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Entanglement generation by communication using squeezed states
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In order to improve the error probability of generating entanglement by communication for quantum
computation, we propose the use of squeezed light. When generating entanglement between two atoms by
communication, the error probability can be reduced by increasing the distance between quantum states of probe
light in phase space. The phase rotation of light depends on the atom-photon coupling strength and the light
amplitude, which are limited in practice. A large error probability has been expected for coherent probe light. If
we assume typical values of light amplitude and phase rotation, α = 100 and θ = 0.01, the error probability is
estimated to be P

(min)
coh = 0.14 and P

(hom)
coh = 0.23 for minimum error discrimination and homodyne measurements.

The error probability can be reduced to P (min)
squ = 1.73 × 10−8 and P (hom)

squ = 4.09 × 10−5 using squeezed coherent
light, where the same values of the mean photon number and the phase rotation angle are assumed for the coherent
light probe. These values satisfy the requirements for scalable quantum computation.
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I. INTRODUCTION

Quantum computers can achieve a drastic reduction of com-
putational complexity compared to classical computers [1].
Currently, a small-scale quantum circuit with several quantum
bits (qubits) has been achieved [2]. However, construction
of a practical quantum computer based on the quantum
circuit model is still difficult to implement. For example, one
obstacle to the implementation of solid-state qubit systems
with nearest-neighbor interaction is the requirement of a large
number of swap operations, necessary for interactions between
remote qubits. In recent years, measurement-based quantum
information processing has been proposed to overcome this
problem in order to implement complicated quantum circuits.
In the measurement-based model, quantum computation is
realized by the measurement of a quantum bit and a one-
qubit unitary transformation according to the measurement
outcomes [3]. Since complicated control techniques become
unnecessary, the measurement-based model is expected to
simplify the structure of a quantum computer. The remaining
problem is the preparation of multiqubit entangled states prior
to quantum computation.

Entanglement generation by communication [4] has been
proposed as an efficient entangler that can be used for
measurement-based quantum information processing. An
electromagnetic field (i.e., a quantum bus or qubus) interacts
with quantum memories, and the phase rotation of the field
is measured after the interaction. Entanglement is generated
between quantum memories by postselection according to
the measurement outcome. The qubus acts as a probe for
the memory states. The qubus interaction, unlike neighbor
interaction, can generate entanglement between remote quan-
tum memories. Since errors in entanglement generation occur
due to overlaps of qubus states, the error probability can be
improved by increasing the distance between the quantum
states of light in phase space. When three-level atoms are used
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for the quantum memories, the phase rotation of light depends
on the atom-light coupling strength and the light amplitude.
However, the light amplitude and the phase rotation angle
are limited in practice since a weak coupling [5] and a small
absorption rate are required [6]. On the other hand, coherent
light, which has been considered for the qubus, appears to
have difficulties in satisfying the requirements of low error
probability for large-scale quantum computation.

In this report, we propose the use of squeezed coherent
light to reduce the overlap and improve the error probability of
entanglement generation for quantum computation. Squeezed
light has been studied for qubuses and a related system in
the context of quantum repeaters [7,8]. The use of squeezed
light and the displacement operation is predicted to improve
the fidelity and success probability of dispersive interaction to
0.89 and 40%, respectively, for a node interval of 10 km, in
comparison to values of 0.77 and 36% for coherent light [7].
In quantum repeaters, however, photon loss in long-distance
transmission affects the performance, limiting the advantages
of squeezed light. For quantum computing, as we propose,
since the distance between quantum memories is small and the
transmission loss can be negligible, squeezed light will work
more effectively. Moreover, Praxmeyer and van Loock [8]
employed homodyne measurements and window functions for
quantum state discrimination to obtain the final state with a
high fidelity to the ideal Bell state, which reduced the success
probability to less than 1/2. It is not clear, however, whether
quantum error correction, such as Knill’s error correcting
C4/C6 architecture [9,10], can be implemented with a qubus
for a success probability below 1/2.

