 + y3 mod 2 = 1,

y2 + y2 + y3 mod 2 = 1.

(2)

Adding up these four equations, we find 0 = 2(x1 + y1 +
x2 + y2 + x3 + y3) mod 2 = 1. Contradiction! No assignment
of predetermined local measurement outcomes reproduces the
correlations required for an OR gate in the present three-party
setting. The argument we have just stated is, in fact, Mermin’s
state-dependent proof of the Kochen-Specker theorem in
dimension 8 [17]. We find that a proof of contextuality of
quantum mechanics can be repurposed as a (simple) quantum
computation.

We may take this example a step further and consider
the following modifications: (i) flipping some observables
Ok(qk) −→ −Ok(qk) and (ii) using, instead of |GHZ〉, some
other state from the GHZ family, i.e., a simultaneous eigenstate
of the observables in Eq. (1), but with eigenvalues −1 for
some of them. Since both the changes can be implemented by
local unitary operation, one expects contextuality to remain

unaffected. And indeed, while the right-hand side of Eq. (2)
does change under such transformations, the number of
entries 1 always remains odd. Hence, the contradiction for
noncontextual HVMs persists. As for the computed Boolean
function, it also changes but always remains nonlinear. We are
thus led to ask: Is there a link between the nonlinearity of a
Boolean function computed in MBQC and the noncontextu-
ality of such a computation? This is the question which we
subsequently investigate. To do so, we first need to define our
precise setting of MBQC and notion of contextuality.

B. The general setting of measurement-based computation

The above example using a GHZ state may serve as a
first illustration of MBQC, but it misses two aspects: (i)
MBQC is universal for quantum computation, and (ii) the
measurements in MBQCs can be temporally ordered. The
latter is a consequence of the randomness inherent in quantum
measurement. To prevent this randomness from creeping into
the logical processing, measurement bases need to be adjusted
to measurement outcomes already obtained. This leads to a
partial temporal order of the measurement events; see Fig. 2
in the Appendix.

One may consider an MBQC scenario with n parties, k

measurement settings at each party, and l possible outcomes
for each of those measurements. However, for the confines
of this paper we restrict our attention to the case of two
measurement settings per party and two outcomes for each
local measurement, i.e., k = l = 2. This is a natural choice
when the local quantum systems are qubits. We further impose
a restriction on the classical side processing in MBQC. Side
processing is required for adjusting the measurement bases ac-
cording to previously obtained outcomes and for obtaining the
computational output from the local measurement outcomes.
We require all such processing to be addition mod 2.

The relations between contextuality and computational
power described in Sec. III (or at least their present proofs)
crucially depend on this linearity. Therefore, before making
definitions, we need to motivate such linear constraints. In this
regard, we note that in the GHZ example in the previous section
all classical side processing is indeed mod 2 linear. However,
the main justification for imposing mod 2 linear relations of
classical side processing is that they are sufficient for quantum
mechanically universal MBQC on cluster states [15]. The
origin of linearity in the classical side processing is explained
in the Appendix. We note that MBQC schemes with different
classical processing exist [22].

We now introduce the notion of l2-MBQC for “MBQC with
mod 2 linear classical processing”.

Definition 1. A l2-MBQC is an MBQC with classical input
i and classical output o, where the measurements driving the
computation are all local and satisfy the following properties:

(1) For each party k, k = 1 . . . n, there is a binary choice
for the measurement basis, qk ∈ {0,1}.

(2) For each party k and each qk ∈ {0,1}, the measurement
outcome is binary valued, sk ∈ {0,1}.

(3) The computational output o is bitwise a parity of
measurement outcomes s = (s1,s2, . . . ,sn)T ,

o = Zs mod 2. (3)
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FIG. 1. Timeline of events in an MBQC. (1) The resource
quantum state is prepared. (2) The computational input i is chosen. (3)
The measurements comprising the computation are performed, and
their outcomes are processed. The hidden variable model attempting
to describe the computation is fixed before the input i is chosen.

