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Quantum states of light are the obvious choice for communicating quantum information. To date, encoding
information into the polarization states of single photons has been widely used as these states form a natural closed
two-state qubit. However, photons are able to encode much more—in principle, infinite—information via the
continuous spatiotemporal degrees of freedom. Here we consider the information capacity of an optical quantum
channel, such as an optical fiber, where a spectrally encoded single photon is the means of communication. We
use the Holevo bound to calculate an upper bound on the channel capacity, and relate this to the spectral encoding
basis and the spectral properties of the channel. Further, we derive analytic bounds on the capacity of such
channels, and, in the case of a symmetric two-state encoding, calculate the exact capacity of the corresponding
channel.
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I. INTRODUCTION

Single photons are ideal candidates for efficiently com-
municating both quantum and classical information [1].
Unlike many other quantum systems, photons are inherently
“flying,” making them ideal for quantum communication tasks,
including quantum key distribution and distributed quantum
computation. In optical quantum information processing [2,3]
it is common to encode a qubit into the polarization of a
single photon. That is, a qubit is defined as α|H 〉 + β|V 〉,
or a classical bit can be communicated by choosing |H 〉
or |V 〉. Alternately, an encoding could be performed in the
photon-number or quadrature bases. These cases have been
studied extensively by previous authors [4–11]. For example,
the Fock basis {|n〉} could be employed to encode an alphabet
with a number of letters limited only by energy constraints.
While the alphabet may in principle be arbitrarily large, once
loss is introduced or physically realistic encoding procedures
and photodetectors are employed, which introduces mixing
in the photon-number degree of freedom, the information
capacity is limited.

In this paper we approach photonic information capacity
from an entirely different perspective. We fix the number of
photons at n = 1, and encode information into its spectral
degree of freedom [12]. Since the spectral degree of free-
dom is continuous, in principle infinite information could
be transmitted by a single photon encoded in this basis.
However, subject to realistic channel, detector, and photon
engineering constraints, the communicable information is
reduced. We examine the information capacity of a single
photon via encoding in the spectral domain and derive bounds
on the channel capacity using such an encoded photon under
realistic assumptions about the communications channel and
photodetector. We relate the channel capacity to the spectral
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response of the channel and photodetector, and the choice of
spectral encoding basis.

Previous authors have considered using photons’ continu-
ous degrees of freedom in quantum key distribution (QKD)
protocols [13–17] as well as entanglement in the continuous
degrees of freedom [18]. Here, rather than focusing on the
physical encoding procedure, we consider the maximum
information capacity of a photon encoded in the continuous
degrees of freedom, and, rather than specifically considering
QKD, we ask the more general question as to the infor-
mation capacity of the channel as measured by bits per
photon.

II. THE SPECTRAL STRUCTURE OF PHOTONS

A photon can be expressed as a superposition of differ-
ent spectral components, allowing an N -level qudit to be
encoded, where N can in principle be arbitrarily large. To
perform such encoding we choose a set of spectral functions
{ψi(ω)}, where ω is frequency relative to a central carrier
frequency. Ideally we would like these functions to form an
orthonormal basis,

∫ ∞
−∞ ψi(ω)ψj (ω)∗ dω = δi,j , such that they

can always be perfectly distinguished with an appropriate
measurement device. In reality, however, orthogonality might
only be approximate. We define photonic mode operators [19]
which create photons with a well-defined spectral distribution
function ψ(ω), A

†
ψ(ω) = ∫ ∞

−∞ ψ(ω)a†(ω)dω, where a†(ω) is
the single-frequency photonic creation operator in spatial
mode a. We will employ the shorthand A

†
ψi (ω)|0〉 ≡ |i〉, where

|0〉 is the vacuum state. Then a spectral basis state may be
expressed as ρi = A

†
ψi (ω)|0〉〈0|Aψi (ω) = |i〉〈i|.