Therefore, minimum error discrimination, which maxi-
mizes the success probability without restricting the dis-
cernment error, is more suitable for quantum computation.
It is well known that the Helstrom bound provides the
error probability for minimum error discrimination for two
nonorthogonal states. However, entanglement generation by
the qubus requires discrimination between three states. In
the following research, we developed a theory on three-state
minimum error discrimination and calculated the error prob-
ability for entanglement generation with squeezed light for
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quantum computation. We also calculated the error probability
with homodyne measurements. It is shown that the error
probability can be reduced to satisfy the requirements for
quantum computing in both discrimination methods.

The report is structured as follows. We will review the
atom-photon interaction briefly in Sec. II. After this, we
will obtain the optimal positive operator value measurement
(POVM) for the discrimination of three pure states and will
show the improvement of the error probability of entanglement
generation with squeezed states in Sec. III. In Sec. IV, we
will yield a homodyne measurement scheme for three-state
discrimination and calculate the error probability. Finally,
we will examine the obtained values for reliable quantum
computation and conclude the report in Sec. V.

II. ATOM-PHOTON INTERACTION

In entanglement generation by communication, the phase
rotation of the probe light according to the atomic states should
be measured. In the following section, we will briefly review a
model of interaction between a photon and a three-level atom
used to calculate the phase rotation [4,5]. We assume that the
atom has the lower energy levels |0〉 and |1〉 and an excited state
|e〉, where only the transition |1〉 ←→ |e〉 is allowed [11,12].
The effective Hamiltonian of this atom-photon system can be
reduced to

Ĥ = h̄
ω0

2
σ̂z + h̄ωcâ

†â + h̄�

2
(âσ̂+ + â†σ̂−) (1)

by adiabatic elimination. Here, σ̂z = |1〉 〈1| − |0〉 〈0|, σ̂+ =
|1〉 〈0|, σ̂− = |0〉 〈1|, h̄ω0 is the energy difference between
the ground state and the excited state, ωc is the frequency
of the quantized cavity mode, and � is the Rabi frequency.
We can then move to the interaction picture using the unitary
transformation Û0(t) = exp[−i ω0

2 σzt − iωcâ
†ât]. The state in

the interaction picture satisfies the following equation of
motion:

d |ψ(t)〉I
dt

= − i

h̄
ĤI (t) |ψ(t)〉I , (2)

where

ĤI (t) = h̄�

2
(âσ̂+e−i�t + â†σ̂−ei�t ) (3)

and � = ωc − ω0. The formal solution of Eq. (2) up to the
second order is given by

|ψ(t)〉I =
[

1 − i

h̄

∫ t

0
dt1ĤI (t1) + 1

2

(
− i

h̄

)2 ∫ t

0
dt2

×
∫ t2

0
dt1ĤI (t2)ĤI (t1)

]
|ψ(0)〉I . (4)

We assume a large detuning and a not too large mean photon
number n̄ in the cavity mode, i.e., �t � 1 and

√
n̄/� =

�/� � 1. This is called the dispersive limit of interaction.
In this limit, the second term in Eq. (4) is proportional to �/�

and can be neglected. Furthermore, the third term is given by∫ t

0
dt2

∫ t2

0
dt1ĤI (t2)ĤI (t1) ≈ −i

h̄2�2

4�
(σ̂+σ̂− + â†âσ̂z)t. (5)

Eventually, Eq. (4) can be written as

|ψ(t)〉I =
[

1 − i

h̄
Ĥdispt

]
|ψ(0)〉I ,

(6)
Ĥdisp = h̄χ (σ̂+σ̂− + â†âσ̂z),

where χ = g2/� for a coupling constant g =
−id

√
h̄ωc/2ε0V /h̄ with a dipole moment d between

the excited state and the ground state, the volume of the
mode is V , and the dielectric constant is ε0. The interaction
Hamiltonian Ĥdisp is given in the dispersive limit. To go
further, since the mean photon number n̄ = â†â � 1, we
can neglect the operator σ̂+σ̂−. Finally, we obtain a unitary
operator that conditionally rotates the phase of the photon as

Û = Î |0〉 〈0| + R̂(θ ) |1〉 〈1| , (7)

where θ = χt and R̂(θ ) = eiθn̂.