(4) The choice of measurement bases q = (q1,q2,qn)T is
related to the measurement outcomes s and the binary-valued
classical input i = (i1, . . . ,il)T via

q = T s + Qi mod 2. (4)

(5) For a suitable ordering of the parties 1 . . . n, the matrix
T in Eq. (4) is lower triangular with vanishing diagonal.

The reason for imposing condition 5 is that if and only if T

is strictly lower triangular with respect to a suitable ordering of
parties, the given MBQC is runnable, i.e., measurement bases
depend only on measurement outcomes that have already been
obtained.

C. Contextuality

In an HVM, in stark contrast to quantum mechanics,
measurement outcomes exist prior to measurement and are
merely “revealed.” Noncontextuality means the following: Let
an observable A be measured jointly with one of the compatible
observables B or C, and B be incompatible with C. An HVM
is noncontextual if the “pre-existing” measurement outcome
λ(A) for A is independent of whether A is measured jointly
with B or with C. Noncontextual HVMs cannot reproduce
all predictions of quantum mechanics in Hilbert spaces of
dimension �3. This is the content of the Kochen-Specker
theorem [13].

Noncontextuality is not compromised by the classical
communication required in l2-MBQC. In quantum mechanics,
two observables are compatible if and only if the corresponding
Hermitian operators commute. Consider two parties, a and b,
with to-be-measured observables, Oa(qa) and Ob(qb), where
qa,qb ∈ {0,1}. The values of qa and qb are specified by prior
measurement outcomes; see Eq. (4) and Fig. 1. Independent
of the values of qa and qb, the observables Oa and Ob always
commute because they are local to different tensor product
factors of the underlying Hilbert space.

We follow the sheaf-theoretic notion of contextuality
developed by Abramsky and Brandenburger [23]. Below
we restate from [23] the definitions of the notions required
for the present discussion, namely, “section,” “measurement
context,” ‘phenomenological model,” “strongly contextual,”
and “contextual.” (Note: In [23], “contextual” is called “prob-
abilistically nonextendable.”) We specialize to the case where
all measurement outcomes are binary.

Sections. Let X be the set of measurements and Z2 the
set of outcomes for each individual measurement. For all
U ⊆ X, a section over U is a function s : U → Z2. It describes
measurement outcomes s = (s(O1),s(O2), . . . ,s(On)), Oi ∈
U . We denote by E(U ) the set of sections s over U . A
section over X is called “global.” Contextuality is about the
nonexistence of global sections.

Measurement contexts. A measurement context is a set C ⊂
X of compatible measurements. The set M of measurement
contexts has the following two properties: (i) X = ⋃

C∈M C,
and (ii) for C,C ′ ∈ M, if C ⊆ C ′, then C = C ′. The second
property says that contexts are maximal sets of compatible
measurements.

A phenomenological model e is a set of probability distribu-
tions {eC | C ∈ M} such that for each measurement context C

and measurement outcome s ∈ E(C), eC(s) is the probability of
obtaining s within C. We may consider any process that begins
with a preparation and ends with a measurement—quantum,
classical, or other—as a phenomenological model.

Strong contextuality. We define the set Se of global sections
that only predict possible events:

Se := {s ∈ E(X)| eC(s|C) > 0,∀C ∈ M} . (5)

Definition 2. A phenomenological model e is strongly
contextual if Se = ∅.

An example of a strongly contextual model is the GHZ
scenario discussed in Sec. II A.

A model e with Se = ∅ is definitely contextual since
no assignment s ∈ E(X) of “predetermined” measure-
ment outcomes—and no probability distribution over such
assignments—can reproduce it. Such contextuality is called
“strong” because it implies other forms of contextuality [23].

Contextuality. A phenomenological model e may be con-
textual even if Se = ∅. While consistent assignments for the
predetermined measurement outcomes exist, no probability
distribution over those assignments may reproduce the proba-
bility distributions in e.

We label the elements in Se by a hidden variable λ, i.e.,
Se = {s(λ),λ ∈ �}. Each s(λ) induces a set of probability
distributions {dC(λ),C ∈ M} over the measurement records in
all measurement contexts. Then a probability distribution p̃ of
the hidden variable λ induces a set of probability distributions
{dC(p̃) = ∑

λ∈� p̃(λ) dC(λ),C ∈ M} over the measurement
records in all measurement contexts.

