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Measures of quantum computing speedup
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We introduce the concept of strong quantum speedup. We prove that approximating the ground-state energy of
an instance of the time-independent Schrödinger equation, with d degrees of freedom and large d , enjoys strong
exponential quantum speedup. It can be easily solved on a quantum computer. Some researchers in discrete
complexity theory believe that quantum computation is not effective for eigenvalue problems. One of our goals
in this paper is to explain this dissonance.
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I. QUANTUM SPEEDUP CRITERIA FOR
COMPUTATIONAL SCIENCE

How much faster are quantum computers than classical
computers for important problems? We shall show that
the answer depends critically on how quantum speedup is
measured.

We begin with two criteria for quantum speedup.
Criterion 1. For a given problem, the quantum speedup S1

is the ratio between the cost of the best classical algorithm
known and the cost of a quantum algorithm. That is,

S1 = cost of the best classical algorithm known

cost of a quantum algorithm
.

The cost of an algorithm is the amount of resources it uses,
such as the number of arithmetic operations or elementary
quantum operations, the number of oracle calls, etc.

Our second criterion uses the concept of computational
complexity which, for brevity, we will call complexity. By
complexity we mean the minimal cost of solving a problem.

Criterion 2. For a given problem, the strong quantum
speedup S2 is the ratio between classical complexity and
quantum complexity. That is,

S2 = classical complexity

quantum complexity
.

We are particularly interested in finding problems where
S1 and S2 are exponential functions of a parameter. We then
refer to exponential quantum speedup and strong exponential
quantum speedup, respectively. The crucial difference between
the two criteria is that if a problem satisfies criterion 1,
someone may invent a better classical algorithm and therefore
decrease S1, but if a problem satisfies criterion 2, then S2

cannot be decreased.
We apply these criteria to a well-known problem. Interest

in quantum computing received a major boost in 1994 [1]
when Shor showed that factoring a large integer N can be
done with cost polylog in N . The best classical algorithm
known, the general number field sieve, has superpolynomial
cost O(2c(log2 N)1/3(log2 log2 N)2/3

). Thus integer factorization has
superpolynomial quantum speedup. However, it is not known
to have strong superpolynomial quantum speedup. Although
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deciding whether an integer is prime can be done with
polynomial cost [2], it is still an open problem to determine
whether there exists an efficient algorithm for computing a
nontrivial factor of a composite integer. This is a problem in the
complexity class FNP (function nondeterministic polynomial),
which is a functional analog of the class NP for decision
problems (see [3]). At the moment it is only conjectured
that there is no polynomial factoring classical algorithm;
it is possible that someday a polynomial-cost factorization
algorithm will be found.

Often, scientists prove exponential quantum speedup for a
problem but not strong exponential quantum speedup because
the classical complexity is not known. Examples include
[4–10]. Establishing exponential quantum speedups marks an
important advance in understanding the power of a quantum
computer.

We discuss three problems which enjoy strong quantum
speedups. We emphasize that we do not claim separations
of the complexity hierarchy in the sense P �= NP. Separation
questions lead to open problems which are believed to be very
hard. Our complexity estimates and speedups are obtained
using specific kinds of oracle calls.

The first problem is integration of functions of d variables,
which have uniformly bounded first partial derivatives. This is
a typical continuous problem in computational science. Since
such problems have to be discretized, we have only partial
information in the computer about the mathematical integrand.
We obtain this partial information using oracles, for example,
function evaluations.

The cost of an algorithm is equal to the number of oracle
calls plus the number of operations the algorithm uses to
combine the values returned by the oracle calls to obtain the
approximate answer. In this sense, the oracle calls can be
viewed as the input to the algorithm, and the combinatory cost
is a function of the number of oracle calls.