III. IMPROVEMENT OF ERROR PROBABILITY FOR
OPTIMAL MEASUREMENT BY THE USE OF

SQUEEZED LIGHT

The process for a qubus with a probe light sequentially
interacting with two atoms is shown in Fig. 1(a), and the
energy-level scheme for a three-level atom is shown in
Fig. 1(b). At τ ′′ in Fig. 1(a), that is, after interacting with
the two atoms, the probe light is in a superposition of
three states with different phases, as |ψfin〉 = 1

2 |0〉 |0〉 |0〉ph +
1
2 (|0〉 |1〉 + |1〉 |0〉) R̂(θ ) |0〉ph + 1

2 |1〉 |1〉 R̂2(θ ) |0〉ph, where

FIG. 1. (Color online) (a) The process of entanglement generation between quantum memories by communication. Light interacts with
two atoms, and the phase rotation is measured after the interaction. (b) The energy-level scheme of a �-configuration three-level atom. The
phase of light rotates only when the atom is in state |1〉.
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FIG. 2. (Color online) The coherent states in phase space after
interacting with atoms A and B [at time τ ′′ in Fig. 1(a)], de-
scribed using circles. The final state of the total system is given
by 1

2 |0〉 |0〉 |α〉 + 1√
2
(|0〉 |1〉 + |1〉 |0〉) |αeiθ 〉 + 1

2 |1〉 |1〉 |αei2θ 〉. The
atomic entanglement state |0〉 |1〉 + |1〉 |0〉 is formed by postselecting
the rotated coherent state |αeiθ 〉. The error in the entanglement
generation originates from the overlaps of the circles (i.e., overlaps
between the light states).

|0〉ph stands for the initial state of the light. After measuring
the light state, the atomic entanglement state is obtained by
postselecting the R̂(θ ) |0〉ph outcome. In entanglement gener-
ation by communication, a discrimination of quantum states
is important, since the error occurs due to overlaps between
quantum states of light. To provide a concrete description,
we will consider the entanglement generation with a coherent
light qubus state. The interaction between the light and atom A
creates an entanglement between the atomic states and the light
states, as 1√

2
|0〉 |α〉 + 1√

2
|1〉 |αeiθ 〉 from the initial product

state 1√
2
(|0〉 + |1〉) ⊗ |α〉. Then, the interaction between the

light and atom B yields the final state |ψfin
coh〉 = 1

2 |0〉 |0〉 |α〉 +
1
2 (|0〉 |1〉 + |1〉 |0〉) |αeiθ 〉 + 1

2 |1〉 |1〉 |αei2θ 〉. The entangled
state of the atoms |0〉 |1〉 + |1〉 |0〉 is formed by postselecting
the rotated coherent state |αeiθ 〉. The error in the entanglement
generation occurs through the error in the light state measure-
ment, i.e., by overlapping between |α〉, |αeiθ 〉, and |αei2θ 〉, as
shown in Fig. 2.

For minimum error discrimination of two pure states, the
Helstrom bound provides the optimal error probability [13].
However, the Helstrom bound cannot apply for three-state
discrimination. Therefore, we now consider the minimum error
discrimination for three pure states. The state can be written
as

|ψfin〉 = 1
2 |0〉ph |00〉atom + 1

2 |1〉ph (|01〉atom + |10〉atom)

+ 1
2 |2〉ph |11〉atom , (8)

where |k〉ph (k = 0,1,2) are probe light states to be measured.
We will introduce a POVM for |k〉ph satisfying

M̂0 + M̂1 + M̂2 = Î , (9)

M̂0,M̂1,M̂2 � 0. (10)

The error probability can be described by the events that
atomic states are |01〉atom + |10〉atom when the outcome of the
measurement is |0〉ph or |2〉ph and that atomic states are |00〉atom

or |11〉atom when the outcome of the measurement is |1〉ph:

