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Implementation of a simple operator-quantum-error-correction scheme
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We provide a simple yet interesting example of operator quantum error correction avoiding fully correlated
noise. Our scheme requires no initialization of ancillae, which can thus be in the uniformly mixed state. We
demonstrate our scheme experimentally by making use of a three-qubit NMR quantum computer.
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I. INTRODUCTION

A quantum computer is vulnerable to the interaction with
the environment, and it must be protected in one way or
another. Quantum error correction (QEC) strategies [1], such
as quantum error correcting codes (QECCs) [2–4], noiseless
subsystems (NS) [5–11], and decoherence-free subspaces
(DFSs) [12–15], were devised to protect quantum information.
More recently, a unified approach called operator quantum
error correction (OQEC), encompassing and generalizing the
above techniques, was introduced in Refs. [16,17]. We review
examples of QECC [2,3] and NS [9–11] with three qubits in
terms of OQEC. Note that we use the term NS in a broader
sense defined in Refs. [16,17], which does not necessarily
entail the decomposition of the error operators into a direct sum
of irreducible representations of SU(2). We then provide the
simplest example with three qubits, in terms of the number of
CNOT gates, that is a NS robust against fully correlated noise
and that requires no initialization of ancillae. A somewhat
analogous problem is discussed in Refs. [18,19] for a related
but different system. Our QEC scheme provides another
realization of quantum computing using uniformly mixed state
qubits, such as, e.g., deterministic quantum computation with
one pure qubit (DQC-1) [20,21].

II. OPERATOR QUANTUM ERROR CORRECTION

Let us first review the operator quantum error correction
scheme following Refs. [16,17]. Suppose H is the Hilbert
space for some quantum system, and that it is decomposed as
H = (HA ⊗ HB) ⊕ K with dim(HA) = m, dim(HB) = n and
dim(K) = dim(H) − mn. We assume HA and HB are spanned
by the orthonormal sets |αi〉 and |βj 〉, respectively. We define
the projection operator

PA =
∑

i

|αi〉〈αi | ⊗ IB ⊕ 0dim(K),

so that PA (H) = HA ⊗ HB , and a super-operator PA (·) =
PA (·)PA . Hereafter, we will discuss the case when dim(K) =
0. Suppose E is a quantum (error) operation (or channel)
acting on B(H). Every such channel admits an operator sum
representation

E(σ ) =
∑

k

EkσE
†
k

for any σ ∈ B(H). Note that B(·) is the set of operators
on ·. For a given decomposition of H, let us define A as the

operator semigroup in B(H) such that

A = {σ ∈ B(H) : σ = σA ⊗ σB,

for some σA ∈ B(HA) and σB ∈ B(HB)}. (1)

The B-sector of A is said to be E-correctable with respect
to the above decomposition if there exists a trace-preserving
quantum (recovery) operation R on B(H) such that

(TrA ◦ PA ◦ R ◦ E)(σ ) = TrA(σ ) (2)

for any σ ∈ A. Any given quantum error correction scheme is
determined by specifying the triple {R,E,A}. When A is a sub-
space and R �= id (identity channel), the scheme is identified
as QECC. On the other hand, DFS and NS are obtained when
R = id and A ’s are a subspace and an algebra, respectively.

A typical QECC with three qubits is presented in its
quantum circuit form (Fig. 1) [2,3]. A is implemented by UE ,
which is realized with the two controlled NOT gates before
E . Independent bit-flip errors of qubits are defined by {Ek} =
{√p1 σ0 ⊗ σ0 ⊗ σ0,

√
p2 σx ⊗ σ0 ⊗ σ0,

√
p3 σ0 ⊗ σx ⊗ σ0,√

p4 σ0 ⊗ σ0 ⊗ σx}, where pi � 0 and
∑

pi = 1. σ0 is a unit
matrix of dimension 2, while σx,y,z is the x,y,z component of
the Pauli matrices. R is defined by the rightmost Toffoli gate.