In principle, any basis {ψi(ω)} could be chosen, such
as frequency or temporal delta functions, wavelet families,
Hermite polynomials, or any other set of functions satisfying
orthonormality. However, photon engineering [12,20–27] is
an emerging field and not all states can be readily prepared on
demand with sufficient fidelity.
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A. Information capacity of a single photon

Let Alice encode classical information by choosing i in
the range (1,N ). Thus, a single photon sends a letter from an
N letter alphabet. Next we propagate the spectrally encoded
state through a channel (such as an optical fiber), which has
a frequency-dependent transmission function η(ω). That is,
the channel has probability η(ω)2 of propagating a photon of
frequency ω, otherwise it is absorbed by the channel. Here we
will assume that the channel is Markovian, as this assumption
holds true for most physical mechanisms inducing photon loss,
and hence we are free to model the channel as a frequency-
dependent beam splitter [28], where the reflected component
is traced out. The spectral response of a photodetector after
the channel can be merged with the spectral response of the
channel, η(ω) = ηchannel(ω)ηdetector(ω).

When a spectrally encoded basis state passes through
this channel, the output state is (after tracing over the
environment), ρ ′

i = A
†
η(ω)ψi (ω)|0〉〈0|Aη(ω)ψi (ω) + εi |0〉〈0|,

where εi = ∫ ∞
−∞ |

√
1 − η(ω)2ψi(ω)|2 dω. Thus, after the

channel we have a mixture of the vacuum state (corresponding
to the absorbed component), and a single photon with
a spectral distribution function modulated by the spectral
response of the channel. Note that A†

η(ω)ψi (ω)|0〉 is in general not
normalized.

We wish to establish how much information Alice is
able to communicate to Bob using her spectrally encoded
single-photon state across the channel. Because the spectral
response of the channel modulates the spectral basis states,
in general the optimal choice of measurement basis for Bob
will not be the same as Alice’s encoding basis. To place an
upper bound on the mutual information between Alice and
Bob, we calculate the Holevo bound [1,29], which bounds the
mutual information under any choice of measurement basis
for Bob. Formally, the mutual information between Alice
and Bob is bounded by the Holevo quantity as H (A : B) �
S(ρ ′) − ∑

i piS(ρ ′
i), where ρ ′ = ∑

i piρ
′
i and pi is the a priori

probability that basis state i will be transmitted. We emphasize
that the Holevo bound is merely an upper bound on the mutual
information, which, in general, cannot always be saturated.
However, when multiple uses of the channel are allowed, the
Holevo-Schumacher-Westmoreland (HSW) theorem [30,31]
guarantees that rate can indeed be achieved with separable
photon states. Note that although coding strategies which
entangle photons across several uses of the channel may
result in a higher rate of communication, here we restrict our
attention to separable strategies, due to the technical difficulty
of implementing more general encodings in optics.

The mixture observed by Bob is ρ ′ =∑
i pi(A

†
η(ω)ψi (ω)|0〉〈0|Aη(ω)ψi (ω) + εi |0〉〈0|). The terms in

this mixture have been modulated and are in general no longer
orthonormal. We will reexpress the output state in some
orthonormal basis {φk(ω)},

ρ ′ =
N∑

i=1

pi

∑
j,j ′

(
λ

(i)
j λ

(i)
j ′

∗
A

†
φj (ω)|0〉〈0|Aφj ′ (ω) + εi |0〉〈0|)

=
∑
j,j ′

Yj,j ′ |j 〉〈j ′| + ε|0〉〈0|, (1)

where λ
(i)
j = ∫ ∞

−∞ φj (ω)ψi(ω)∗η(ω)dω, Yj,j ′ = ∑N
i=1 pi

λ
(i)
j λ

(i)
j ′

∗
, and ε = ∑N

i=1 piεi . Then it can be calculated that

S(ρ ′
i) = −εi log2 εi − (1 − εi)log2(1 − εi),

(2)

S(ρ ′) = −ε log2 ε −
N∑

j=1

Y ′
j log2 Y ′

j ,

where Y ′
j is the j th eigenvalue of Y . Thus, the Holevo bound

is

H (A : B) � −ε log2 ε −
∑

j

Y ′
j log2 Y ′

j

+
N∑

i=1

pi[εi log2 εi + (1 − εi)log2(1 − εi)]. (3)

The Holevo bound is maximized by optimizing over pi , which
may be prohibitive for large N .

