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Atoms versus photons as carriers of quantum states
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The problem of the complete transfer of quantum states and entanglement in a four-qubit system composed of
two single-mode cavities and two two-level atoms is investigated. The transfer of single and double excitation
states is discussed for two different coupling configurations between the qubits. In the first, the coupling is
mediated by the atoms that simultaneously couple to the cavity modes. In the second configuration, each atom
resides inside one of the cavities and the coupling between the cavities is mediated by the overlapping field
modes. A proper choice of basis states makes it possible to identify states that could be completely transferred
between themselves. Simple expressions are derived for the conditions for the complete transfer of quantum
states and entanglement. These conditions impose severe constraints on the evolution of the system in the form
of constants of motion. The constrains on the evolution of the system imply that not all states can evolve in
time, and we find that the evolution of the entire system can be confined into that occurring among two states
only. Detailed analysis show that in the case where the interaction is mediated by the atoms, only symmetric
superposition states can be completely and reversibly transferred between the atoms and the cavity modes. In
the case where the interaction is mediated by the overlapping field modes, both symmetric and antisymmetric
superposition states can be completely transferred. We also show that the system is capable of generating purely
photonic NOON states, but only if the coupling is mediated by the atoms, and demonstrate that the ability to
generate the NOON states relies on perfect transfer of an entanglement from the atoms to the cavity modes.
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I. INTRODUCTION

The ability to control the process of transferring quantum
states between remote systems is essential for quantum
information processing and the development of quantum
computation [1,2]. The main challenge is the achievement of
a quantum interface that would be able to transfer quantum
states with hight fidelity. Several schemes have been proposed
and experimentally implemented where a high-fidelity transfer
of quantum state was achieved based on the creation of a
strong coupling between the systems [3—6]. In this limit, the
time scale of the transfer process is much shorter than the
time scale for dissipation in the system due to a coupling to
an external environment. Over this time scale, coherent and
reversible transfer of a quantum state can be achieved [7].

The transfer of a quantum state corresponds to the transfer
of correlations from the states of one system to the states of
an another system. In most schemes, linear atomic chains or
atomic (spin) lattices are considered for the transfer of quantum
states [8—10]. In these models the transfer is mediated by
the direct dipole-dipole coupling between neighboring atoms,
which induces the flow of an initial excitation through the
chain [11]. However, the dipole-dipole coupling may create
correlations between the atoms so the state would effectively
be transferred through the correlated system. Thus, the final
state of the system might not be related in a simple way to the
initial state. The atoms can be found in an entangled state even
if the initial state was a separable state [12].

Other schemes involve a chain of remote cavities, each
containing a single atom or optical lattice, the so-called Jaynes-
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Cummings (JC) cells [13—15]. The cells could be independent
[16-20], coupled to each other through the overlapping field
modes [21-26], connected by a short fiber [27-32]. In these
schemes, photons act as carriers for the transfer of quantum
states and controlled transfer is implemented by an appropriate
choice of the coupling strength of the overlapping field modes.
The cavity modes could be in a vacuum state or in a correlated
state [33-37].

Alternative to the schemes involving photons are models
in which atoms are treated as a small reservoir or a spin
bath through which an initial state could be transferred to
the field modes [38—40]. The atoms forming the reservoir can
be independent or may interact with each other, the two cases
that could give different results for the transfer process of a
quantum state.

Using the Schrodinger or master equation approach, one
can study the transfer process of an initial quantum state for
the three classes of systems described above (atomic chains
or lattices, coupled JC cells, field modes coupled through
atomic reservoir). In this paper, we address the question of
the complete transfer of quantum states and entanglement
in four-qubit systems composed of two single-mode cavities
and two two-level atoms. We work in the resonance regime
and consider two different coupling configurations between
the qubits specified by two distinctly different types of
the interaction Hamiltonians. In the first, we assume that
both atoms simultaneously couple to two independent cavity
modes, resulting in an effective system analog of the system
composed of two qubits coupled to a small reservoir. Here, the
coupling between the field qubits is mediated by the atoms.
The other configuration corresponds to a system of two directly
coupled JC cells, where the cells are coupled through the
overlapping mode functions of the cavity fields. In this case, the
coupling between the qubits is mediated by photons. In what
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follows, we assume that dissipation effects are not present or
can be neglected. This restricts our results to the case of a strong
coupling between qubits. In fact, this is not an overly restrictive
limitation regarding the recent progress in the cavity QED
technology, where strong couplings have been achieved [41].

We determine the nature of quantum states that can be
completely transferred under the action of the two different
interaction Hamiltonians and under what conditions the com-
plete transfer of the states corresponds to perfect transfer of
entanglement between atoms and the field modes. Of course,
there is a large number of states to which an initial state could
be transferred under the action of the interaction Hamiltonians.
However, we find that only few of them can be completely
transferred between themselves. Moreover, we show that the
complete transfer of a quantum state does not necessarily mean
perfect transfer of entanglement.

The paper is organized as follows. In Sec. II, we provide
detailed description of the four-qubit system and the coupling
configurations between the qubits. A detailed calculation of the
probability amplitudes of single excitation states is presented
in Sec. III, and in Sec. IV we extend these calculations to
double excitation states. We point out the existence of constants
of motion that significantly reduce the number of states that
could evolve in time. We find that the Hilbert space of the
system splits into independent subspaces, each composed of
two states only. In other words, the system behaves in this case
as if it were composed of independent two-state subsystems.
No perfect transfer of an entanglement is achieved even if the
states are completely transferred between themselves when
one of the states contains correlations between the atoms and
the cavity modes. The perfect transfer of the entanglement
is achieved between states that are factorable into a product
of the atomic and the field states. The effect of losses on
the two-state evolution and entanglement transfer is briefly
discussed in Sec. V. Finally, we summarize our results in Sec.
VI. Some details of the calculation of the concurrence and
the logarithmic negativity of the atomic and the cavity-field
subsystems are presented in the Appendix.

II. GENERAL FORMALISM

We consider a four-qubit system, two identical cavities,
each composed of a single bosonic mode of frequency w,,
and two identical atoms modeled as having two energy states,
a ground state |g;) and an excited state |e;), separated by
frequency wy and connected by a transition dipole moment
wi (i = A,B). The atoms are represented by spin lowering
and raising operators o, and o;", whereas the cavity modes
are represented by the annihilation and creation operators (a,b)
and (af,bh), respectively. We use indexes (A, B) to label the
atoms and (a,b) to label the cavity modes. Each of the qubit
pairs, either atoms (A, B) or the cavity modes (a,b), can be
used as a mediator between the qubits.

Our objective is to determine which of the qubits, atoms
(fermions) or photons (bosons), are better carriers of quantum
states and entanglement from one qubit pair to the other. For
this purpose, we concentrate on the transfer of an initial state
through the system for two configurations of the coupling
between the qubits. In the first configuration, we use atoms
as “couplers” by sending them through the cavities. In the
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FIG. 1. (Color online) Schematic diagram of two coupling config-
urations between qubits in the system composed of two single-mode
cavities (a,b) and two two-level atoms (o4,03). In (a), both atoms
simultaneously couple to the cavity modes, resulting in an effective
closed-oop system. In (b), two JC cells are coupled with a strength «
through the overlapping of the mode functions of the cavity fields.

second configuration, the atoms are assumed to reside inside
the cavities, with one atom in each cavity, and the coupling
between the cavities is mediated by overlapping of the
evanescent mode functions of the cavity modes. Alternatively,
this could be done by connecting the cavities by a short optical
fiber. In this kind of coupling, photons act as carriers of an
excitation between the cavities.

Figure 1 shows two possible coupling configurations in the
system. In the first, illustrated in Fig. 1(a), each atom couples
to both of the cavity modes that are not directly coupled to each
other. In geometrical terms, this configuration is equivalent to a
square shape or a closed-chain configuration of the four qubits.
In the second, illustrated in Fig. 1(b), each atom couples to only
one of the modes that are directly coupled to each other. The
coupling between the cavity modes could be arranged through
the overlap of the mode functions of the cavity fields in the
region between the cavities. We see from the figure that the
system is equivalent to an open chain of four qubits. This
system can be regarded as a double JC system, two JC systems
coupled to each other with the coupling strength «.