Let us consider a fully correlated noise where all the
qubits, unlike the error channel in Fig. 1, suffer from the same
noise. This may happen when the dimensions of the quantum
computer are microscopic compared with the wavelength of
external disturbances [9–11]. This situation also takes place
when photons are sent one by one through an optical fiber
with a fixed imperfection, assuming the scattering of photons
by the imperfection is “elastic.” Then the imperfection acts on
each photon in the same way, resulting in the collective noise.
A NS example with three qubits was discussed in Ref. [9].

The error channel is defined by {Ek} =√
p1σ

⊗3
0 ,

√
p2(eiασx )⊗3,

√
p3(eiβσy )⊗3,

√
p4(eiγ σz )⊗3}, where

pi � 0 and
∑

pi = 1. Its quantum circuit is shown in Fig. 2,

where G1 = 1√
3
( 1

√
2

−√
2 1 ) and G2 = 1√

2
( 1 1

−1 1 ). In this case,

(U†
E ◦ E ◦ UE) (|0〉 〈0| ⊗ |v〉 〈v| ⊗ |ψ〉 〈ψ |)

= |0〉 〈0| ⊗
(

3∑
i=0

piUi |v〉 〈v| U †
i

)
⊗ |ψ〉 〈ψ | ,

where {Ui} = {σ0,e
iασx ,eiβσy ,eiγ σz}. Note that one of the

ancillae required in Fig. 2 is in an arbitrary initial state
including the fully mixed state. We used a pure-state notation
|v〉 in Fig. 2 to simplify the expressions. The general case with
mixed initial states is obtained by simply mixing the pure-state
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FIG. 1. Traditional QECC against independent bit-flip er-
rors. {Ek} = {√p1 σ0 ⊗ σ0 ⊗ σ0,

√
p2 σx ⊗ σ0 ⊗ σ0,

√
p3 σ0 ⊗ σx ⊗

σ0,
√

p4 σ0 ⊗ σ0 ⊗ σx}, where pi � 0 and
∑

pi = 1.

results using linearity. We will use this notation in the rest of
this paper.

We will hereafter discuss a very simple, yet
interesting error channel. The Ek are {Ek} =
{√p1 σ⊗3

0 ,
√

p2 σ⊗3
x ,

√
p3 σ⊗3

y ,
√

p4 σ⊗3
z }, where we assume∑

pi = 1. This noise channel is a special case of the one
discussed in Fig. 2.

First, we consider the case when pure state ancillae are
prepared initially, as shown in Fig. 3. This quantum circuit was
discussed in Ref. [11], although not very explicitly. The state
|ψ〉〈ψ | to be protected is encoded as ρE = (H |0〉〈0|H †) ⊗
|0〉〈0| ⊗ |ψ〉〈ψ |. Therefore, the projection operator PA should
be the identity operator of dimension 8. After E is operated
on ρE , ρE is decoded by U†

E and then R recovers |ψ〉〈ψ |.
In summary, we obtain (TrA ◦ R ◦ E)ρE = |ψ〉〈ψ |. This QEC
scheme is regarded as QECC with the simplest encoding and
decoding circuits.

For such a restricted noise channel, an encoding scheme
in which two qubits are protected with one arbitrary topmost
ancilla was reported [10] (see Fig. 4). The circuit in Ref. [10]
was not exactly the same as that in Fig. 4, because in the latter
the first CNOT gate was removed at the cost of initializing the
ancilla to the |0〉 state.

III. SIMPLEST OQEC WITH MIXED STATE ANCILLAE

We now introduce a new and even simpler NS with three
qubits. As we shall later prove, this is the simplest possible NS
in terms of the number of CNOT gates, although only one qubit
is protected with two arbitrary ancillae, as shown in Fig. 5. We
can show that

(U†
E ◦ E ◦ UE) (|v,u〉 〈v,u| ⊗ |ψ〉 〈ψ |)

=
(

3∑
i=0

piMi |v,u〉 〈v,u| M†
i

)
⊗ |ψ〉 〈ψ | , (3)

where {Mi} = {σ⊗2
0 ,σ⊗2

x , − σx ⊗ σy,σ0 ⊗ σz}.