B. Classical channel capacity

In photonic quantum computation [2,3] it is common to
accommodate for lossy channels via postselection. That is,
we discard events where the wrong number of photons are
measured due to photon loss. In the case of a communications
channel, both postselected and nonpostselected scenarios are
useful, and we will consider these two scenarios separately as
they are suited to inherently different situations. First, note that
if a photon is sent, detection of “no photon” actually contains
information about the encoded state, and it is therefore in
general suboptimal to postselect out such events. Specifically,
the loss of a photon gives us information that the encoded basis
state was more likely to be in the region where η(ω) is low.
For example, consider Fig. 1. In this example, if no photon
is detected, it is more likely that Alice’s encoded letter was
ψ1(ω) or ψ5(ω) than ψ3(ω). Thus, photon loss communicates
information from Alice to Bob, which would be discarded if
postselection were introduced into the protocol.

In the case of a constant bit-rate communications channel,
where photons are being transmitted at predictable regular
intervals, this observation leads us to conclude that it is best not
to postselect and instead interpret photon loss as a legitimate
signal. In this case, the classical channel capacity is simply
C � H (A : B). On the other hand, with a variable bit-rate
channel, there is no way of knowing whether measurement of
the vacuum state corresponded to photon loss or simply lack
of a transmission. In this case postselection is necessary and
C � (1 − ε)S(ρ ′

PS), where ρ ′
PS is ρ ′ postselected on there being

a photon.

III. NUMERIC RESULTS

We now calculate an upper bound on the capacity of the
channel in a specific subset of encodings, as quantified by the
Holevo bound, before going on to derive general bounds on
the capacity of such channels later in this paper. As discussed
earlier, the Holevo bound is achievable in the context of
the HSW theorem. We consider a spectral basis comprising
fixed-width, displaced Gaussians, ψj (ω) ∝ e−(ω−(j−1)�ω)2/4,
each offset by �ω from the next, as shown in Fig. 1 [32].
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FIG. 1. (Color online) Example choice of encoding basis {ψi(ω)},
where the basis states are not perfectly orthogonal, and an example
channel spectral response function η(ω). The functions {ψi(ω)} are
identical Gaussians of different means, separated in frequency by
multiples of �ω. By letting the Gaussians have zero variance, one
could achieve orthonormality and encode a qudit with an arbitrary
number of levels. However, this would be physically unrealistic. In
this example we have centered ω around 0, which is unphysical.
Thus, ω should be interpreted as being relative to some central carrier
frequency. All the integral overlaps defining the channel capacity are
invariant under uniform translations in ω, so the choice of center
frequency does not affect the results. Other examples of encoding
bases are time-bin encoding, which would yield the same results in
the conjugate domain, or orbital angular momentum encoding.

Optimizing H (A : B) over pi for large N is prohibitive, so in
our numeric analyses we will make the simplifying assumption
that Alice is employing a uniform encoding, pi = 1/N [33].

We consider two situations: first, when the channel spectral
response function is a constant, η(ω) = η, and second, when
the channel spectral response function is Gaussian [34] with
standard deviation σ , η(ω) = e−(ω/σ )2/4. The Holevo bound on
C is plotted in Fig. 2, where we encode across N = 32 spectral
basis states, for a maximum of log2 N = 5 bits of information.

For a flat spectral response function we observe a monotonic
increase in C as both the wave-packet separation (i.e., photon
distinguishability) and channel efficiency increase. In the limit
of large �ω and η = 1, we observe the Holevo bound is the
maximum achievable C � log2 N bits. It is obvious that C

must increase monotonically with �ω, since the extractable
information to Bob will depend on how well he can distinguish
the different basis states. For subunit efficiency, the basis states
become mixed with the vacuum state, which diminishes their
distinguishability, thus C must drop against loss. Note that for
a flat channel spectral response there is no bit-rate difference
between the postselected and nonpostselected cases. This is
because the channel introduces no bias which enables the
vacuum state to convey information about the encoded state.
Thus, it makes no difference if it is postselected away.

In the case of a Gaussian spectral response function, with
perfect efficiency at η(0) = 1, we observe that as the standard
deviation of the spectral response function increases, so does
C. In the limit of large σ , the spectral response becomes
flat with unity efficiency, η(ω) → 1, and with large �ω we
find the Holevo bound on the channel capacity is C � log2 N ,
the theoretical maximum. In this limit Bob always observes
the same state Alice transmitted, a basis of orthogonal pure
states, and C saturates the bound when frequency-resolved
photodetection is employed by Bob.

For indistinguishable photons, no measurement performed
by Bob is able to discern which encoded basis state is
being transmitted, and thus the information capacity is zero
for �ω = 0. Similarly, for a very narrow channel spectral
response function, Bob always measures the vacuum state
and no information may be communicated. As expected, for
a Gaussian response, the postselected channel bandwidth is
strictly less than the nonpostselected bandwidth, owing to the
information which is discarded during postselection.