The problem complexity is the minimal cost of any
algorithm for solving the problem to within error ε. Let m(ε,d)
be the number of oracle calls for solving the problem. This is
called the information complexity. Clearly, the information
complexity is a lower bound on the complexity. This lower
bound does not require knowledge of the combinatory cost of
an algorithm. For our integration problem m(ε,d) is of order
ε−d . Thus the problem suffers the curse of dimensionality on
a classical computer.

On a quantum computer the cost of the algorithm is the
number of queries and other operations required to solve
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the problem to within ε with probability greater than 1/2.
As before, the problem complexity is the minimal cost of
any algorithm. The query complexity, i.e., the minimum
number of quantum queries, provides a lower bound on
the problem complexity. For our example of multivari-
ate integration the quantum complexity is o(ε−2) [11,12].
The curse of dimensionality is vanquished by a quantum
computer. This problem enjoys strong exponential quantum
speedup.

The second problem is a discrete example which also uses
oracle calls. The problem is to compute the mean of a Boolean
function f of n variables to within error ε. The minimal
number of evaluations of f , i.e., the number of oracle calls,
is 2n−1(1 − ε) in the worst case. The amplitude estimation
algorithm of Brassard et al. [13] can be used to compute
the mean with O(ε−1) queries for all n � log2 ε−1 plus a
polynomial in n and a log2 ε−1 number of quantum operations
that are required for the remaining parts of the algorithm
excluding the queries. Thus this problem also enjoys strong
exponential quantum speedup.

Finally, we mention that Simon’s problem [14] is solved
using quantum queries and enjoys a strong exponential
quantum speedup.

In the next section we will analyze the quantum speedup
of approximating the ground-state energy of the time-
independent Schrödinger equation under certain conditions
on the potential V . We will argue that this problem also enjoys
strong exponential quantum speedup. Some researchers in
discrete complexity theory believe that quantum computation
is not effective for eigenvalue problems. We will try to resolve
this dissonance.

II. COMPUTING THE GROUND-STATE ENERGY

Consider the time-independent Schrödinger equation

−�u(x) + V (x)u(x) = λu(x), x ∈ Id := (0,1)d ,

u(x) = 0, x ∈ ∂Id .

Thus the equation is defined on the unit cube in d dimensions
with a Dirichlet boundary condition. As usual,

� =
d∑

j=1

∂2

∂x2
j

denotes the Laplacian operator, and V � 0 is the potential.
Assume V is uniformly bounded by unity, i.e., ‖V ‖∞ � 1, and
that it is continuous and has continuous first partial derivatives
DjV := ∂V/∂xj , j = 1, . . . ,d, which satisfy ‖DjV ‖∞ � 1.
The problem is to approximate the ground-state energy (i.e.,
the smallest eigenvalue) with relative error ε, using function
evaluations of V .

Using perturbation arguments, it was shown in Ref. [15]
that the ground-state-energy approximation is at least as hard
as multivariate integration for V satisfying the conditions
above. Using lower bounds for multivariate integration [16],
we conclude that on a classical computer with a worst-case
guarantee the complexity is at least proportional to

(cdε)−d as dε → 0, (1)

where c > 1 is a constant. In fact, this lower bound follows
from the number of evaluations of V (oracle calls) that are
necessary for accuracy ε. It is assumed that V is known only
at the evaluation points. The complexity is an exponential
function of d. Moreover, discretizing the partial differential
operator on a regular grid with mesh size ε leads to a matrix
eigenvalue problem, where the matrix has size ε−d × ε−d .
The evaluations of V appear in the diagonal entries. Inverse
iteration can be used to approximate the minimum eigenvalue
with a number of steps proportional to d log2 ε−1.