PE = 1√
2

ph 〈1|
(

atom 〈01| + atom 〈10|√
2

)
(M̂0 + M̂2) |ψfin〉

+ 1

2
(ph 〈0| atom 〈00| M̂1 |ψfin〉+ph 〈2| atom 〈11| M̂1 |ψfin〉)

= 1

2
− tr

[
M̂1

(
1

2
|1〉 phph 〈1| − 1

4
|0〉 phph 〈0|

− 1

4
|2〉 phph 〈2|

)]

= 1

2
− tr[M̂1̂]. (11)

The optimal measurement and the minimum error probability
can be obtained from the positive maximum eigenvalue
and eigenvector of the operator ̂. We can obtain the
maximum eigenvalue and eigenvector numerically by solving
an eigenvalue equation, det|̂ − λI |, where the operator ̂

is represented by a matrix. To this end, we will calculate
the orthonormal bases {|φ0〉 , |φ1〉 , |φ2〉} from the linearly
independent state vectors |k〉ph (k = 0,1,2) using the Gram-
Schmidt method. The state vectors are related to the orthonor-
mal bases as follows:

|0〉ph = |φ0〉 , (12)

|1〉ph = a0 |φ0〉 + a1 |φ1〉 , (13)

|2〉ph = b0 |φ0〉 + b1 |φ1〉 + b2 |φ2〉 , (14)

where |a0|2 + |a1|2 = 1, |b0|2 + |b1|2 + |b2|2 = 1, a0 =
ph 〈0|1〉ph, a1 = √1 − |a∗

0 |2, b0 = ph 〈0|2〉ph, b1 = ph 〈1|2〉ph,

and b2 =
√

1 − |b0|2 + |b1|2 − 2|b1|2−a0b1b
∗
0−a∗

0 b∗
1b0√

1−|a0|2
. Therefore,

the matrix representation in the orthonormal basis of the
operator ̂ is

̂=

⎛
⎜⎜⎜⎜⎜⎝

− 1
4 + |a0|2

2 − |b0|2
4

a0a
∗
1

2 − b0b
∗
1

4 − b0b
∗
2

4

a1a
∗
0

2 − b1b
∗
0

4
|a1|2

2 − |b0|2
4 − b1b

∗
2

4

− b2b
∗
0

4 − b2b
∗
1

4 −|b2|2
4

⎞
⎟⎟⎟⎟⎟⎠. (15)

Note that the coefficients in Eq. (15) are given by the inner
products, or the overlaps, of the state vectors. Since the fidelity
of the two states refers to the inner product of the states, the
minimum error probability is estimated from the fidelities of
the state. In fact, if these fidelities are zero, then the three states
are mutually orthogonal and thus completely discriminable
(PE = 0).

The fidelities of the states are given by F ′
coh =

|〈α|αeiθ 〉| = exp[−|α|2(1 − cosθ )](=|〈αeiθ |αei2θ 〉|) and
F ′′

coh = |〈α|αei2θ 〉| for coherent states. To improve the error
probability, it is necessary to increase the phase rotation angle
θ close to π , or to strengthen the light amplitude α. However,
the light amplitude α and the phase rotation angle θ are limited
in practice. This is because it is necessary to consider the
dispersive limit condition in order to realize the rotation gate
shown in Fig. 1; i.e., a weak coupling (θ = g2t/� � 1) [5] and
a small absorption rate (α2g2/�2 ∼ 0.01) [6] are required. In
the following, we will consider a diamond nitrogen-vacancy
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center embedded in a photonic crystal [6] to provide a
numerical illustration. The coupling constant g ∼ 104 (in
MHz) has been reported [6], and the interaction time t is
on the order of nanoseconds in quantum computation [14].
Therefore, the detuning should be set to � = 10 (in THz) to
satisfy the weak-coupling condition, and the mean photon
number should be 104(α = 100) to satisfy the small absorption
rate condition. The above parameter values result in a phase
rotation of about 0.01. We assume n̄ = 104 and θ = 0.01 as
typical values throughout this report. The error probability is
estimated to be P

(min)
coh = 0.14 from Eqs. (11) and (15). The

estimated error probability fails to satisfy the required values
of 10−2−10−4 for quantum computing [15,16].