With a finite bandwidth channel there reaches a point where
adding more basis states to the alphabet will not enhance
the information capacity of the channel, since the additional
letters reside in the region where η(ω) ≈ 0. On the contrary,
it becomes counterproductive to employ additional letters
since we are shifting the probability distribution within ρ ′
into a region where no information may be communicated.
In Fig. 3 we illustrate the relationship between the number
of basis states, channel bandwidth, and C. Evidently, for a
given channel there is always a finite optimal value for N ,
shown by the red line. Thus, in general it is not optimal to
always encode across the largest possible alphabet. Rather,
the optimal alphabet size is a function of the channel spectral
response.

FIG. 2. (Color online) Upper bound on the classical channel capacity (bits per transmitted photon) using Gaussian wave packets, displaced
by multiples of �ω, where Alice employs uniform encoding, pi = 1/N . Left: Flat spectral response channel (efficiency η), with or without
postselection. Middle: Gaussian spectral response channel (bandwidth σ ), without postselection. Right: Gaussian spectral response channel,
with postselection. We encode across N = 32 basis states, a maximum of log2 N = 5 bits of information. In the limit of �ω � 1 (distinguishable
photons), and σ � 1 or η = 1 (a perfect channel), the upper bound on C asymptotes to the maximum achievable log2 N . In this limit C saturates
the bound.
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FIG. 3. (Color online) Upper bound on the classical channel
capacity (without postselection) as a function of the alphabet size
N and channel bandwidth σ . The red line shows the optimal N for a
given σ based on the Holevo bound.

IV. ANALYTIC BOUNDS

We have previously considered the Holevo bound as a
means for determining an upper bound on the channel capacity
using a single photon. In certain circumstances, however, there
is another option for bounding the capacity, which we now de-
scribe. Consider a photon encoded as ψi(ω) ∝ e−(di−ω)2/(4σ 2

ψ ),
which passes through a channel with η(ω) = √

ppeake
−ω2/(4σ 2

η ),
a Gaussian scaled such that the peak transmission probability
is ppeak.

The probability of the photon passing through the channel
without being lost is qi = ∫ ∞

−∞ η(ω)2ψi(ω)2 dω, which in this
case yields

qi = ppeak

σψ

√
σ−2

ψ + σ−2
η

exp

(
− d2

i

2
(
σ 2

ψ + σ 2
η

)
)

, (4)

and the state of the photon, if it is transmitted, has spectral
distribution function ψ ′

i (ω) = 1√
qi

η(ω)ψi(ω).
Note that the minimum probability of photon loss obtained

by maximizing qi over d for fixed σψ is

qmax = ppeak

σψ

√
σ−2

ψ + σ−2
η

, (5)

and hence an upper bound on the channel capacity is given
by the channel capacity of a quantum erasure channel with
erasure probability κ = 1 − qmax. This channel has been
studied extensively for the case of qubits, for which analytic
results are known for both the quantum and classical capacities
[35]. These arguments can be trivially extended to qudits to
give the classical channel capacity (C), quantum capacity
(Q), and quantum capacity assisted by two-way classical
communication (Q2), all of which are equal to (1 − κ) log2 N

for the quantum erasure channel.
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FIG. 4. Maximum classical channel capacity for two-state
Gaussian encoding as a function of the ratio λ = σψ/ση.

Thus, for the case of information encoded as a photon
passing through a channel with a Gaussian transmission
profile, where each letter is encoded as a Gaussian distribution
over frequencies, all three capacities are bounded from
above by

C,Q,Q2 � ppeak log2 N

σψ

√
σ−2

ψ + σ−2
η

. (6)

In the alternate case of constant transmission probability,
η(ω) = η, as the overlap between the Gaussians encoding
different letters tends to zero, the channel approaches
a quantum erasure channel and the capacities tend to
C,Q,Q2 = η2 log2 N from below.

Calculating exact channel capacities can be challenging.
However, in the restricted case of two-state Gaussian encoding,
it can be shown that the classical channel capacity is given
exactly by

C = ppeak
e
− δ2

8(1+λ2)

√
1 + λ2

I2

(
1 −

√
1 − e

− δ2(1+λ2)
8λ2

2

)
, (7)

where δ = �ω/ση and λ = σψ/ση. Figure 4 shows the
maximum value this capacity can take as a function of λ.
The proof is given in the Appendix.