FIG. 2. NS against fully correlated noise. {Ek} =√
p1σ

⊗3
0 ,

√
p2(eiασx )⊗3,

√
p3(eiβσy )⊗3,

√
p4(eiγ σz )⊗3}, where pi � 0

and
∑

pi = 1.

FIG. 3. Simple QECC against restricted fully correlated errors.
{Ek} = {√p1 σ⊗3

0 ,
√

p2 σ⊗3
x ,

√
p3 σ⊗3

y ,
√

p4 σ⊗3
z }, where

∑
pi = 1.

The one-qubit density matrix |ψ〉〈ψ | can be represented
by the Bloch vector n = (nx,ny,nz) so that |ψ〉〈ψ | = 1

2 (σ0 +
n · σ ), where σ = (σx,σy,σz). After encoding the initial state
with fully mixed state ancillae, we obtain the encoded state:

ρE = UE(σ0 ⊗ σ0 ⊗ |ψ〉〈ψ |/4) = 1
8 (�0 + n · �), (4)

where �0 = σ⊗3
0 and � = (�x,�y,�z) = (σ0 ⊗ σx ⊗ σx,

σz ⊗ σx ⊗ σy,σz ⊗ σ0 ⊗ σz). {�i} satisfies the ordinary su(2)
algebra, and the quantum information n is stored in the space
spanned by {�i}. It is easy to obtain general gate operations
acting on the physical qubits by e−iα�i in order to implement
operations acting on a logical qubit. We note that direct
operations on logical qubits in DFS and NS were discussed
in Ref. [22].

In the present case,

A =
{

1

8
�0,

1

8
�x,

1

8
�y,

1

8
�z

}
,

PA = 1

2
(σ0 ⊗ σ0 + σ0 ⊗ σx + σz ⊗ σx + σz ⊗ σ0) ⊗ σ0

=

⎛
⎜⎜⎜⎝

1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ ⊗ σ0.

Then, we obtain (TrA ◦ PA ◦ E)(ρE) = |ψ〉〈ψ |.
This NS is obviously the simplest under our noise model

when we consider a system of three or more qubits, because at
least two CNOT gates to correlate the three qubits are required.
We will now prove the nonexistence of a NS with a two-qubit
system under our noise model. Suppose there exists U ∈ U (4),
which satisfies U (σx ⊗ σx)U † = σ0 ⊗ σx,U (σy ⊗ σy)U † =
σ0 ⊗ σy and U (σz ⊗ σz)U † = σ0 ⊗ σz. By multiplying the
left-hand sides and the right-hand sides of these relations one

FIG. 4. NS that protects two qubits with one arbitrary ancilla,
including a fully mixed state one. The noise model is the same as in
Fig. 3.
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FIG. 5. Simplest NS, in terms of the number of CNOT gates, to
avoid restricted fully correlated noise. The noise model is the same
as in Fig. 3.

by one, we find U [(σxσyσz) ⊗ (σxσyσz)]U † = σ0 ⊗ σxσyσz.
By using σxσyσz = iσ0, we obtain UU † = −iI , which is a
contradiction. It was shown that there is no N = 2 NS under
our noise model.