The two configurations of the coupling between the cavities
can be distinguished by different forms of the interaction
Hamiltonian of the atoms and the cavity modes. The total
Hamiltonian of the system can be written as

A=Ay + A, (D
where
Hy = hawo(65 + 65) +ho@'a + b'b) )

is the free (unperturbed) Hamiltonian of the atoms and the
cavity modes, and H ; 1s the interaction between the atoms and
the cavity modes. The interaction depends on the configuration
of the coupling between the atoms and the cavities and between
the cavity modes themselves.

In the case of Fig. 1(a), the interaction Hamiltonian, under
the rotating-wave approximation, can be written as

H; = hlg.(65 + 64 ¢*Fw)a

+gp(65 + 64 )b+ Heel. A3)
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The Hamiltonian consists of two terms. The first term describes
the interaction of the atoms with the field of the cavity a,
and the second term describes the interaction with the field of
the cavity b. The strength of the interactions is determined by
the coupling coefficients g, and g, respectively. In practice,
we may encounter a situation in which atoms traveling through
the cavities would be at different positions. Therefore, we
have introduced the phase factor exp(ikR4p) in the coupling
coefficients reflecting a phase difference in the oscillation of
the atomic dipole moments separated by a finite distance R4 p.
If the atoms are separated by less than a wavelength, kR p <
1, the phase difference may be taken to be equal to zero, that the
atomic dipoles oscillate in phase. When the atoms are separated
by a half of the wavelength the phase difference between the
atomic dipoles equals , the phase factor exp(ikRsp) = —1,
and then the atomic dipoles oscillate with opposite phases.

In the case Fig. 1(b), the interaction Hamiltonian may be
written as

H; =h(g.6a + gp65b+H.e) +hab' +ba'y, (4)

where g; (i = a,b) is the coupling coefficient between the ith
atom and its local cavity field, and « is the coupling coefficient
between the cavity modes. In the absence of the coupling, k =
0, the system described by the Hamiltonian (4) is completely
equivalent to two independent JC models.

The calculations for both configurations are based on the
solution of the Schrodinger equation for the wave function of
the system

o 10,0 = A 19,0), n=12 )

where n labels the number of excitations present in the system.
We work in the interaction representation to remove the time
dependence at the optical frequencies and expand the wave
function in the basis of the eigenstates of the free Hamiltonian
Hy.

For the case of a single (n = 1) excitation present in the
system, the wave function can be expanded in terms of four
product state vectors

4
W) =Y Ci(n1j), 6)
j=0

where |j) represents an excitation eigenstate of the free
Hamiltonian,

|2> = |gAaeBaoa50h)a

14) = |g4,88,04,1p),

|1) = |eAangoa70b>7
(7N
13) = 184,85, 14,05),

and C;(¢) is a slowly varying part of the probability amplitude
of the state j. The space of the |j) states can be formally
divided into two subspaces, one involving states |1}, |2),
corresponding to one quantum present in either of the atoms,
and the other involving states |3), |4), corresponding to the
atoms residing in their ground states and the excitation present
in either of the cavity modes or in a superposition of the modes.

When two quanta of excitation (n = 2) are present in the
system, the wave function can be expanded in terms of eight
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product state vectors,
8
() = Y D)), ®)
j=0

where | j) are two-quanta eigenstates of the free Hamiltonian

IT) = lea,e,04,0p), 12) = lea,g5,04,15),
13) = Iga.en.10.00),  |%) =|ga.85.1a.15), o)
15) = lea.gp.1a.06),  16) = 184.85.24,0).
I7) = lga.e,00,15),  18) = 184,85,04,25) -

The space of the product states can be formally divided into two
subspaces. One involves states |2), |3), |3), |7), corresponding
to the two quanta of excitation evenly redistributed over the
atomic system and the cavity modes. The other set involves
states |1), |4), |6), |8), corresponding to both quanta being
either in the atomic system or in the cavity modes.

III. TRANSFER OF SINGLE EXCITATION STATES

Let us first consider the transfer of single excitation states
between atoms and the cavity modes. We are particularly
interested in which states can be maximally transferred and
whether the complete transfer is accompanied by complete
transfer of entanglement. The question of the entanglement
transfer will be addressed by considering the concurrence
of the atomic and the cavity states. This makes it possible
to estimate the efficiency of the transfer of the initial state
between the atoms and the cavity modes that is mediated by
atoms and compare the transfer efficiency with that mediated
by photons.

A. Transfer mediated by atoms

Consider the configuration in Fig. 1(a), in which the inter-
action is determined by the Hamiltonian (3). By substituting
the wave function (6) into Eq. (5), we obtain the following
system of coupled differential equations for the probability
amplitudes

iC) = g,C3+ g,Cy, iCy=g,C3+ gyCs,
iC3 = —AC; + g,(C1+C), (10)
iCy = —ACy + g,(C1+C),

where A = wy — w, is the detuning of the atomic resonance
frequency wy from the cavity frequency w, and C, = €*C,,
with € = exp(ik R 4p). In order to simplify the notation without
loss of generality, we can assume that the coupling strengths
g, and g, are both real.

In order to solve Eqgs. (10), we find it convenient to introduce
linear combinations of the amplitudes,

1 ~ 1 ~
W) = —=I[Ci(t) + C(0)], U@) = —Z[Cl(t) — G (0],

V2 V2
X(t) = 205000+ 2y, Y@y =22 — ey,
80 80 80 80

(1)
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where go = Vg2 + gb The amplitudes (11) correspond to
orthonormal states

1
|lw) = —=(lea,gn) + €18a.¢€p)) ® |04,05),

V2

1
lu) = E(|€A783) —€ga.es)) ®104,0p),

1 (12)
|x) = g_o(ga [14,06) + 85 104,15)) ® |g4.88),

1
ly) = g—O(ga [04,15) — 85 114,04)) ® 1g4,8B) -

These states are product states of purely atomic and cavity
fields (photonic) states. In states |w) and |u), the atoms are
themselves in maximally entangled states, but the field modes
are in a factorized state. On the other hand, in states |x) and
|y), the cavity modes are in nonmaximally entangled states
and the atoms are in factorized states. This shows that purely
atomic entangled states can be transferred or converted into
purely photonic N = 1 NOON states [7,42—45].

In terms of the superposition amplitudes, Eqs. (10) trans-
form into a simple set of equations,

W(t) = —v2igoX (1), X(t) =iAX(t) — v 2igoW(1),
Y() =iAY(@®), U@) =0, (13)

which shows that the amplitudes X(¢) and W(¢) are coupled
only among themselves, whereas Y(¢) and U(t) evolve
independent of the others.

The solutions of Eqgs. (13) are readily found to be

Lint . A
W(t) = W(0)e2! |:cos(52t) + l§ 51n(82t)i|

\/_80

—iX(0) Y230 pin Gin(r),

Liat A .
X(@) = X(0)e?! |:cos(§2t) + 15 sm(Qt):|

\/_gO —lAz

—iWO0)—— sin(21), (14)

Y(@) = Y(0)e' ™, U(t) = U(0),

where Q2 = «/ 2g§ + A%/4 is a detuned one-photon Rabi
frequency.

The solutions (14) exhibit a number of interesting features.
First, the direct coupling between the amplitudes W(¢) and
X(¢) indicates that states |w) and |x) form a subspace in the
Hilbert space composed of two states that can be reversibly
transferred between themselves. Each of the remaining am-
plitudes Y (¢) and U(t) evolves independently of the other
states, so that states |y) and |u) cannot be accessed from
and transferred into other states. Once the system is initially
prepared in either |{w) or |x) state, the state vector of the system
will evolve only between these two states. The system will
behave in this case as a two-state system. Second, the time
evolutions of the atomic and the field states are completely
symmetric with W(¢) and X (¢) interchanged, despite the fact
that the atoms are not equally coupled to the cavity modes.
Third, the linear superposition U(¢) does not evolve in time.
Thus, if initially U(0) # 0, it will remain unchanged for all
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time. In other words, the initial population will be trapped
in this state and never evolve. Fourth, the time evolution of
the superposition amplitudes is independent of €; i.e., it is
independent of the relative phase between the atoms.