We will now show the improvement of the error probability
by using the squeezed coherent state |ξ,α〉. The squeeze
operator for a single mode is [17]

Ŝ(ξ ) ≡ e
ξ

2 [â2−(â†)2], (16)

where ξ = reiϕ , described with the amplitude r and phase
ϕ (the direction of the squeeze in the phase space) of the
squeezing parameter. The squeezed coherent state can be
obtained by Ŝ(ξ ) |α〉 = |ξ,α〉 [17] (for α = 0,Ŝ(ξ ) |0〉 = |ξ 〉
is the squeezed vacuum). The squeezed coherent state can
be experimentally generated by using nonlinear optical effects
between the pump beam and signal beam [18]. When the signal
beam is the coherent state, the (output) idler beam becomes the
squeezed coherent state. When the signal beam is the vacuum
state, the idler beam becomes the squeezed vacuum; therefore,
the squeezed coherent state can also be obtained from the

FIG. 3. (Color online) The states in phase space of the squeezed
coherent states after interacting with two atoms. (a) The phase of
the squeezing parameter, ϕ = 0. The overlap between the three states
|ξ,α〉, |ξei2θ ,αeiθ 〉, and |ξei4θ ,αei2θ 〉 is increased for the small value
of the amplitude of the squeezing parameter r and the small phase
rotation angle θ . (b) The phase of the squeezing parameter, ϕ = π .
In this case, the overlap is decreased for all values of the amplitude
of the squeezing parameter and the phase rotation angle.

FIG. 4. (Color online) The error probability as a function of (a) the
amplitude r and (b) the phase ϕ of the squeezing parameter for a fixed
mean photon number n̄ = 104 and r = 1.4. The error probability is
minimized at r ∼ 3 for ϕ = π . The optimal value of the phase of the
squeezing parameter ϕ depends on r when the mean photon number
is fixed.

squeezed vacuum by the displacement operation. The overlaps
of the photon states are reduced by using properly squeezed
coherent states, as shown in Fig. 3. The power of discrimination
of the squeezed coherent state between |ξ,α〉 and |ξei2θ ,αeiθ 〉
is estimated from the fidelity given by Peng and Li [17]:

F ′
squ = |〈ξ,α|ξei2θ ,αeiθ 〉|

= 1√
cosh2r − ei2θ sinh2r

exp

×
[
α2

(
−1 + eiθ + (1 − ei2θ )cosϕcoshrsinhr

cosh2r − ei2θ sinh2r

)]
.

(17)

The fidelity |〈ξei4θ ,αei2θ |ξei2θ ,αeiθ 〉| is also written with the
same formula as Eq. (17). Figure 4 plots the error probability
as a function of the (a) amplitude r and (b) phase ϕ using
Eqs. (11) and (17). Here, we fix the mean photon number at n̄ =
|α2|[e−2rcos(θ − ϕ

2 ) + e2rsin(θ − ϕ

2 )] + sinh2(r) = 104 for a
fair comparison by adjusting the amplitude to be α′ from the
original value α as

α′ =
∣∣∣∣∣
√

|α|2 − sinh2(r)

e−2r cos
(
θ − ϕ

2

)+ e2r sin
(
θ − ϕ

2

)
∣∣∣∣∣ , (18)

since the mean photon number of the squeezed coherent state
with amplitude α differs from that of the original coherent
state with the same amplitude [8].