We will briefly discuss quantum mutual information and
quantum discord (hereafter, abbreviated as QD) introduced
in Ref. [23] in order to analyze another aspect of our scheme.
First, let us observe that the encoded state ρE given by Eq. (4) is
fully separable. Let us write |ψ〉 = α|0〉 + β|1〉, where α,β ∈
C such that |α|2 + |β|2 = 1. Then,

ρE = 1
2 (|0〉〈0| ⊗ ρ ′ + |1〉〈1| ⊗ ρ ′′),

where ρ ′ is an equal mixture of α|00〉 + β|11〉 and β|01〉 +
α|10〉, and ρ ′′ is an equal mixture of β|00〉 + α|11〉 and
α|01〉 + β|10〉. It is easy to prove that ρ ′ and ρ ′′ are separable,
by employing the positive partial transpose (PPT) criterion
[24,25]. The state ρE is thus fully separable, which entails
that, in this case, entanglement is clearly not a relevant
resource for error avoidability. It is therefore interesting to
investigate nonclassical correlations other than entanglement.
The quantum mutual information I of the system described
by the density matrix ρAB is I(ρAB) = S(ρA) + S(ρB) −
S(ρAB), where ρA = TrB(ρAB), ρB = TrA(ρAB) and S(ρ) =
−Tr(ρ log ρ). Here, we are considering the state given by
Eq. (4); hence, System B is the qubit originally storing the
information, while System A is the ancillae, and I(ρAB) = 1
regardless of the state |ψ〉〈ψ |.

QD is a measure of nonclassical correlations between two
subsystems of a quantum system. We follow the notation
described in Refs. [23,26]. We find, after some lengthy
calculations, that D(B : A) vanishes while D(A : B) has the
structure shown in Fig. 6 [27]. They are not necessarily equal
to each other [23]. D(A : B) strongly depends on |ψ〉〈ψ |,
as shown in Fig. 6, and vanishes for certain points on the
Bloch sphere. For those points, our scheme can successfully
implement error correction even though D(B : A) and D(A :
B) vanish simultaneously. (We again note that I(ρAB) = 1
everywhere.) We therefore hypothesize that the nonclassical
correlations quantified by QD may not be a relevant resource
for error avoidability in our scheme.

By assuming another, more artificial, noise model we may
be able to construct a NS simpler than that in Fig. 5, with just
two qubits.

The scheme shown in Fig. 5, however, has an interesting
application: it may be employed to allow communication be-
tween two parties (Alice and Bob) without a shared reference
frame (SRF). Let us denote Alice’s basis with |i〉 and Bob’s
basis with |i ′〉, and assume that |0′〉 = V |0〉 and |1′〉 = V |1〉,

FIG. 6. (Color online) Quantum discord D(A : B) as a function
of the initial state of the data qubit parameterized by the Bloch
vector n = (sin θ cos φ, sin θ sin φ, cos θ ). Coordinates (r = D(A :
B),θ,φ) depict QD as a function of θ,φ. D(A : B) vanishes when
n = (±1,0,0),(0, ± 1,0),(0,0, ± 1). The functionD(A : B) takes the
maximum value (3/4) log2 3 − 1/2 when n = (±1, ± 1, ± 1)/

√
3.

where V is one of σi . Alice uses UE in Fig. 5 to encode a data
qubit |ψ〉 with two fully mixed ancillae and sends them to
Bob. The state that Bob receives is UE(σ0 ⊗ σ0 ⊗ |ψ〉〈ψ |/4)
in Alice’s basis. He decodes it with (U ′

E)† in his basis, that is,

V⊗3 ◦ U†
E ◦ V†⊗3

in Alice’s basis. Since E = V⊗3 in Fig. 5, Bob
obtains V⊗3(σ0 ⊗ σ0 ⊗ |ψ〉〈ψ |/4) = (σ ′

0 ⊗ σ ′
0 ⊗ |ψ ′〉〈ψ ′|/4).

This implies that Alice and Bob can transfer a data qubit
without knowing the relation between their respective bases.
A more general theory of quantum communication without
a SRF was discussed in Ref. [28], wherein the reference
frames of Alice and Bob may differ by arbitrary rotations
on account of the definition of NS being restricted to its
original meaning [5–11]. On the other hand, in the present
case the allowed rotations are limited to the σi because we are
considering a generalized definition of NS [16,17].