Definition 3. A phenomenological model e is contextual if
the set of linear equations,

eC =
∑

λ∈�

p̃(λ) dC(λ), ∀C ∈ M,

has no solution p̃ with p̃(λ) � 0, for all λ ∈ �, and subject
to the normalization constraint

∑
λ p̃(λ) = 1. If it has such a

solution, the model is noncontextual.
Contextuality is weaker than strong contextuality: the latter

always implies the former. The converse does not hold. The
Bell scenario is contextual but not strongly contextual [23].

Now consider a phenomenological model e with a noncon-
textual part K and a general no-signaling part Q:

e = p K + (1 − p)Q, 0 � p � 1. (6)

That is, for all contexts C ∈ M and all sections s ∈ E(C) we
have eC(s) = p KC(s) + (1 − p)QC(s). We call the supremum
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of p over all convex decompositions, Eq. (6), the noncontextual
fraction of e. A phenomenological model e is called maximally
contextual if its noncontextual fraction is 0. We then have the
following relation [23].

Theorem 1. A model is strongly contextual if and only if it
is maximally contextual.

This concludes our review of the required notions of
contextuality from [23].

A feature of measurement contexts in l2-MBQC that is not
explicitly addressed in [23] but can be included is the adaptivity
of local measurement settings according to previously obtained
measurement outcomes. In l2-MBQC, the measurement at
party k depends on the m-bit input i and the measurement
outcomes s|P(k) obtained in the past P(k) of k; cf. Eq. (4).

Contexts are labeled by the basis choice q:

C(q) = {Ok(qk), k = 1, . . . ,n}. (7)

The measurement record s appearing in Eqs. (3) and (4) and
the section s are related via

s = s|C(q) . (8)

Since q depends on s via Eq. (4), this looks like a self-
consistency condition. Given s and q, it is a priori not clear
whether s exists and, if it it does, whether it is unique.
However, due to the runnability condition on matrix T in
Eq. (4), a unique solution s does indeed always exist. The
set {1, . . . ,n} of qubits is divided into smaller sets Q0,
Q1, . . ., Qlast, which are measured one after the other. The
measurement bases for any given set only require knowledge
of the measurement outcomes from prior sets. Choosing the
bases for the measurements in Q0 requires no knowledge of
measurement outcomes, and the set Q0 is therefore measured
first. Using the measurement outcomes from Q0, q|Q1 can be
obtained and Q1 be measured, and so on. Correspondingly, the
components of s can be extracted one set Qi at a time.

Remark 1. MBQC [15] uses only local observables to drive
the computation. An alternative approach therefore is to relate
MBQC to the nonlocality of quantum mechanics rather than
contextuality. If so, a complication is posed by the adaptive
choice of measurement bases in MBQC. The local parties
exchange classical messages in order to adjust measurement,
which runs counter to the assumption of locality. In this
situation, postselection may be employed to restore locality.
Furthermore, for the kind of postselection required, CHSH-
type inequalities indicating the nonlocality of MBQCs can
still be established [24]. However, the fraction of measurement
records that survive the postselection criterion is, for MBQCs
with temporal order, in general, exponentially small in the
number n of parties.

III. CONTEXTUALITY AND COMPUTATIONAL POWER

In this section we present our results on the interplay
between contextuality and nonlinearity in MBQC.

A. The deterministic case

We call a l2-MBQC deterministic if it computes the
vector-valued Boolean function o with unit probability
for every allowed input i ∈ Zm

2 . We regard l2-MBQCs as

phenomenological models. That is, a l2-MBQC M is a set
of probability distributions, M = {MC | C ∈ M}.

Theorem 2. Let M be a l2-MBQC which deterministically
evaluates a vector o of Boolean functions on an input i. If o(i)
is nonlinear mod 2 in i, then M is strongly contextual.