The presence of the trapping states has a dramatic effect
on transfer of entanglement. In order to see it, we evaluate
concurrences [46] of the atoms and the cavity modes, as
described in the Appendix, and find

Cap(t) = |[IW (D> — |U(0)]*] + 2Im[U (0O)W*(1)]],
Cap(t) = 2|gagp[IX(®))* — Y (0)]°]
+ &2 XY (1) — g X* ()Y ()| / g5- (15)

These expressions show explicitly that only initial states with
amplitude U(0) = 0 can be completely transferred between
the atoms and the cavity modes. However, the condition of
U(0) =0 is necessary but not sufficient for the complete
transfer of entanglement. It is easy to see, since the factor
2gagb/g3 appearing in the expression for C,,(¢) is smaller
than one, that it can be easily verified that C,(,) could be
equal to C45(0) at some particular times #, only if the atoms
and the cavity modes have the same frequencies (A = 0) and
the atoms couple the the cavities with the same coupling
strengths (g, = g»). Needless to say, U(0) must be zero, and
the qubits must be indistinguishable for the transfer of the
entanglement to be complete. Under these conditions an initial,
not necessarily maximally entangled, state of the atoms can be
completely or perfectly transferred to the cavity modes.

It is interesting that, despite of the complete symmetry
between W(t) and X(#), the transfer of maximally entangled
states between the atoms and the cavity modes is not sym-
metric. For example, when the cavity modes were initially in
the vacuum state but the atoms were prepared in the entangled
state, i.e., the initial state of the system was

1
[Wo) = —=(leagn) + |gaep)) ® |04,0p), (16)

/2

then the concurrence of the cavity modes varies in time as

zgagb
Cup(t) = m

a

sin?(21). (17)

On the other hand, when initially atoms were in their ground
states but the cavity modes were prepared in the N = 1 NOON
state,

1
[Wo) = E(Haob/) +10415)) ® |ga.88), (18)
then the concurrence of the atoms varies as
Cap(t) = (g”j;g”) sin2(1). (19)
2(ga + gb)

Evidently, the variations of the concurrences are not equal, and
Cap(t) = Cyp(t) for all times, indicating that the transfer of the
initial entanglement from the field modes to the atoms occurs
with a better efficiency than the transfer of the entanglement
from the atoms to the modes.

The asymmetry in the entanglement transfer is more
dramatic if the cavity modes were initially prepared in a state
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|x), [X(0) = 1]. In this case, the concurrences are

Cap(t) = sin®(Q1), Cup(t) = (Zg“gh cos¥ Q). (20)

g2 +8;)

We see that the atoms, entering the cavities in their ground
states can be maximally entangled independent of whether
the cavity modes were initially prepared in the maximally
entangled state or not.

The reason for this feature lies in the fact that the system
of two atoms unequally coupled to two cavities effectively
behaves as a system composed of two atoms equally coupled
to a single superposition mode. To show this, we introduce the
collective symmetric atomic operator

65 = (o) +eop), (21)

together with symmetric and antisymmetric superposition
operators of the field modes

d = (8.b — gd)/g0,  (22)

and find that in terms of the superposition operators the
Hamiltonian (3) takes a simple form

di = (840 + g»b)/ g0,

H; =hgo6,"d, + H.c. (23)

We see that the atoms effectively interact only with the
symmetric mode d;. The antisymmetric mode d, is completely
decoupled from the atoms. Thus, in terms of the superposition
operators, the system effectively behaves as a single JC system
composed of two atoms equally coupled to a single mode d;. In
terms of the state transfer, it means that only symmetric states
can be transferred between the atoms and the cavity modes.

B. Transfer mediated by photons

We now consider the configuration in Fig. 1(b) in which
each atom is located at a fixed position inside one of the
cavities and the coupling between the cavities is mediated
by overlapping cavity modes. In this case, an excitation is
carried by photons. In practice, this system can be realized
by using two optical cavities, each containing a single atom
and the coupling between the cavities mediated by an optical
fiber [27-32]. Alternatively, one can use two optical traps each
containing a single atom and the coupling maintained by the
photon tunneling effect [47—49] or, in the case of circuit QED,
capacitive or inductive coupling [50].

Before considering the process of transferring quantum
states between the qubits, let us first analyze the Hamiltonian
of the system in which the interaction is described by Eq. (4).
Introducing symmetric and antisymmetric linear combinations
of the atomic and field operators,

61 = (8.6 + @67/ 20, 67 = (2.65 — 267/ 20,
dt =@t +bh/v2, et =@t - bh/v2, (24)

we find that the total Hamiltonian of the system can be written
as

H = hoy(o} + 0§) + (e + k)d'd + h(o. — k)éle

RGO At o | ata_
+E(dfas +¢'6, +H.c). (25)

PHYSICAL REVIEW A 88, 022317 (2013)

The first line of the Hamiltonian (25) represents the free energy
of the atoms and the superposition modes with the energies of
the superposition modes separated by 2« ; the coupling of the
field modes thus lifts their degeneracy. The second line of
Eq. (25) represents the interaction of the superposition field
modes with the collective atomic systems.

We note that the structure of the Hamiltonian (25) differs
significantly from the Hamiltonian we encountered in Eq. (23),
the counterpart for the coupling mediated by the atoms. The
most interesting difference is that two JC systems coupled to
each other by overlapping cavity modes can be viewed as two
independent and nondegenerate JC systems, one composed of
the symmetric modes and the other composed of the antisym-
metric modes. This suggests that, in this case, both symmetric
and antisymmetric states could be maximally transferred
between the atoms and the cavity modes. The transfers could
occur at two different frequencies, the symmetric states could
be maximally transferred at frequency w, = o, + «, whereas
the antisymmetric states could be transferred at w, = o, — «.

Since d' and &' are in the form of the equally weighted
linear combinations of the field operators whereas 6;" and
6. are, in general, not equally weighted combinations of the
atomic operators, one can then show that maximally entangled
states of the field modes can be created in the system even
if the atoms are weakly entangled or even separable. This
feature is opposite of what we encountered in the case of the
transfer mediated by the atoms, where maximally entangled
states between the atoms were created with separable cavity
modes.

We now turn to the evaluation of the state vector of the
system. With the interaction Hamiltonian (25) the Schrodinger
equation leads to the following equations of motion for the
probability amplitudes:

iC = g.Cs, iCy=gyCy,
iC3 = —AC3 +kCy + gC1, (26)
iC4 = —ACys+ kC3 + gpCs.

Equations (26) can be easily solved and interpreted by
rewriting them as equations of motion for symmetric and
antisymmetric superpositions:

C = (C3+C/N2, Co=(C3—C/V2,

Ci = (8C1 + 8,C2)/g0.  C- = (8vC1 — 8aC2)/80- (27)

They are
L 80
iCy = —(A —k)Cs + =—=Cy,
V2 T
Gy = —(A+K)Cy + —=C_+ ——C
l = — K _ ,
‘ SRV RV, S
. 2 " (28)
iCy = —F%=Ci+ —=C,,
T2 V2
. w
iC_ = —C,,

V2

where u = (g2 — g7)/go0 and w = 2g,8,/8o. It is clear that
the symmetric and antisymmetric modes oscillate at different
frequencies. Moreover, in the case of identical JC systems (u =
0), the modes evolve independently from each other. However,
the modes may evolve independently even if u # 0. It happens
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when the field modes are well separated in frequency, i.e., when
k > go. In this case, the coupling which exists, in general,
between the symmetric and antisymmetric modes is effectively
quite weak and can be ignored. It is easy to see. By choosing
a new rotating frame with

CY — Cgefi(AfK)t éa — Caefi(A+K)t

C+ = C+e_i(A_K)t1 C* = Cfe_i(AJrK)tv (29)
Egs. (28) can than be written in the form
LA 80
iC, =—0C,,
s \/5 +
iCo= O 4 e
a \/E - ﬁ + ) (30)
~ 80 ~ U = ikt
iCio=(A—k)CL+ —=—=C; + —=Cue,
+ + \/E ﬁ
X ~ w ~
iC_=(A+x)C_+ —C,.
V2 e

Clearly, all the u-dependent terms are accompanied by the
exponential factors exp(£2i«t), which in the limit of ¥ > gg
rapidly oscillate in time and thus can be ignored. This has the
effect of decoupling the equations for the pair of amplitudes
(Cy,C.) from the pair (C,,C_).

The assumption of k >> go appears to be practical. For
example, in the experiments involving a short fiber coupling
the cavities [28,51], the coupling strengths of k = 100g, can be
achieved and « can be increased by decreasing the reflectivity
of the cavity mirror connected to the fiber.