The cost on a quantum computer is of order
dε−(3+δ) for any δ > 0, and the number of qubits is propor-
tional to d log2 ε−1. The algorithm uses queries returning
evaluations of V truncated to O(log2 ε−1) bits. Its cost includes
the number of queries and quantum operations. See Ref. [17]
for details. We remark that for a number of potentials V , such
as the ones given by polynomials or trigonometric functions
satisfying our assumptions, the queries can be implemented
by quantum circuits of size polynomial in d log2 ε−1. The
cost of the quantum algorithm provides an upper bound for
the complexity. A lower bound of order (dε)−1/2 for the
quantum complexity follows by considering V to be the sum
of d univariate functions. From the upper and lower quantum
complexity bounds one obtains a range for the anticipated
speedup. Recall that the criterion for strong quantum speedup
is

S2 = classical complexity

quantum complexity
.

Hence,

S2 = O

(
(cdε)−d

(dε)−1/2

)
, S2 = �

(
(cdε)−d

dε−(3+δ)

)
as dε → 0.

Thus quantum computation enjoys strong exponential quan-
tum speedup in d over the worst-case deterministic classical
computation.

Another way of describing this is to say that quantum
computation vanquishes the curse of (exponential) dimen-
sionality. The reason for the word in parentheses is that
Bellman coined the phrase curse of dimensionality informally
in the preface of [18] in the study of dynamic programming
for the solution of optimization problems. He noted that as
the number of state variables increases, solving the problem
gets harder. This was an empirical result since it was before
computational complexity theory was created. He did not
specify how the difficulty of the problem depended on the
number of state variables, which is why we inserted the word
exponential.

Comparison with QMA-complete problems

Several researchers have written us (private communi-
cations) that strong exponential quantum speedup for the
ground-state energy problem cannot be true because it would
imply that we have established complexity class separations.
We do not claim such separation results.

To illustrate this issue we will describe the assumptions
appropriate for the continuous problems of computational sci-
ence, comparing them to those for discrete problems. We begin
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with the computational complexity of continuous problems.
This is studied in the field of information-based complexity.
There are numerous monographs and surveys describing the
foundations and results (see, for example, [16,19–26]).

Typically, these problems are solved numerically and
therefore approximately to within error ε. In applications the
user chooses the appropriate ε. Another key parameter is d,
which denotes the degrees of freedom or dimension of the
problem. The size of the input, the algorithm cost, and the
problem complexity depend on ε and d.

We specialize to the ground-state-energy problem. The
continuous problem has a structure which can be exploited by
the quantum algorithm. The Hamiltonian is − 1

2� + V , where
� is the Laplacian and V is the potential. In the previous
section we specified the conditions on V .

After discretization the resulting matrix is the sum of two
matrices. One involves the discretized Laplacian �ε, while
the other is a diagonal matrix Vε which contains function
evaluations of the potential V . All the properties of � and
�ε are well known as is the relationship between them. This
includes the eigenvalues, their separation, their distribution,
the eigenvectors, etc. [27–29]. In particular, for small ε the
smallest eigenvalue of − 1

2� + V is close to that of − 1
2�ε +

Vε. The discretization has preserved the problem structure.
Most importantly, since the norm of Vε is small, the eigenvalues
of − 1

2�ε + Vε are close to those of − 1
2�ε.

Turning to discrete problems, the complexity class QMA
(quantum Merlin Arthur) is the quantum analog of NP. It is
also called BQNP (bounded error quantum nondeterministic
polynomial), and the name QMA was given by Watrous [30].
A decision problem about the ground-state energy of local
Hamiltonians is a QMA-complete problem [31–33], and this
has been a very important and influential result in discrete
complexity theory. Hence, it is believed to be very hard to
solve. A number of papers state that approximating the ground-
state energy is a QMA-hard problem (see, e.g., [34,35]).
A similar conclusion holds for a density-functional-theory
approach for eigenvalue approximation [36].