IV. EXPERIMENTS

We implement our scheme experimentally with a three-
qubit NMR quantum computer; we employ a JEOL ECA-
500 NMR spectrometer, whose hydrogen Larmor frequency is
approximately 500 MHz. As a three-spin molecule, we employ
13C-labeled L-alanine (98% purity, Cambridge Isotope) solved
in D2O. We simplify the quantum circuit shown in Fig. 5
by taking into account the fact that the phases of states are
not independently observed in a NMR quantum computer.
Both the encoding and the decoding require only five pulses
including refocusing pulses, taking about 25 ms.

TABLE I. The four initial states are transformed to the final states
by the mapM. The states are represented by using their Bloch vectors.

Final state

(a) No error (b) E1 error (c) E2 error
{pi} = (1,0,0,0) {pi} = (0,1,0,0) {pi} = (0,0,1,0)

ẑ (0.05, 0.03, 0.89) (0.02, 0.02, 0.85) (0.00, −0.02, 0.78)
x̂ (0.50, 0.11, −0.25) (0.65, 0.05, −0.14) (0.61, 0.06, −0.16)
ŷ (−0.04, 0.37, 0.03) (−0.03, 0.56, −0.02) (−0.14, 0.65, 0.01)
−ẑ (−0.01, 0.14, −0.74) (0.00, 0.06, −0.70) (−0.07, 0.08, −0.69)
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Error Operator no error E1 E2

Fe(σ0,M) 0.68 0.73 0.75

Tr(M) 1.03 1.00 1.00

FIG. 7. (Color online) Geometrical illustration of the action of
our scheme on the data qubit. For each of the cases (a), (b), and
(c), the outer Bloch sphere represents the set of all the pure states,
while the inner, deformed sphere represents the output states after
the recovery process. The three cases depicted in (a), (b), and
(c) correspond to different error operators, no error, E1, and E2,
respectively. Entanglement fidelities Fe(σ0,M) and traces Tr(M) are
summarized in the table.

The density matrix of the thermal state, ρth, is well
approximated by

ρth = (σ0/2)⊗3

+ ε

8
(σz ⊗ σ0 ⊗ σ0 + σ0 ⊗ σz ⊗ σ0 + σ0 ⊗ σ0 ⊗ σz),

where ε ∼ 10−6. Since (σ0/2)⊗3 is not visible in NMR, ρth is

effectively regarded as σ0 ⊗ σ0 ⊗ ( 1 0
0 0 ) when the third spin is

“seen.” This implies that no initialization process is necessary,
and thus the experiments become very simple.

We perform three sets of experiments, as summarized in
Table I.

The four initial states, ẑ,x̂,ŷ, − ẑ, are transformed to the
final state by the mapM, which is determined by the encoding,
error, and decoding processes shown in Fig. 5. The states are
represented by using their Bloch vectors. We apply quantum

process tomography [29], and the results are summarized in
Table I and Fig. 7. Although the surfaces in Fig. 7 are distorted,
it is clear that our QEC scheme indeed eliminates the effects
of the fully correlated noises. One may find that the two initial
states, ẑ state and −ẑ state, are mapped to final states that show
a certain discrepancy in the amplitudes of their z components.
For example, 0.89 for ẑ state and |−0.74| for −ẑ state in case
(a). Note that the only difference is that we use a π pulse to
prepare the −ẑ state from the ẑ state before encoding. The most
of fidelity loss may be due to an inhomogeneous control field
(H1 in NMR terminology) of pulses [30]. For better results,
we might have to make use of composite pulses [31].

V. CONCLUSIONS

We demonstrate a simple, yet interesting, quantum error
correction scheme avoiding fully correlated errors. The ancil-
lae can be in a uniformly mixed state for this purpose. The
analysis of quantum mutual information and quantum discord
(QD) may indicate that the nonclassical correlations quantified
by QD are not relevant as a resource for error avoidability
in our scheme. We anticipate further progress both in the
understanding of quantum correlations and the development
of QEC schemes.
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