Proof of Theorem 2. We show that if M is not strongly
contextual, then o(i) is mod 2 linear in i. The result then follows
by negation.

If M is not strongly contextual, then there exists a noncon-
textual HVM consistently assigning values to the observables
in the set X = ⋃

q C(q), i.e., SM is nonempty. For each
party k = 1 . . . n, there are at most two possible measurement
bases, labeled qk = 0 and qk = 1, respectively (property 1
in Definition 1). Therefore, X ⊂ X̃ := {Ok(qk = 0),Ok(qk =
1),∀k = 1 . . . n}, but X may be strictly smaller than X̃. First,
consider the case where both Ok(qk = 0) and Ok(qk = 1)
are in X. In the noncontextual HVM, these observables
have pre-existing outcomes si(qk = 0) and si(qk = 1) that
are independent of the context C(q). Since the measurement
outcomes sk are binary (property 2), and any function defined
on only two points is linear, these outcomes can be expressed
in terms of two binary variables, ck and dk:

sk(qk) ≡ ck ⊕ dkqk. (9)

The pair [sk(qk = 0),sk(qk = 1)] and the pair [ck,dk] contain
the exact same information. Keep in mind that ck and dk depend
upon the chosen s ∈ SM .

Next, consider the case where, for a given party k, only one
of the two values of qk occurs for all s ∈ SM and all i ∈ Zm

2 .
This can happen only if the kth row of Q is identically 0. Then
Eq. (9) does still hold. The only difference is that ck , dk are no
longer unique.

Thus, the relation Eq. (9) holds for all parties k = 1 . . . n.
We convert it into vector form, s(q) ≡ c ⊕ Dq, where D =
diag(dk). Inserting Eq. (4) (see property 4 of Definition 1) into
this relation, we obtain

(I ⊕ D T )s ≡ c ⊕ D Q i.

Therein, the matrix I ⊕ D T is invertible because of property
5. We can thus always solve for s, and using Eq. (3) (see
property 3 in Definition 1), we obtain for the classical output
o of the computation

o = c′ + Q′ i mod 2, (10)

where c′ = Z(I ⊕ DT )−1c and Q′ = Z(I ⊕ DT )−1DQ. We
emphasize that c′ and Q′ may depend on the choice s ∈ SM

via c and D; cf. Eq. (9). Therefore, o(i) is linear in i given a
particular s ∈ SM . To make explicit the potential dependence
of o on the choice of the global section, we choose a reference
section s0 ∈ SM ; hence o(s0) = c′(s0) + Q′(s0) i mod 2. Now,
for any choice sλ ∈ SM , for all i ∈ Zm

2 we must have

o(s0) = c′(s0) ⊕ Q′(s0)i = c′(sλ) ⊕ Q′(sλ)i = o(sλ);

otherwise, the computation would not be deterministic. Thus,
for all sλ ∈ SM , c′(sλ) = c′(s0) =: c′ and Q′(sλ) = Q′(s0) =:
Q′. The output o(i) in Eq. (10) is thus linear mod 2 in i. �

It should be noted that, besides the simple initial example of
[16] (cf. Sec. II A), the class of contextual l2-MBQCs contains
a quantum algorithm with superpolynomial speedup over
the best-known classical counterpart. Namely, the quantum
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algorithm solving the “discrete log” problem can be made
deterministic in the circuit model [18], and its translation as a
l2-MBQC thus falls under Theorem 2.

B. The probabilistic case

Since quantum-mechanical phenomena are in general
statistical rather than deterministic, one may be interested in
probabilistic extensions of Theorem 2. To begin, we need a
notion of probabilistic function evaluation.

Definition 4. A procedure τ probabilistically evaluates a
vector-valued Boolean function o(i) on an m-bit input i ∈ Zm

2
with success probability pS if

min
i∈Zm

2

Prob[τ (i) = o(i)] = pS.