Assuming that x >> go, i.e., that the modes oscillate
at significantly different frequencies, we then readily find
analytical expressions for the concurrences, which are of the
form

284
Cag(t) = gng

8o
Cap(t) = ||C5(1))* — |CaD) ],

[|C+())* = [C_(DI?],

€2y

where

. 1
Ci(t) = e2'A) |:CS(0) cos zszkt

A — ) — 2 1
L fc)cs(oz2 V2 g0C+(0)sin§QKt:|,

. 1
Co(t) = ex/a—0) |:C+(0) cos 59,(1‘

A fc)c+(0g)2 + V25060 % ri}, )

with Q, = v2g5 + (A — k)%, and the amplitudes C,(¢) and
C_(t) are obtained from the above by changing s — a,
+ — —, k - —k, and g — w. Note that the time evolutions
of the field states, determined by C,(¢), and the atomic states,
determined by C,(f), are not completely symmetric. The
evolutions are completely symmetric only at A = k.

Having the explicit forms of the concurrences we now
proceed to consider the process of transferring the initial
maximally entangled states between the atoms and the cavity
modes. Provided the atoms are prepared in the maximally
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entangled state (16), the initial conditions are C,(0) =

Ca(0) =0, C4(0) = (g4 + 8)/(v/280), and C_(0) = (g, —
gb)/(ﬁgo). Under this condition, the concurrence C,(t)
takes the form

(at+g)y L[l 75
__o¢ o7’ _ A — k)t
2+ a2V T AT
(ga—8)* . L[1 [
S L L — —/2 A + i)t
22 +(a+r 2 8o+ A+

(33)

Cap(t) =

It is clear by inspection of Eq. (33) that, in general, the
concurrence is smaller than one for all times ¢. However, the
concurrence could attain the maximal value when A = x and
84 = &b = &, in which case Cy(t,) = 1 at the particular times
gt, = nm/2,n = 1,3, .... Thus, the cells must be identical and
A = k for the transfer of the maximally entangled state from
the atoms to the cavity modes to be complete.

If initially the cavity modes are prepared in the maximally
entangled N = 1 “NOON” state (18), which implies C(0) =
C_(0) = C,(0) = 0 and C;(0) = 1, the concurrence C45(t) is

4848

1
e s o]
(34)

We see that, similar to the case of transferring the maximally
entangled state from the atoms to the cavity modes, the transfer
of the maximally entangled state from the field modes to the
atoms can be complete only if g, = g, and A = k.

The above considerations are illustrated in Fig. 2, which
shows the concurrences C4p(t) and C,;(t) as a function of
time for several different values of the parameters g,, g5, A,
and «. It is seen that at certain times, and only for g, = g5
and A = k, the entanglement is completely transferred from
the field modes to the atoms. The transfer is far from complete
when g, # g, and/or k close but not equal to A. Notice that
independent of the relation between g, and g, and whether
A = k or not, the cavity modes become maximally entangled
whenever the atoms are disentangled.

In summary of this section, comparing the results of trans-
ferring quantum states and entanglement in the configuration
in Fig. 1(b) to those of the configuration in Fig. 1(a), we

Cag(t) =

11 11

0.8 0.8

—~ 06 — 06
= =X

© 0.4 © 0.4

0.2 0.2

04 04

FIG. 2. (Color online) The time evolution of the concurrences
(a) Cpp(t) and (b) Cup(t) for g, = g, = g,A = k (solid line), g, =
g,8» = 2g¢,A = k (dashed line), and g, = g, = g, A =5g.k = 4g
(dash-dotted line). The system was initially in the state described by
Eq. (18).

022317-6



ATOMS VERSUS PHOTONS AS CARRIERS OF QUANTUM ...

find that their operations share many common features. For
example, in both configurations the coupling strengths of the
atoms to the cavity modes must be equal for the transfer of
maximally entangled states to be complete. However, there are
some important differences. In the configuration in Fig. 1(a),
only the symmetric states could be completely transferred,
whereas in the configuration in Fig. 1(b) the transfer of both
symmetric and antisymmetric states is possible. Moreover, in
the configuration in Fig. 1(a) the complete transfer occurs at the
exact resonance between the atomic and the cavity frequencies,
A = 0, whereas in the configuration in Fig. 1(b) the optimal
transfers occur at nonzero detunings A = +«.

IV. TRANSFER OF DOUBLE EXCITATION STATES

Let us now examine the problem of transferring double
excitation states with two quanta present in the system. The
two quanta could be in the atoms or in the field modes or could
be shared between the atoms and the field modes. As one can
notice from the form of the state vector of the system [Eq. (9)],
the presence of two quanta of excitation increases the number
of states in which the system can be initially prepared and to
which it could evolve. Following the same procedure as in the
previous section, we consider separately the transfer of initial
states mediated by the atoms and by photons.

A. Transfer mediated by atoms

In order to discuss the transfer of double excitation states,
we make use of the wave function (8). Since for the transfer
mediated by the atoms the best result is expected to occur
when the atomic transition frequencies are in resonance with
the cavity field frequencies, we set A = 0 in what follows
in this section. When the wave function (8) is inserted into
Eq. (5) and we use the interaction Hamiltonian (3), we obtain
the following system of coupled differential equations for the
probability amplitudes:

iDy = g4(D3 + Ds) + g,(Dy + D),
iDy = gy Dy + g4 D4 + v/2g, Ds,
iDy = g, D + g,Ds + /28, Ds,
iDy = g4(Dy + D7) + g5(D3 + Ds),
iDs = g, Dy + g, D4 + ~/2g,Ds,
iDs = v/284(D3 + Ds),

iD7 = gy Dy + g.Ds + /2, Ds,
iDy = v/2gy(Dy + D7),

where D; = €*D;, (i = 1,3,7).

(35)

1. Independent Jaynes-Cummings systems

Before continuing with the solution of Eq. (35), we briefly
comment about the difference between the system considered
here and that of two independent JC systems, extensively
studied by other authors [17-20]. When each cavity contains
one atom, and the cavities are not coupled to each other, we
then have two independent JC systems. In this case, the system
of equations for the probability amplitudes, Eq. (35), breaks
up into three uncoupled sets of equations. One composed of
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four coupled equations,

iDy = g,Ds+ gDy, iDy=g,Ds+ gD, 36)
iDy = g,Dy + g,Ds, Dy = g,D>+ g,Ds,
describing the evolution of the states with a single excitation
present in each of the JC systems, and two separate sets, each

composed of two coupled equations,

iDs = 2g,Ds, iDg=~/2g.Ds, (37)
and
iD; =2g,Dg, iDg=~/2g,D;, (38)

describing the evolution of the states with two excitations
present in either of the JC systems.

The set of four Eqgs. (36) can be further split into two
independent sets by introducing symmetric and antisymmetric
superpositions,

Dy = (D1 + Dy)/N2, Dy =(Dy+ D3)/V2,
Dy = (D1 = Dy)/v2, Day = (Dy — D3)/V/?2,

for which Egs. (36) transform into two separate sets, each
composed of two coupled equations,

iDs = (g4 + 8»)Ds2, iDgy = (84 + 8)Ds1,  (40)

(39)

and
iDe2 = (80— 8)Dar-  (41)
The amplitudes (39) correspond to a set of orthonormal states,

1
[s1) = E(|€A7€B,Oa,0b) +184.88:1a:14)),

iDal = (ga — &) Du2,

1
Is2) = ﬁﬂe‘AvgB,Oa’lb) +184.€5,14.05)),

1 “2)
|a1) = E(|6A76370(1’0/)> - |gA7gBalaalh))a

1
|a2) = E(|6A7g850(171b) - |gAveB’1a10b))‘

We see that, despite of the complexity, the dynamics of
the system simplifies to that occurring among states of four
independent doublets:

[s1) < |s2), lal) < |a2), |5) <> 16), |7) < |8). (43)

This shows explicitly that the Hilbert space of the system
splits into four independent subspaces, each composed of two
states only. In other words, the system behaves in this case
as if composed of four independent two-state subsystems.
The states of different subsystems oscillate at different Rabi
frequencies. For example, the states of the doublet (|s1), |s2))
oscillate at the Rabi frequency g, + g,. The states of the
remaining subsystems oscillate at frequencies g, — g5, v/28a»
and v/2g, respectively. Note that in the limit of g, = g5, the
states of the doublet (Jal), |a2)) decouple from each other and
become trapping states.