Figure 4 shows the error probability as a function of the
amplitude of the squeezing parameter r . For ϕ = 0 (the dotted
line), the error probability is not reduced for 0 � r � 3. For
ϕ = π (the solid line), the error probability is sharply reduced
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FIG. 5. (Color online) Probability density distributions for the
outcomes of the quadrature measurement of the probe beam (a)
corresponding to the quantum states in Fig. 4(a) projected on the
α1 axis and (b) corresponding to the quantum states in Fig. 4(b)
projected on the α2 axis.

for 0 � r � 3 and the minimum value PE = 1.42 × 10−44

appears at r = 2.65. The error probability increases for large
squeezing because the amplitude α′ decreases to fix the mean
photon number. The phase of the squeezing parameter ϕ has
to be optimized for each r , since the minimum conditions
of the exponent in Eq. (17) are varied by using α′ given in
Eq. (18). When we fix the amplitude α instead of the mean
photon number, the optimal value of the phase is ϕ = π and
is independent of r . The optimal value of the phase ϕ and
the experimentally reported maximum value of the amplitude
of the squeezing parameter r = 1.4 [19,20] yield the error
probability P (min)

squ = 1.73 × 10−8.

IV. ERROR PROBABILITY IN HOMODYNE
MEASUREMENT

We will calculate the error probability for homodyne
measurements, as the minimum error discrimination may
be difficult to implement for coherent states and squeezed
coherent states. In a homodyne measurement, the quantum
state is projected onto a projection axis. Since the light
to be measured is in the superposition state, as shown in
Fig. 3, the probability density distributions shown in Fig. 5
can be obtained by projective measurement [in Fig. 5(a),
projected onto the α1 axis; in Fig. 5(b), projected onto the α2

axis]. The error in entanglement generation in the homodyne
measurement occurs due to overlaps of the probability density
distributions representing the measurement outcome.

There is a formula for the probability density distributions
when squeezed coherent states are projected onto the xλ axis
(where λ is the projective angle) [21]. We can expand the
formula to include the phase shift θ as

Pα,ξ (xλ,θ ) = (2π�x2
λ

)−1/2
exp

{
− (xλ − 〈x̂λ〉)2

2�x2
λ

}
, (19)

where the expectation value of a quadrature operator

xλ = 1√
2

[âexp(−iλ) + â†exp(iλ)] (20)

is

〈x̂λ〉 = 〈α,ξ | x̂λ |α,ξ〉
= 1√

2
[αexp(−iλ) + α∗exp(iλ)]exp(iθ ), (21)

and the expectation value of x̂2
λ is〈

x̂2
λ

〉 = 〈α,ξ | x̂2
λ |α,ξ〉

= 1

2

[
exp(2r)sin2

(
λ − ϕ

2
+ θ
)

+ exp(−2r)cos2
(
λ − ϕ

2
+ θ
)]

+ 1√
2

[αexp(−iλ) + α∗exp(iλ)]exp(iθ ). (22)

Therefore, the variance of x̂λ is given by

�x2
λ = 〈x̂2

λ

〉− 〈x̂λ〉2

= 1

2

[
exp(2r)sin2

(
λ − ϕ

2
+ θ
)

+ exp(−2r)cos2
(
λ − ϕ

2
+ θ
)]

. (23)

When the projection angle λ = 0, the quantum states
projected in the direction of the α1 axis yield probability
density distributions as shown in Fig. 5(a). On the other hand,
when λ = π/2, the quantum states projected in the direction
of the α2 axis yield the distributions shown in Fig. 5(b).

As mentioned above, since the error occurs from the
overlaps between these probability density distributions, we
will calculate these overlaps. The error probability is obtained
with a rigorous method by subtracting the overlap between
the probability density distributions of |ξ,α〉 and |ξei4θ ,αei2θ 〉
from the sum of the overlaps between |ξ,α〉 and |ξei2θ ,αeiθ 〉
and the overlaps between |ξei2θ ,αeiθ 〉 and |ξei4θ ,αei2θ 〉. The
overlap between the probability density distributions of two
quantum states of light (with phases θ1 and θ2) projected on a
projection axis xλ can be described as