The realization of probabilistic function evaluation as a
l2-MBQC has the phenomenological model

M = pK + (1 − p)Q, (11)

where Q is a contextual no-signaling model and K a
noncontextual model, such that the noncontextual fraction
p is maximized (subject to the constraint 0 � p � 1). The
model M is contextual for all p < 1 and, with Theorem 1,
strongly contextual for p = 0. Now, consider the case where
M deterministically evaluates a nonlinear Boolean function,
pS = 1. By Theorem 2, M is then strongly contextual. Hence,
by Theorem 1, M is maximally contextual, p = 0. We now
ask, For probabilistic evaluation of a Boolean function with
a l2-MBQC M , how much can the success probability pS

drop for the computation to remain contextual (p < 1)? This
question leads us to the following theorem.

Theorem 3. Let Mps
be a l2-MBQC that probabilistically

evaluates a vector of nonlinear Boolean functions on m bits of
input, with success probability pS . If pS > 1 − 1

2m , then MpS

is contextual.
We thus find that contextuality persists within a finite

interval around the point of strong contextuality. However, we
also find that for general nonlinear functions, the contextuality
threshold for pS approaches unity exponentially fast in the
input size m. This result can be significantly improved for
special nonlinear Boolean functions, as discussed below.

In preparation for the proof of Theorem 3, we define the
distance ν of a Boolean function o to the closest linear Boolean
function, ν = minl∈lin.B.f wt(o ⊕ l). For a vector o of Boolean
functions, we define the distance to the closest linear function
as

ν := min
l∈lin.B.f

∑

i∈Zm
2

1 − δ(o(i) ⊕ l(i)).

We then have the following.
Lemma 1. Let MpS

be a l2-MBQC that evaluates with
success probability pS a vector-valued Boolean function on
m input bits with distance ν to the closest linear function. If
pS > 1 − ν

2m , then MpS
is contextual.

Proof of Lemma 1. We decompose the noncontextual part
pK on the right-hand side of Eq. (11) as

pK =
∑

k

pkLk,

where all Lk are noncontextual models corresponding to l2-
MBQCs which deterministically evaluate functions lk , and all
pk � 0. By Theorem 2, all functions lk are linear mod 2. We
define Lk := {i ∈ Zm

2 | lk(i) = o(i)}. Then

ν � |Lk|, ∀k. (12)

For any given input i ∈ Zm
2 , the noncontextual part pK in

Eq. (11) contributes a portion pfail,L(i) to the probability of
failure to output o(i), pfail,L(i) = ∑

k|i∈Lk
pk . The contextual

part (1 − p)Q in Eq. (11) may also contribute, and the
probability pfail(i) of failure to output o(i) is thus the same
or bigger. Summing over all i ∈ Zm

2 , we have
∑

i

pfail(i) �
∑

i

∑

k|i∈Lk

pk =
∑

k

pk|Lk| � pν. (13)

Further, 1 − pS = maxi∈Zm
2
pfail(i), by Definition 4. Also,

the failure probability averaged over the 2m input values
i ∈ Zm

2 is smaller than or equal to the maximal failure
probability, maxi∈Zm

2
pfail(i) � 2−m

∑
i∈Zm

2
pfail(i). Combining

the last three relations, we find

2m(1 − pS) � pν.

To maintain contextuality, p must be bounded away from unity.
With the last relation, this is guaranteed if pS > 1 − ν

2m . �
Proof of Theorem 3. For any nonlinear Boolean function,

ν � 1. Theorem 3 now follows from Lemma 1 with the choice
ν = 1. �

If we consider all non-linear Boolean functions, no ν larger
than 1 can be chosen for Theorem 3, since o = ∏m

k=1 ik
has ν = 1. Therefore, the contextuality threshold of pS,th =
1 − 1/2m stated in Theorem 3 is optimal for the evaluation of
general nonlinear functions. However, if we restrict to special
functions, then the range of pS for which the computation
remains contextual can be significantly extended. In this
regard, we recall from MacWilliams and Sloane [25] the
following.

Definition 5. A Boolean function f (v1, . . . ,vm), for m even,
is called “bent” if the Hadamard transform coefficients F̂ (u)
given by F̂ (u) = ∑

v∈Zm
2
(−1)u·v+f (v) are all ±2m/2.