There are important differences between our ground-
state problem and the local Hamiltonian QMA-complete
problem. The deterministic worst-case complexity lower
bound of Eq. (1) has been obtained using an oracle and
cannot provide a lower bound for the complexity of the
QMA-complete local Hamiltonian problem whose input is
provided explicitly. For the same reason it cannot imply a
separation in the complexity hierarchy. Furthermore, it is
unlikely that the quantum algorithm of [17] could be used
to solve the local Hamiltonian problem. This algorithm was
designed specifically to approximate the smallest eigenvalue
of − 1

2�ε + Vε. Using it for the local Hamiltonian problem
would require one to convert efficiently a sum of polynomially
many local Hamiltonians to the sum of two matrices, where
we know everything about the first and the second is a
diagonal matrix with a relatively small norm. Observe that
in the case of the local Hamiltonian problem the input is a
polynomial number of local Hamiltonians all satisfying the
same properties [32, Definition 2.3] without any apparent
useful distinction between them. While it is easy to deal with
each Hamiltonian individually, dealing with their sum is a hard
problem.

Moreover, the qubit complexity of our ground-state prob-
lem is proportional to d log2 ε−1 and so is the number of qubits
used by the quantum algorithm. The number of qubits for the
QMA-complete local Hamiltonian problem is denoted by n in
Ref. [32, Definition 2.3], and the sum of the local Hamiltonians
is a 2n × 2n matrix. Note that in the former case the number
of qubits is derived from the parameters ε and d, while in the
latter case n is the parameter. For the QMA-complete problem
it is not known if there exists a quantum algorithm solving it
with cost polynomial in n.

Relating the cost of the quantum algorithm in Ref. [17] to
the number of its qubits highlights further differences between
the cost requirements of discrete complexity theory and the
continuous problems of physical sciences and engineering. We
have shown that the ground-state energy can be approximated
with cost polynomial in d and ε−1, which makes it “easy.”Yet
from the point of view of discrete complexity theory such
problems are considered hard. We believe discrete complexity
theory sets too high a bar. It requires that the cost of the
quantum algorithm is a polynomial in the number of qubits
(or, equivalently, polylogarithmic in the matrix size) for the
algorithm to be considered efficient (recall that in Ref. [32,
Definition 2.3] n is the number of qubits upon which each
Hamiltonian acts, the Hamiltonian is a 2n × 2n matrix, and the
input size is polynomial in n; see also [37]).

Here is the crux of why the bar is too high for the continuous
problems of computational science. With the exception of
problems such as the solution of nonlinear equations and
convex optimization, scientific problems cannot be solved
with cost polynomial in log2 ε−1 [16]. One of the simplest
continuous scientific problems is approximating a univariate
integral with the promise that the integrand has a uniformly
bounded first derivative. The classical complexity of this
integration problem is �(ε−1), and the quantum complexity
is �(ε−1/2); see Refs. [11,38] for more details. As we stated
earlier, the lower bound for the quantum complexity of the
ground-state problem is proportional to (dε)−1/2. Note that
in computational science ε is often not very small. A typical
value is ε = 10−8. Thus complexity of order ε−1 or ε−1/2 is not
expensive. Note that the complexity of univariate integration
is exponentially greater than log2 ε−1.

We have been asked by researchers in discrete complexity
theory what happens if ε is constant. As stated above, ε

and d are parameters, and one studies the complexity for
all their values. Second, this possibility is excluded for our
ground-state-energy problem since in that case the problem
is trivial. Indeed, unless ε < 1/d, the problem can be solved
with constant cost by the algorithm that does not make any
evaluations at all and returns the value dπ2 + 1/2 since the
error is bounded by 1/d.

III. DISCUSSION

If one looked at the approximation of the ground-state
energy of the d-dimensional Schrödinger equation through
the prism of discrete complexity theory, one would conclude
that this problem is hard to solve on a quantum computer.
We propose that the speedup measures S1 and S2 are more
relevant for the power of quantum computing for problems in
computational science.
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We suggest that analogous results might be found if one
were to investigate other continuous problems. That is, they
are tractable on a quantum computer from the point of view of
computational science but intractable from the view of discrete
complexity theory.
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