The states (42) are entangled states of the atoms with the
field modes. However, in these states both the atoms and
the field modes are themselves disentangled. It is easy to
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see. Properties of the atoms alone can be described by a
reduced density operator obtained by tracing the total density
operator p(t) over the cavity modes

pap(t) = Trapp(t) = (0,05] p(2)10,05)
+ (1.0p] p(2) [1,05) + (0a 15| () |0, 15)
+ (1a1p] p(8) [1a1p) + (24051 p(2) 12405)
+ (0425] p(£) 10425) - (44)

Itis easy to show that in the basis spanned by four state vectors,
leaen), leagn), |8aen), |8agn), the density operator pap(?) is
diagonal with all off-diagonal elements (coherences) equal to
zero. Consequently, there is no possibility for entanglement
between the atoms.

Yonac et al. [17,18] have proposed to include an auxiliary
zero-excitation state, |0) = |ga,g5,04,05), that permits the
two-photon coherence to be involved in the atomic dynamics.
When state |0) is included, the following density matrix p4(#)
is obtained:

eu@ 0 0 pu@®
B 0  pn@® O 0
pap(t) = 0 0 pult) 0 ,  (45)
par(t) 0 0 pau()

where p11(t) = |Di()], paa(t) = | Da(1)]* + | Ds (1),
p33(t) = |D3(1)]> 4+ |D7(1)%, paa(t) = | Da()|* + | De()|* +
|Dg(0)* + |Do(1)I?, p1a(t) = Di(t)Do(t), and Dy(r) is the
amplitude of the auxiliary state |0).

The coherence may result in an entanglement between the
atoms. It is easy to see that the concurrence evaluated from the
matrix (45) takes the form

Cap(t) = max{0,Ca(1)}, (46)
where
Ca(t) = 2lp1a®)| = 2[ID2()* + IDs(F1. (47)

It is seen that C,(¢) can be positive. Thus, the inclusion of |0)
into the atomic dynamics is critical for entanglement between
two atoms placed inside independent cavities.

We may summarize that the Hilbert space of the indepen-
dent JC systems can be spanned in terms of four independent
subspaces, each composed of two states that can be exchanged
between themselves during the evolution. In the case of equal
coupling strengths of the atoms to the field modes, one of the
subspaces is composed of trapping states that do not evolve.

2. Coupled Jaynes-Cummings systems

We now proceed to solve the set of Egs. (35), which shall
allow us to discuss the transfer efficiency of doubly excited
states in the system composed of two coupled JC systems.
Since the transfer process can be strongly affected by the
presence of trapping states in the system, we solve Egs. (35)
by finding a constant of motion that determine states which
do not evolve in time. This allows us to predict which initial
states can be completely transferred in the system.

We first observe that D; = D2 and D; = D5. This suggests
the introduction of symmetric and antisymmetric superposi-
tions of the states with the excitation shared between the atoms
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and the cavity modes,

Dy = (D3 + Ds)/ﬁ, Dy = (D) + D7)/ﬁ,
i . (48)
Da1 = (D3 — Ds)/v2, Du = (D) — D7)/V2,

and find that then the set of Eqs. (35) splits into two separate
sets, one involving six coupled differential equations,

iDy = ~2(g.Ds1 + g5 Dy2).
Dy = V2(gy D1 + gaDs + V28, Do),
iDs2 = 2(g, D1 + g5 Ds + N2, Dy),

. (49)
iDy = V(g4 D> + 85 Ds1),
iDs = 284 Ds1.,
iDg = 2g, Dy,
and the other composed of two constants of motion:
iDs =0, iDg;=0. (50)

Equations (49) are cumbersome due to the asymmetry,
in general, between the coupling constants of the atoms to
the field modes, g, # g». However, we have seen in the case
of single-quantum states that the complete transfer of the
states and the optimal transfer of entanglement occur when the
atoms couple to both cavities with the same strengths, g, = g.
Therefore, in what follows we restrict the calculations to the
caseof g, = g», = g.

When g, = g5, additional constants of motion appear.
To see this, we introduce symmetric and antisymmetric
superposition of the probability amplitudes:

D, = (Dyi + D2)/N2, Dy, = (Ds — Dp)/V?2,
D, = (Ds+ Dg)/N2, D, =(Ds— Dg)/v/2. (51

We find that the set of coupled equations (49) can be split into
two separate sets, one involving four coupled equations,

iDy = 2¢D,,
i?u =2gDy +2gDs+2gD,, 52)
iDy =2gD,,
iD, =2gD,,
and the other involving two coupled equations
iD, =2g¢D,, iD,=2gD,. (53)

The set of Egs. (52) can be reduced further to a set of two
coupled equations,

iD, =23gD., iD,=23gD,, (54)
and two constants of motion,
iD,=0, iD,=0, (55)
where
D,y = (2D, — Dy — Dy)/N6, D, =(Di— Dy)/V?2,
(56)
and
D. = (D, + D4+ D,)/V/3. (57)

022317-8



ATOMS VERSUS PHOTONS AS CARRIERS OF QUANTUM ...

According to the above predictions, we may conclude that the
Hilbert space of the system can be split into three independent
subspaces, one subspace composed of four trapping states,

1
lal) = ﬁﬂgA’eB) —lea,gs)) ® 14,05),

1
la2) = —=(lea.g) = 184,¢5)) ® 04, 15),

V2

58
m) = = {V202.0) + 10,2 @ lg.0) -
NG
- |eA,€B,Oa,Ob> - |gAsgB9la71b>} 9
1
|n) - E('eAveroaiob) - |gA7nglaﬂlb))v
and two subspaces composed of doublets,
1
|w) = 3 (lga-eB) + lea,gn)) ® (114,05) — |04,15)) ,
1
lg) = 7 (124,0p) — 104,25)) ® |84,8B)» (59
and
1
lu) = 3 (lga-es) + lea,gr)) ® (114,05) + 104,15)) ,
1
|Z) = % |:|eAveroa’Ob> + IgAvngla’1b>
1
+E(|Zaaob> +104,25)) ® |gAvgB>:|- (60)

The evolution of the doublets (59) and (60) is determined
by the amplitudes (D,,,D,) and (D,,D.), respectively. Their
time evolutions are readily found to be

Dy, (t) = D,,(0)cos(2gt) — D,(0)sin(2g1),
Dy(1) = Dy(0) cos(2gt) — D,,(0) sin(2g1),

and
Dy, (t) = D,(0)cos(2+/3gt) — i D.(0) sin(2+/3g1),
D.(1) = D.(0)cos(2+/3g1) — i D, (0) sin(2+/3g1).

Thus, due to the presence of four trapping states, the evolution
of the system confines to that occurring only among states
|w) <> |q) and |u) <> |z). Each pair of states evolves in time
independently of the other, and the amplitudes of states |w)
and |g) oscillate at frequency 2g, whereas the amplitudes of
states |u) and |z) oscillate at frequency 2\/§g.

Several features of the dynamically evolving states (59) and
(60) are worth noting. One can see that state |w) is a product
state of a single excitation entangled state of the atoms and
the antisymmetric N = 1 NOON state of the cavity modes
[7,42—45]. State |g) is a product state of the atomic state in
which both atoms are in their ground states and the cavity
modes being in the antisymmetric N = 2 NOON state. This
shows that an initial state in which atoms are prepared in the
maximally entangled state and the cavity modes are prepared
in the antisymmetric N = 1 NOON state can be converted
to the antisymmetric N = 2 NOON state. In other words, in
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this scheme we can achieve a fully dynamical generation of a
purely photonic N = 2 NOON state.

The other pair of states, |u) and |z), involves the symmetric
N =1 and N =2 NOON states. One can notice that,
in contrast to the antisymmetric N =1 NOON state, an
initial symmetric N = 1 NOON state cannot be completely
converted to the symmetric N = 2 NOON state. It is rather
converted into the four-qubit state |z), which involves a
superposition of the N = 2 NOON state and two other states
with the excitation evenly redistributed between the atoms or
between the cavity modes.

The reason for the difference in the transfer properties is in
the trapping effect of the single excitation states. According to
Egs. (12) and (13), the antisymmetric N = 1 NOON state is a
trapping state, whereas the symmetric state evolves during the
atomic transit time through the cavities. Thus, the simultaneous
evolution of the atomic and the symmetric NOON states results
in a redistribution of the excitation between the atoms or
between the cavities.