For bent functions we note the following [25].
Theorem 4. A bent function f (v1, . . . ,vm) is farther away

from any linear function,

a0 +
m∑

i=1

aivi,

than any other Boolean function. More precisely,
f (v1, . . . ,vm) is bent iff the corresponding vector f has a
distance 2m−1 ± 2m/2−1 from every code word of the Reed-
Muller code R(1,m). If f is not bent, then f has a distance less
than 2m−1 − 2m/2−1 from some code word of R(1,m).

Using this result, we obtain the following.
Theorem 5. Let MpS

be a l2-MBQC that evaluates with
success probability pS a bent function on an even number m

of bits. Then MpS
is contextual if pS > 1

2 + ( 1
2 )m/2+1.

Proof of Theorem 5. With Theorem 4, we may choose
ν = 2m−1 − 2m/2−1, and the result follows directly from
Lemma 1. �

The low threshold of pS in Theorem 5 is worth of note.
Consider the special case of a single output bit (which for
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any l2-MBQC can be obtained by discarding the other output
qubits). Then, for large values of m, the output of Mps

can
be very close to completely random, and yet MpS

remains
contextual.

IV. TESTS OF CONTEXTUALITY

It is natural to ask whether Lemma 1 and Theorems 3 and
5 lead to experimental tests of contextuality. They do: one
may measure a sufficiently accurate estimate of the success
probability pS of function evaluation and then compare it with
the threshold in the above theorems.

But the efficiency of the measurement procedure needs to
be examined. There are two potential sources of inefficiency.
First, the general contextuality threshold as stated in Theorem
3 is, for large m, very close to unity. The experiment may
therefore need to be repeated a very large number of times.
Second, the contextuality threshold involves the worst-case
success probability pS , i.e., the lowest success probability over
all input values. Finding the worst value of input is in general
exponentially inefficient in the number m of imput bits.

Regarding the first point, we observe that the contextuality
threshold depends on the evaluated function; cf. Lemma 1.
While in the worst case the threshold is indeed exponentially
(in m) close to unity, for many Boolean functions it is
substantially lower. The bent functions are one example.

Regarding the second point, we note that the exponential
inefficiency in m can be eliminated by considering the average
success probability of function evaluation rather than the
worst-case success probability.

Definition 6. A procedure τ probabilistically evaluates a
vector-valued Boolean function o(i) on an m-bit input i ∈ Zm

2
with average success probability pS if

1

2m

∑

i∈Zm
2

Prob(τ (i) = o(i)) = pS.

While, in operational terms, the average success probability
pS may be a weaker notion than the worst-case success
probability pS , it simplifies the experimental verification of
contextuality. In this regard, Lemma 1 has a counterpart,

Lemma 2. Let MpS
be a l2-MBQC that evaluates with

average success probability pS a vector-valued Boolean
function on m input bits with distance ν to the closest linear
function. If pS > 1 − ν

2m , then MpS
is contextual.

Proof of Lemma 2. Equation (13) is combined with 1 −
pS = (

∑
i∈Zm

2
pfail(i))/2m, and p is bounded as before. �

Counterparts of Theorems 3 and 5 follow from Lemma 2.
The average success probability pS of function evaluation can
now be obtained by uniformly sampling from the input values,
and the exponential inefficiency in m is thus removed.

Finally, we point out a relation of Lemma 2 to
(non-)contextuality inequalities existing in the literature. In-
verting Lemma 2, we find that if a l2-MBQC is noncontextual,
then ∑

i∈Zm
2

psucc(i) � 2m − ν. (14)

Here, psucc(i) is the probability that the function evaluation
succeeds for input i, and 2m is the number of measurement
contexts. For the (hardest) case of ν = 1, we recognize this as

the so-called logical Bell inequality described in [26]; also see
Sec. IA in [27]. Quantum-mechanical systems can violate this
inequality maximally,

∑
i∈Zm

2
psucc(i) = 2m. In the setting of

l2-MBQC, this maximal violation corresponds to deterministic
function evaluation.