P ′(hom)
squ (α,ξ,θ1,θ2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cA

∫∞
α′′η(θ1,θ2) Pα,ξ (xλ,θ1)dxλ + cB

∫ α′′η(θ1,θ2)
−∞ Pα,ξ (xλ,θ2)dxλ (

θ2−θ1
2 � λ � π + θ2−θ1

2

)
cB

∫∞
α′′η(θ1,θ2) Pα,ξ (xλ,θ2)dxλ + cA

∫ α′′η(θ1,θ2)
−∞ Pα,ξ (xλ,θ1)dxλ

(otherwise)

, (24)
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where

α′′ = |
√

|α|2 − sinh2(r)| (25)

and

η(θ1,θ2) = 1

2
√

2
[cosλ(cosθ1 + cosθ2) + sinλ(sinθ1 + sinθ2)].

(26)

Factors cA and cB are the squares of the probability am-
plitudes (i.e., probabilities) in Eq. (8). That is, cA = 1/4
and cB = 1/2 for P ′(hom)

squ (α,ξ,0,θ ), and cA = 1/2 and cB =
1/4 for P ′(hom)

squ (α,ξ,θ,2θ ). Furthermore, when these quantum
states are symmetric to the transformation |ξei2x,αeix〉 →
|ξei2(2θ−x),αei(2θ−x)〉, the overlaps P ′(hom)

squ (α,ξ,0,θ ) and

P ′(hom)
squ (α,ξ,θ,2θ ) are the same. Here, α′′η(θ1,θ2) represents the

distance from the origin to the midpoint (the crossover point)
between the two arbitrary probability density distributions
Pα,ξ (xλ,θ1) and Pα,ξ (xλ,θ2). Equation (25) represents the
condition for the fixed mean photon number as in Eq. (18). The
reason why Eq. (25) differs from Eq. (18) is that the squeezed
state |α,ξ〉 differs from the |ξ,α〉 used in the probability
density distribution in Eq. (19). However, from the relation
|α,ξ 〉 = D̂(α)Ŝ(ξ ) |0〉 = Ŝ(ξ )D̂(αcoshr + α∗eiϕsinhr) |0〉, as
αcoshr + α∗eiϕsinhr = β, |α,ξ 〉 and |ξ,β〉 are essentially
equivalent.

We can estimate the error probability of postselecting the
rotated squeezed coherent state |ξei2θ ,αeiθ 〉 from three states
|ξ,α〉, |ξei2θ ,αeiθ 〉, and |ξei4θ ,αei2θ 〉. The error probability
becomes

P (hom)
squ (α,ξ,θ1,θ2,θ3) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2P ′(hom)
squ (α,ξ,θ1,θ2) − { 1

4

∫∞
α′′η(θ1,θ3) Pα,ξ (xλ,θ1)dxλ + ∫ α′′η(θ1,θ3)

−∞ Pα,ξ (xλ,θ3)dxλ

}(
θ3−θ1

2 � λ � π + θ3−θ1
2

)
2P ′(hom)

squ (α,ξ,θ1,θ2) − { 1
4

∫∞
α′′η(θ1,θ3) Pα,ξ (xλ,θ3)dxλ + ∫ α′′η(θ1,θ3)

−∞ Pα,ξ (xλ,θ1)dxλ

}
(otherwise).

(27)

Figure 6 plots the error probability as a function of the
projective angle λ. In the homodyne measurement, unlike in
the optimal measurement, the optimal phase of the squeezing
parameter ϕ is ϕ = π . The squeezed states of the amplitude of
the squeezing parameter r = 1.4 yield the error probability
P (hom)

squ = 4.09 × 10−5 under the following conditions: the
optimal projective angle λ = [π + (θ3 − θ1)]/2, the fixed
mean photon number n̄ = 104, and the phase rotation angles
θ1 = 0, θ2 = 0.01, and θ3 = 0.02. The error probability is
about a thousand times as large as that obtained from the
optimal measurement. Nevertheless, it is still small enough to
satisfy the requirement for quantum computing.