Another interesting feature of the states (59) and (60) is
that the complete transfer requires the presence of an initial
entanglement of the cavity modes. In other words, the complete
transfer of an initial state arises from the quantum nature of the
field. It is particularly seen in the form of the reduced density
operator p4p(t), which, written in the computational basis, is
not diagonal,

pun(®) 0 0 0
0 02(t)  p23(t) 0
= . (63
pan(®) 0 pu) pu@ 0 ©3)
0 0 0 Paa(t)

where p11(1) = [Dy(D)]?, pa(t) = |Da(1)|* + | Ds(1)]?,
p33(t) = |D3(0)1* 4+ | D7), pas(t) = | Da()|* + | De(t)|* +
|Dg(t)[?, and po3(t) = D3(1)Ds(t) 4+ Da(1) D5(1).

The matrix (63) is of an X state form due to the presence
of the coherence p,3(¢) between the atoms. If the initial state
of the system is taken to be one of the states (59) or (60), then
none of the trapping states (58) is populated. As a result, the
coherence p,3(t) takes the form

p23(t) = 51IDu(O + | Dyy(1)P]. (64)

We see that the coherence is completely determined by the
probabilities (populations) of states |#) and |w). Since the
states involve maximally entangled single-quantum states of
the atoms and the field modes, this implies that the coherence
can be different from zero only if either of the atoms or the
field modes are in an entangled state.

The coherence is necessary for entanglement between the
atoms. The concurrence evaluated from the matrix (63) is given
by

Cap(t) = max{0,C(?)}, (65)
where

Ci(t) = 2]p23 ()] — 24/ p11(1) paa(?). (66)

Clearly, C,(¢) can be positive, indicating an entanglement
between the atoms. Thus, an entanglement can be generated
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FIG. 3. (Color online) Time evolution of the logarithmic neg-
ativities N,p(t) (blue dashed line) and N, (t) (red solid line) for
the initial state |w) [Eq. (59)]. The other parameters are A = 0 and
8 = 8a = 8§

between the atoms without the need for introducing the
auxiliary state |0).

We now present some numerical calculations of entangle-
ment evolution between the atoms and the cavity modes to
check if the complete transfer of the double excitation states
is accompanied by the complete transfer of entanglement. We
evaluate logarithmic negativities Nap(¢) and N,(¢) for three
different initial states. The reason to evaluate the logarithmic
negativity rather than the concurrence is in the dimension
of the Hilbert space of the system with two excitations
present. A detailed description of the method of evaluating
the logarithmic negativities is given in the Appendix.

Figure 3 shows the logarithmic negativities N4pg(f) and
N,p(t) as a function of the dimensionless time gt for the initial
state |w). According to Eq. (61), at times t = nw/(4g),n =
1,3, ..., when state |w) is completely transferred to state
|g), the atoms are expected to be separable and the field
modes should be found in the maximally entangled N =2
NOON state. We see that at the initial time ¢ = 0, both
negativities are maximal, N4p(0) = N,,(0) = 1, indicating
that, initially, the atoms and the field modes were maximally
entangled. As time progresses, the atoms become periodically
disentangled but the field modes never completely disentangle.
At times ¢t = nm/(4g), when the atoms are separable, the
modes again become maximally entangled. However, the
maximal entanglement of the modes does not mean that at
these times the modes returned to their initial state. At times
t =nmw/(4g), the system is in the |g) state, in which the
atoms are in their ground states and the field modes are in
the antisymmetric N = 2 NOON state.

It is interesting to note that although the evolution of the
states is unitary the entanglement between the field modes
oscillates twice as fast as the entanglement between the
atoms. The reason is that the reduced state of the cavity
modes p,(t) is composed of two maximally entangled states,
(11,0p) = 104, 15))/+/2 and (124,05) — 104,25))/+/2, whereas
the reduced state of the atoms psp(f) is composed of the
maximally entangled state (|g4,ep) + |lea.g5))/ V2 and the
separable state |gsgp). Since the field and atomic states
oscillate with the same Rabi frequency, 2g, the cavity modes
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FIG. 4. (Color online) Time evolution of the logarithmic negativ-
ities N,p(t) (blue dashed line) and N,,(¢) (red solid line) when the
atoms in their ground states |g 4 gz) pass through the cavities prepared
initially in the maximally entangled state (|1,1,) + 10,05))/ /2. The
other parameters are A =0and g, = g, = g.

become maximally entangled whenever the modes are in either
(114:05) = 104,15))/~/2 0r (124,05) — 04,2,)). On the other
hand, the atoms are maximally entangled only if the atoms are
in one of the two atomic states, (|ga,ep) + |eA,gB))/\/§.

If the initial state is not one of the states (59) or (60), only
a partial transfer of the initial entanglement may occur. To
illustrate this, we show in Fig. 4 the time evolution of the loga-
rithmic negativities when the system starts from an initial state,

€
/2

in which the cavity modes are in the maximally entangled
two-photon state and the atoms are in their ground states. We
see that in this case the concurrence N,;(t) never becomes
zero as time develops and N4p(¢) never reaches the maximal
value of Nup(t) = 1. Thus, no complete transfer of the
entanglement occurs. The modes remain highly entangled at
times when the atomic entanglement reaches its maximum
value. This result is as expected from the above simple
discussion that for states different than the states (59) and
(60), a part of the initial excitation is trapped in one of the
trapping states, preventing the complete transfer of the initial
state to occur. It is easy to see. With the initial state (67), the
probabilities of the trapping states (58) are

|D41(0)|* = |Dp2(0)]* = 0,

Wo) = —=(l1als) +10405)) ® [g485), (67)

| (68)
2 2
1DwO)F" = 5. [Da(O" = 7.
from which it is clear that one-third of the initial population
is in the trapping states |m) and |n).

It is interesting to contrast the initial state (67), which
involves the auxiliary zero-excitation state, with an initial
state involving states containing two quanta of excitation. The
former was treated in the case of independent JC cells [17-20]
and shown crucial for the creation of en entanglement between
the atoms.

Figure 5 shows the time evolution of the logarithmic
negativities for an initial state in which the atoms are in their
ground states and the field modes are in the N = 2 NOON
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FIG. 5. (Color online) Time evolution of the logarithmic neg-
ativities N,p(t) (blue dashed line) and N, (t) (red solid line)
when two atoms in their ground states pass through the cavities
prepared initially in the symmetric N =2 NOON state: |W,) =
(1/+2)(12,0,) + 10.2,)) ® |gags)- The other parameters are A = 0,
8 = 8a = 8-

state (]2,0p) + |Oa2;,))/\/§. While Fig. 4 shows that an initial
entanglement of the field modes can be transferred to the atoms
when the modes are prepared in the state (67), Fig. 5 shows no
such transfer occurs when the modes are initially prepared in
the symmetric N = 2 NOON state.

B. Transfer mediated by photons

We now turn into the other configuration in which the
coupling between the cavities is mediated by the overlapped
cavity modes. Such coupling configuration, illustrated in
Fig. 1(b), is represented by the interaction Hamiltonian (4).
What we are going to calculate is essentially the same as for
the first scenario. We use the same basis states [Eqgs. (9)] to
find the equations of motion for the probability amplitudes
required to study the dynamics of entanglement. As in the
previous case, the starting point is the Schrodinger equation
(5), which with the Hamiltonian (4) leads to the following set
of equations of motion for the probability amplitudes:

iDy = AD; + gyD; + g4 D3,

iDy = gyD1 + gaDs + k Ds,

iD; = g,D1 + gy Dy + k D1,

iDy = —ADy + g,D1 + gy D3 + ~/2(Dg + Dy),
iDs = v/2g,D¢ + k D3,

iDg = —ADg + /2K Dy + /28, Ds,

iD; = kD5 + \/Engs,

iDg = —ADg + 2k Dy + /2, D5.

(69)

Before proceeding with the solution of Egs. (69), we first
rearrange them to see if there are any trapping states in the
system. For such a treatment it is convenient to introduce
linear combinations,

D, = (D3 + D3)/V2,
Ds = (Ds + D7)/v/2,
Ds = (Dg + Dg)/v/2,

Dy = (D, — D3)/V?2,
Dy =(Ds — Dy)/¥2,  (70)
Dg = (Ds — Dg)/V2,
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for which Egs. (69), with g, = g, = g, form two separate sets,
one involving five coupled equations,

iD, = AD, +/2gD»,
iD, = V2gD; 4+ v/2gD4 + « Ds,
iDy = —ADy + ~/2gDs + 2 D, (71)
iDs = V2gDg + kD5,
iDg = —ADg + 2 Dy + +/2g Ds,
and the other involving three coupled equations,

ib3:KD7, ib7:KD3+\/§gD8,
- . . (72)
iDs = —ADg +2gD;.