Remark 2. Inequality (14) is a constraint imposed by
noncontextuality, not necessarily locality. For l2-MBQC, it
can be interpreted in terms of locality in the special case of
temporally flat computations.

Remark 3. Inequality (14) has been called “logical,” because
it arises as a sole consequence of mutually incompatible
propositions. This incompatibility leads to the inviability of
noncontextual HVM descriptions. In the present setting of
l2-MBQC, “logical” acquires an additional meaning: the above
inequality constrains the success probability of noncontextual
measurement-based computations.

V. CONCLUSION

In summary, we have shown that l2-MBQCs cannot be
described by no-contextual hidden-variable models if they
compute nonlinear Boolean functions with a sufficiently high
probability of success. The probability threshold depends on
the Boolean function in question. It is very close to 1 for
products of high degree but close to 1/2 for bent functions.

In addition, we would like to draw attention to the following
point. Although we have stated Theorems 2, 3, and 5 for
measurement-based quantum computations, they hold in more
general scenarios than quantum theory. An example of such a
more general (and hypothetical) scenario is Popescu-Rohrlich
boxes, which violate the CHSH inequality maximally. Neither
the definitions [23] of contextuality applied here nor the proofs
of Lemma 1 and Theorems 2, 3, and 5 use properties of
quantum mechanics. Required are the binary choice for the
measurement basis and a binary measurement outcome for
each party, the linear processing relations Eqs. (3) and (4), and
runnability (property 5 in Definition 1).
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APPENDIX: LINEAR CLASSICAL PROCESSING
RELATIONS IN MBQC

Since the linear relations of classical side processing in
MBQC [15] are essential for our argument, we briefly review
here how they come about. We discuss this for the example
of the resource state being a three-qubit cluster state [see
Fig. 2(a)]. The argument for general cluster and graph states
[28–30] is analogous. The measured local observables are
cos 2φi Xi + sin 2φi Yi . This MBQC can be used to simulate
the circuit shown in Fig. 2(b), consisting of the application
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(a)

1 2 3

α β γ

(b)

Uz(α) Uz(γ)Ux(β) X+

(c)

Uz(α) Uz(γ)Ux(β) X++ Z ZX

s1 s3s2

forward propagationβ−> −β

FIG. 2. (Color online) Origin of the linear processing relations
(by example). (a) MBQC on a three-particle cluster state. It
can be used to simulate the circuit shown in (b) but—if run
straightforwardly—executes the probabilistic circuit (c). The need
to compensate for the random measurement outcomes enforces a
temporal order among the measurements. For explanation see text.

of a general one-qubit rotation (in its Euler decomposition)
to a state |+〉 ∼ |0〉 + |1〉, followed by a measurement of the

Pauli observable X. However, if all three measurements are
performed simultaneously, with measurement angles φ1 = α,
φ2 = β, and φ3 = γ , then, rather than the desired circuit in
Fig. 2(b), the probabilistic circuit in Fig. 2(c) is realized. It
differs from the desired circuit by the insertion of Pauli spin or
phase flips which are conditioned on measurement outcomes
obtained. These random flips need to be removed from the
circuit. This task can be accomplished by measuring the three
qubits in sequence and adjusting measurement bases on the go.

Consider the phase flip (Z)s1 next to the z rotation
Uz(α) in Fig. 2(a). It can be propagated forward through
the computation, past the readout measurement. Due to the
anticommutation relation ZX = −XZ, on its course the Pauli
operator Z flips the rotation angle β and the outcome o

of the readout measurement. If qubit 1 is measured before
qubit 2, the conditional flip of the rotation angle β can still
be accommodated by a conditional flip of the measurement
angle φ2, namely, φ2 = (−1)s1β. The two other probabilistic
insertions of Pauli flips propagate in a similar fashion. The
net result is that the sign (−1)q2 of the measurement angle φ2

is given by q2 = s1, and similarly, q3 = s2. Furthermore, the
output o is o = s1 ⊕ s3. These relations are all mod 2 linear.
This property is a consequence of the (anti-)commutation
relations of Pauli operators and generalizes to the universal
case [15].
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