V. CONCLUSION

We have discussed the scenario where a single photon,
encoded in the spectral degree of freedom, communicates
information between two parties using a channel with a
well-defined spectral response. We analytically derived upper
bounds on the achievable classical and quantum channel capac-
ities under a physically realistic model for the communications
channel—specifically, a channel with frequency-dependent
absorption properties.

We noted that, in general, postselection upon detection of
a photon is suboptimal, since measuring the vacuum state
actually carries information about the encoded state sent
by the transmitter. However, depending on the application,
specifically in the context of a variable bit-rate channel,
postselection may be necessary. We calculated an upper
bound on the classical channel capacity in the cases of both
postselected and nonpostselected communication, and on the
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quantum capacity in the case of Gaussian encoding. We argued
that, in general, it is not optimal to always encode across the
largest possible alphabet. Rather, the optimal alphabet size will
be a function of the channel spectral response.
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APPENDIX: SUPPLEMENTARY INFORMATION

We now derive an analytic bound on the classical channel
capacity in the restricted case of two-state encoding using
Gaussian wave packets. Consider a photon encoded as

ψi(ω) = 1√√
2πσψ

e−(di−ω)2/(4σ 2
ψ ), (A1)

which passes through a channel with

η(ω) = √
ppeake

−ω2/(4σ 2
η ), (A2)

a Gaussian scaled such that the peak transmission probability
is ppeak.

The probability of the photon passing through the channel
without being lost is

qi =
∫ ∞

−∞
η(ω)2ψi(ω)2 dω

= ppeak

σψ

√
σ−2

ψ + σ−2
η

exp

(
− d2

i

2
(
σ 2

ψ + σ 2
η

)
)

, (A3)

and the state of the photon, if it is transmitted, has a spectral
distribution function given by ψ ′

i (ω) = 1√
qi

η(ω)ψi(ω).
In general, the task of calculating the exact capacity of

a communications channel is challenging, and has not been
possible for most channels of interest. However, for the case
of information encoded in one of two pure states, the classical

capacity is known to be I2( 1−sin(α)
2 ) [36], where the overlap

of the two states is cos(α), and I2(x) = 1 + x log2 x + (1 −
x) log2(1 − x). Thus we have C = I2(

1−
√

1−|〈ψ0|ψ1〉|2
2 ).

If we consider a two-letter alphabet encoded by two
Gaussians of standard deviation σψ and separation between

centers of �ω, then their overlap is e−�ω2/(8σ 2
ψ ), and hence the

classical capacity of the corresponding lossless channel will
be given exactly by

C = I2

(
1 −

√
1 − e−�ω2/(4σ 2

ψ )

2

)
. (A4)

If we consider the state after propagating through a channel
η(ω) with a Gaussian transmission profile, as described earlier,
then the output state for each encoded letter (if the photon is
not absorbed) will be given by ψ ′

i (ω) = 1√
qi

η(ω)ψi(ω). Since
this is proportional to the product of two Gaussians, the result
will be another Gaussian wave packet with

ψ ′
i (ω) = 1√√

2πσψη

e−(diη−ω)2/(4σ 2
ψη), (A5)

where σψη =
√

σ 2
ψσ 2

η

σ 2
ψ+σ 2

η

and diη = di
σ 2

η

σ 2
ψ+σ 2

η

.

In order to ensure that the encoding works well in the
postselection regime, we ensure that detection or nondetection
of a photon reveals no information about which letter is
encoded by making the assumption that d0 = −�ω/2 and
d1 = �ω/2. The overlap between ψ ′

0 and ψ ′
1 is then given

by e−δ2(1+λ2)/(8λ2), where δ = �ω/ση and λ = σψ/ση. The
classical capacity of this channel is thus

C = q0I2

(
1 −

√
1 − e

− δ2(1+λ2)
8λ2

2

)

= ppeak
e
− δ2

8(1+λ2)

√
1 + λ2

I2

(
1 −

√
1 − e

− δ2(1+λ2)
8λ2

2

)
. (A6)

Maximizing this value over δ, we obtain the exact maximum
channel capacity as a function of ppeak and λ.
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