It is easily verified that the determinants of the coefficients of
the coupled differential equations (71) and (72) are different
from zero only if A 5 0. Thus, in the case of A # 0, there are
no trapping states in the system.

1. The case of A =0

Let us first specialize Eqs. (71) and (72) to the case of exact
resonance, A = 0, in which trapping states occur. As before,
the occurrence of trapping states is identified by the presence
of constants of motion. It is easily verified from Egs. (71) that
a linear superposition,

1

o 1€°Da = Y2k Ds + (6> = g1, (73)

D, =
in which Q2 = \/2g* + «*, is a constant of motion; i.e., iD, =
0.

Similarly, the system of coupled equations (72) can be
rewritten in terms of linear superpositions,

V2g

~ K ~ K ~ ~
Dy=-o7Ds— = Ds. Dy=Ds+-37Ds.  (74)

Q Q
where ' = \/2¢2 + «2, for which we find that
iD, =0, iD;=QDy iDy=QDy. (795
Thus, the angplitude D, is a constant of motion, whereas the
amplitudes D7 and Dg undergo a simple sinusoidal evolution:
D4(t) = D7(0)cos 't — Dg(0) sin Q't, 6
Dg(t) = Dg(0) cos 't — D7(0) sin Q'z.

Evidently, states corresponding to the combinations D; and
Dg can be completely transferred between themselves with
frequency .

The states corresponding to the combinations D; and Dyg
are of the form

1
|7> == quAagB’la’Ob) - |gA’eB50(l’1b>)a
K
|ﬂ) = \/EQ’GeA’gB’Oa’lb) - |gAaeBala’Ob>)
+ 2020:00) = 10,2:) ®lgagn). (7D

from which one can easily notice that the states contain
correlations between the atoms and the field modes. This
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implies that the complete transfer of the states will not lead to
the complete transfer of entanglement.

2. The case of A # 0

Let us now examine the situation when A # 0 and focus our
attention on the case of g, = g, = g. With nonzero detuning
the dynamics of the system becomes more complicated and
simple analytical results for the probability amplitudes are not
possible. However, in the limit of the strong coupling between
the cavities, kK > g, one can uncover some interesting results.
By introducing symmetric and antisymmetric combinations,

D, = (Ds+ Dg)/v2, Dc = (Ds— Dg)/V2,
~ _ ~ ~ (78)
Dy = (D2 + D5)/v2, Dy = (D2 — Ds5)/V2,
and going into a rotating frame through the relations

D, = Dy e iA=2x

Dﬁ — Dﬁefi(A+2K)t’ (79)

. —i(A—20)t
D, = Dye s
b. = Deefi(A+2K)[
Dl — Dle_iAl,

we find that Eqgs. (71) can be written in terms of these
combinations as

iD, = v2gD;,
iD; = (A — k)Dy + V2gD, + vV2g Dy ¥,
iD. = 2g Dy, (80)

iDy = (A +1)Dy + /2D + V2 D17,
iﬁl — g(DAeziKl + Dﬁe_ZiKt).

We see that the terms proportional to D; play the role
of a coupling between the symmetric and antisymmetric
combinations. These are accompanied by terms exp(42ix?)
that oscillate in time with a frequency 2«. In the limit of
k > g, we can make a secular approximation, in which we
ignore the rapidly oscillating terms exp(%2i«t). This has the
effect of decoupling the equations of motion for the symmetric
combinations,

if)n — V2¢D;, Dy = (A —)D, + V2gD, (81)

from the equations of motion for the antisymmetric combina-
tions,

iD. = /2gDy, iDy = (A +x)Dy +~/2gD., (82)

that the amplitudes of the symmetric and antisymmetric
combinations evolve independently.

It is seen that the symmetric combinations oscillate with
unequal frequencies that differ by A — «x, whereas the anti-
symmetric combinations oscillate with frequencies that differ
by A + «. The difference of the frequencies will lead to
oscillations of the amplitudes that are not periodic. This
imperfection would result in an incomplete transfer of the
states. The transfer could be complete only if the amplitudes
oscillate with equal frequency. It is seen from Eq. (81) that,
for A = «k, the symmetric combinations oscillate with equal
frequencies, which results in sinusoidal oscillations of the
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amplitudes:
D, (t) = D,(0)cos(v/2gr) — D, (0) sin(v/2g1),
D; (1) = Dy (0) cos(v/2gt) — D, (0) sin(v/2g1).

Similarly, when A = —k the antisymmetric combinations
oscillate with equal frequencies and then their time evolutions
are perfectly sinusoidal:

De(t) = Dc(0)cos(v2gt) — Dy (0) sin(+/2g1),
Dy (1) = Dy(0) cos(v/2g1) — D.(0) sin(v/2g1).

Clearly, states corresponding to the symmetric combinations
and those corresponding to the antisymmetric combinations
of the probability amplitudes can be completely transferred
between themselves.

The states corresponding to the symmetric combinations
D, and D can be written in the form

In) = L(V2114,15) +124,00) + 104,2,))® 84,85,
1A) = Y(lga.es) + lea.g5) ® (114.06) + [04,15)), (85)

whereas the states corresponding to the antisymmetric combi-
nations D, and Dy can be written as follows:

l€) = 3(V211a,1p) = 124,05) — 104.2,))®1g4.85),
19) = 1(1ga.en) — lea,g8) ® (114,0) — [04,15)). (86)

Notice an important property of states (85) and (86), that they
do not contain correlations between the atoms and the field
modes. The states are of the form of product states of the atomic
states and those of the field states. This is in distinct contrast to
the states for A = 0, which contain correlations between the
atoms and the field modes. An another interesting property
of states (85) and (86) is that the atoms may completely
disentangle during the evolution of the states, in contrast to
the field modes that can never disentangle. This is illustrated
in Fig. 6 which shows the time evolution of the logarithmic
negativities when the system was initially prepared in state
|A). We see that the initial entanglement between the atoms
and that between the field modes recurs periodically. The

1.0

0.8

0.6

0.4

Nag(®): Nap(®

0.2

0.04—tmeel Lot s

FIG. 6. (Color online) Time evolution of the logarithmic negativ-
ities N4p(t) (blue dashed line) and N, (¢) (red solid line) for the case
in which the system was initially prepared in the symmetric state |1).
The other parameters are g, = g, = g and A = k = 10g.
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atomic entanglement periodically falls to zero, in contrast to
the entanglement between the cavity mode that never ceases.

In closing this section, we would like to point out that
the two coupling configurations between the cavities lead to
quite different results for transferring double excitation states.
Comparing Egs. (59) and (60), the quantum states that are
completely transferred when the transfer is mediated by the
atoms with Egs. (85) and (86) for the states that are maximally
transferred when the coupling is mediated by photons, we
see that the coupling mediated by the atoms may result in a
“nonclassical” N = 2 NOON state |g), whereas no such state
is created by the coupling mediated by photons. In the latter,
two states are created, |n) and |e), that resemble very much
a two-photon “classical” state created at an asymmetric beam
splitter with unequal reflection and transmission coefficients
[52].

V. EFFECT OF LOSSES

We now briefly discuss the effect of losses, spontaneous
emission of the atoms and the cavity damping on the transfer of
quantum states and entanglement. To simplify the calculations
we consider only the case in which both atoms are damped with
the same spontaneous emission rate I and the cavity modes
are damped with the same cavity leakage rate y. If the effect
of both of these types of losses is taken into account, the free
Hamiltonian H, for the two configurations can be replaced by
an effective Hamiltonian,

A A

R Ao it L R
HeffZHO—E[F(UAUA +6565)+vy@a+b'b). (87)

After taking into account the effect of losses we find that the
single excitation case described in Eq. (13) can be written in
the form

W(r) = —v2igoX(t)e 271,
X(6) = iAX (1) — N 2iggW(t)er T, (88)
Y(t) = iA¥V(r), U(r)=0,

where W = Wexp(%l"t), Y = Yexp(%[’t), U=U exp(%yt),
and X = X exp(%yt). As we can see from these expressions,
the two-state evolution is preserved so that an initial excitation
can be transferred between states |w) and |x) only. The
effect of the losses is to modify the Rabi frequency of
the oscillations through the time-dependent oscillatory terms
exp[:t%(y — I')t] and to degrade the probability amplitudes
of the states. In the case of y ~ I' the losses do not change
the Rabi frequency of the oscillations. Consequently, an initial
entanglement is transferred between the two states only but
with the magnitude degrading in time with the rate I". A similar
result is obtained in the case of double excitation.