FIG. 6. (Color online) The error probability in the homodyne
measurement as a function of the angle of the projective axis λ

under a fixed photon number. The solid line corresponds to the
optimal phase of the squeezing parameter ϕ = 0.72 in the optimal
measurement obtained in Sec. III, and the dashed line corresponds
to ϕ = π . In the homodyne measurement, the optimal phase of the
squeezing parameter ϕ is ϕ = π .

V. DISCUSSION AND CONCLUSION

We proposed entanglement generation between two atoms
by communication using squeezed light. The squeezed light
reduced the error probability by increasing the distance
between quantum states of light in phase space. For typical
values of α = 100 and θ = 0.01, the error probability, which
is estimated to be P

(min)
coh = 0.14 for coherent light, can be

reduced to P (min)
squ = 1.73 × 10−8 with the amplitude of the

squeezing parameter r = 1.4 and the optimal phase of the
squeezing parameter ϕ. In addition, we estimated the error
probability of entanglement generation with the homodyne
measurement to be P (hom)

squ = 4.09 × 10−5 (for coherent states,

P
(hom)
coh = 0.23).

In a quantum bus (a qubus), the success probability for
entanglement generation is 1/2. Such quantum gates can be
qualified as probabilistic two-qubit quantum gates (PTQGs).
As analyzed in the previous sections, the error occurs due to
overlaps between quantum states of light. Since the squeezed
coherent states and the coherent states of light are nonorthog-
onal, complete discernment cannot be performed. Here, we
considered the possibility of error correction in the PTQG for
error probabilities P (min)

squ and P (hom)
squ . Knill’s error-correcting

C4/C6 architecture [9,10] can be implemented for the PTQG
but requires a high success probability (∼0.9). This method can
correct errors in PTQGs up to an error probability of 1%, if the
success probability of the gates approaches 100%. Repeated
operations are thus required for the PTQG in order to achieve
a success probability close to 100%. Even if the success
probability is improved to 100%, the error probabilities P

(min)
coh

and P
(hom)
coh for the qubus entangler with coherent states of

light are too large to implement Knill’s error-correcting C4/C6
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architecture with α = 100 and θ = 0.01. Squeezed coherent
states reduce the error probabilities so that Knill’s architecture
can be applied. Fujii and Tokunaga developed a fault-tolerant
scheme based on topological one-way computation (TOWC)
[16], which works with the PTQG with a lower success
probability compared with Knill’s architecture. In particular,
TOWC can correct errors in PTQGs with a success probability
of 1/2 up to an error probability of 4.0 × 10−4. Therefore, the
error can be corrected for the qubus PTQG with a squeezed
coherent light of r = 0.96 (8.34 dB squeezing) if the light
states are measured by minimum error discrimination and
with that of r = 1.25 (10.86 dB squeezing) if homodyne
measurement is applied. Since the scheme based on TOWC
currently has the highest error resilience, it is worth studying
the implementation of fault-tolerant TOWC by a qubus PTQG
with squeezed coherent states.

We will now list issues for future study. First, the present
work neglects the transmission loss in short connections
in quantum computers. Nevertheless, coupling loss and
measurement loss still occur in real systems. The effects

of such losses can be examined using the beam splitter
model [22], and losses for a qubus PTQG using coherent light
have already been analyzed [6]. We will go on to investigate
the effects of loss for the squeezed coherent state. Second,
to implement a measurement-based quantum computer, it is
necessary to consider the method of generating cluster states
from the two-partite entanglement described in the present
study. The analysis of cluster states generation using a qubus
PTQG has also been studied with coherent states [23–26]. It
would be straightforward to expand the analysis for a qubus
PTQG with squeezed coherent states. Third, we assumed that
squeezed coherent light would be available and have shown
that a qubus PTQG using squeezed coherent light works with
a low error probability. In principle, such squeezed coherent
light can be obtained by displacing the vacuum squeezed
state. However, displacement from a squeezed vacuum to
a bright squeezed light (with a mean photon number of
n̄ ∼ 104) may be restricted experimentally. The realization
of bright squeezed light is thus a research task for the
future.
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