An example for the effect of the losses on the time evolution
of the concurrence C4p(f) for the single excitation case is
shown in Fig. 7. The chosen parameters value of I' = y =
0.02g is consistent with current experiments involving a high-
Q cavity [51,53] with cavity damping rate given by y = 2.3 x
10~2g. It is seen from the figure that in the presence of the
losses the periodic maxima of the concurrence are reduced
in magnitude at the rate I as time progresses. The frequency
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FIG. 7. (Color online) The time evolution of the concurrence
C4p(2) in the presence (solid line) and the absence (dashed line) of
the losses for g, = g, = g, A = k,and I' = y = 0.02g. The system
was initially in the state (18).

of the oscillations is not affected by the losses and nonzero
concurrence persists over many Rabi periods.

Figure 8 shows the effect of the losses on the time evolution
of the negativity Nap(¢) in the case of a double excitation.
One can see from the figure that, similar to the case of a single
excitation, the effect of the losses is to reduce the magnitude
of the entanglement. The periodic maxima of the concurrence
decay exponentially in time at the rate I". Therefore, we can
conclude that in both cases of the excitation, the two-state
evolution is preserved with the effect of the losses to degrade
the magnitude of an initial entanglement.
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FIG. 8. (Color online) Time evolution of the logarithmic nega-
tivities N4p(?) in the presence (solid line) and the absence (dashed
line) of the losses when the atoms in their ground states |g4gg) pass
through the cavities prepared initially in the maximally entangled state
(|141,) + |0,,0;,))/«/§. The other parametersare A = 0, g, = g, = &,
andI' =y =0.02g.
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VI. CONCLUSIONS

The problem of the complete transfer of quantum states
has been examined in a four-qubit system composed of
two single-mode cavities and two two-level atoms. We have
considered two different coupling configurations between
the qubits specified by two distinctly different types of the
interaction Hamiltonians. In the first, the coupling is mediated
by “flying” atoms that simultaneously couple to the field modes
of the cavities, whereas in the second configuration, each atom
resides inside one of the cavities and the coupling between the
cavities is mediated by the overlapping field modes.

We have demonstrated that the problem of the complete
transfer of states is indeed tractable, that a proper choice of the
basis states for the state vector of the system makes it possible
to confine the dynamics of the system to that occurring between
two states only. In other words, we have found that the time
evolution of the state vector of the system can be divided into
two state pairs that evolve in time plus time-stationary trapping
states.

Moreover, we have found that the complete transfer of a
quantum state does not necessary mean perfect transfer of
entanglement. An initial entanglement can be perfectly and
reversibly transferred between the atoms and the field modes
only if the states are in the form of product states of atomic and
field states. If the states contain correlations between the atoms
and the field modes, no perfect transfer of the entanglement is
possible.

We have also shown that, apart from the similarities in the
dynamics of the system for the two configurations, there are
some important differences. In particular, the complete transfer
of quantum states is more manifested in the system where the
coupling is mediated by the overlapping field modes. In this
case not only the symmetric but also the antisymmetric states
can be completely transferred between themselves. However,
a purely photonic N = 2 NOON state can be created only if
the coupling is mediated by the atoms.

APPENDIX: CONCURRENCE AND LOGARITHMIC
NEGATIVITY OF THE ATOMIC AND FIELD SYSTEMS

In this Appendix we provide some details of the evaluation
of the concurrence and the logarithmic negativity which are
entanglement monotones [54-56]. The concurrence and the
logarithmic negativity are evaluated from the knowledge of
the reduced density matrices of the atomic and the field mode
subsystems.

To calculate the concurrence measure of entanglement
between the atoms we trace out the cavity field part of the
density matrix of the total system to obtain the reduced density
matrix p4p and then calculate [46]

C =max{0.v/A1 — VA2 — VA3 — V),

where A; are the eigenvalues (in descending order) of the
Hermitian matrix R = p4p04p in which g4 p is given by

(AL)

Pag = Oy ® O-yp;k“go-y X Oy, (A2)

and oy is a Pauli matrix.
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In the case of double excitation, the reduced density
operator p4p is given by

pas = Trap(p) = (0a05] £ 10405) + (105 p [1405)
+ (0alpl p10a1p) + (Lalpl p [1alp)

+ (2a05] £ 12405) + (0a25| 0 10425) - (A3)

On the basis spanned by four state vectors,

leaep), leagn), |gaeB), 184a&n), the density operator psp is
of the form

e 0 0 O
0 pn p3 O

PAB = , (A4)
0 p2 p3 O
0 0 0 pu
where  p11 = |D11%,p02 = |D2* + |Ds|*,  p3z = D3> +

|D71%, pas = |D4l* + | Dg|* + | Ds|?, p23 = D} Ds + D, D3.
The concurrence for the density matrix (A4) is given by

Cap(t) = max{0,C; (1)}, (AS)
where
Ci(t) = 2|p23()] — 24/ p11(1) paa(2). (A6)

It is seen that C;(¢) can be positive, indicating an entanglement
between the atoms.

Another measure of entanglement, the logarithmic negativ-
ity is defined as

Nap(t) = max{0, log,[1 — 22(t)]}, (A7)
where
Ha(r) = %[pn(t) + 14(t)
—VIp1(®) = pus(O + 4lpn()P].  (A8)

We see that u,(f) can be negative and negative values are
possible only if | p23(¢)| #£ O.

If one is interested in entanglement between the cavity
modes, the reduced density matrix for the cavity modes p, is
obtained by tracing out the atomic part of the density matrix
p. This gives

Pap = Trap(p) = (eaep| p leaep) + (eagpl p leagn)

+ (gaeplplgaer) + (a8l p18a&8H) - (A9)
However, the determination of entanglement between the
cavity modes is a slightly more complicated than for the atoms.
The reason is that in the case of two excitations present in the
system, the subspace of the cavity modes is spanned by nine
states,  {[0405), 10215), 10a25), [1405), [1alp), [1a2p), 12405),
12.15), 12425)}. On this basis, the reduced density matrix o,
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has the form

PHYSICAL REVIEW A 88, 022317 (2013)

en 0 p3 0 pg 0 p7 0 O
0 pu O py 0 0 0 00
e 0 p3 0 p3s 0 p3¢ 0 O
0 pe2 0 pgge O O O O O
Par@®)=]1ps1 0 ps3 0 pss 0 ps7 O O (A10)
0 0 0 0 0O 0 0 00
et 0 p3 0 p5 0 p;7 0 O
0 0 0 0 0O 0 O 0 0
0 0 0 0 0O 0 0 00
A partial transpose paT;j of the matrix (A10) reads
e 0 p3r 0 pu 0 pi7 O p3x
0 p2 0 ps5 0 p35 0 0 O
o5 0 ps O 0 0O 0 0 0
0 ps1 0 pae O O O ps7 O
plb®)=|p 0 0 0 pss 0O 0 0 0 [, (A11)
0 ps3 0 0 0 0 0 0 0
o 0 0 0 0 0 py O O
0 0 0 p5 O 0 0 0 0
oy 0 0 0 0 0O 0 0 0

where

P57 = P35 = D4Dg.

p11 = |D1* 4 |Dol?,p22 = |D2|* + | D71%, p33 = | Ds|*, pas = | D3> + |Ds|*, pss = |Dal?, p77 = | D|*.p13 = p}; =
DoDg,p15s = p5; = DoDj,p17 = p3; = DoDg,p2a = pjy = D2D5 + D7D5, p35s = ps53; = DDy, p37 = p33 = Ds Dy,

and

The large dimension of the matrix (A10) requires the use of the logarithmic negativity rather than the concurrence in the
searching for entanglement between the modes. The logarithmic negativity N, for the reduced density matrix (A10) reads

N,p = max {0, log, (1 + ZZ |Mi|)] )

(A12)

where u; are the negative eigenvalues of the partial transpose matrix (A11).
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