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Discord and quantum computational resources
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Discordant states appear in a large number of quantum phenomena and seem to be a good indicator of
divergence from classicality. While there is evidence that they are essential for a quantum algorithm to have an
advantage over a classical one, their precise role is unclear. We examine the role of discord in quantum algorithms
using the paradigmatic framework of restricted distributed quantum gates and show that manipulating discordant
states using local operations has an associated cost in terms of entanglement and communication resources.
Changing discord reduces the total correlations and reversible operations on discordant states usually require
nonlocal resources. Discord alone is, however, not enough to determine the need for entanglement. A more
general type of similar quantities, which we call K discord, is introduced as a further constraint on the kinds of
operations that can be performed without entanglement resources.
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I. INTRODUCTION

In recent years quantum discord and similar quantities
have become an actively studied topic. There is mounting
evidence that discordant states play an essential role in a
wide variety of quantum phenomena (see [1] and references
therein). In many cases discord seems to be a more natural
measure of quantum correlations than entanglement [1,2] and
has sometimes been hailed as an essential resource for mixed
state quantum computation [3]. The term resource is, however,
debatable, mainly due to the fact that very few limitations
have been found on the creation and manipulation of discord.
Most notably, unlike entanglement, discord can be created and
increased using local operations [1].

Nevertheless, there is strong evidence that discordant states
play a role in mixed state protocols and discord is in many ways
an indication of the divergence from classicality [1,3–5]. In the
context of quantum algorithms there is interest in identifying
“the elusive source of quantum speedup” [6]. Recent results
indicate that discordant states play an essential role in
quantum algorithms that display an advantage over classical
ones [1,2,7].

Discord shares many properties with pure state entangle-
ment measures [1]. These similarities and the inability to
extend some results regarding entanglement in pure state
quantum computation to mixed states [8–10] make discord one
possible candidate for the source of computational speedup
[11]. There are, however, obvious differences between discord
in mixed states and entanglement in pure states. The most
significant is that discord is not known to be monotonic under
a relevant class of operations.

Another approach for identifying the source of the quantum
advantage is to attribute it to quantum gates [12,13]. One way
to reconcile the two pictures (gates vs states) is to look at
the relation between the sets of input and output states. It
is also possible to bring entanglement back into the picture
by examining a local operations and classical communication
(LOCC) implementation of the relevant quantum gates. Indeed
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under reasonable assumptions an LOCC protocol that does not
require ancillary entanglement can be simulated efficiently on
a classical computer [14].

In [15] we introduced restricted, distributed gates to
study the question when is a reversible operation effectively
nonclassical? in terms of entanglement resources. The result
was a relation between discord in the set of input and
output states and entanglement. It was, however, limited to
cases where only rank-1 measurements are applicable. The
original definition of discord naturally selects rank-1 mea-
surements since they maximize information gain [1,16–18].
However, when discussing LOCC protocols it is often useful
to consider measurements that reveal less information and
are consequently less disturbing. In this regard one should
define a more general version of discord. Similar issues were
recently discussed in [19,20], where orthogonal projective
measurements of different ranks were considered.

Here we extend the results of [15] and tackle a number of
issues described above. First we show that changing discord
using local operations has an associated cost in terms of
mutual information. Next we define a discordlike quantity
that takes into account more general measurements. We use
this quantity to extend the results of [15] to more general
types of states including those used in NMR mixed state
quantum computation. The results indicate that in the context
of reversible operations discord acts more like an obstacle than
a resource. Nonlocal resources are required to change discord
rather than just increase it. These results, as well as the tools
used to obtain them, are useful for a conceptual understanding
of the quantum advantage and can be extended to answer more
general questions.

A. Notation

The state of a quantum system shared by two parties, Alice
and Bob, is denoted by ρAB with reduced states ρA = tr B[ρAB]
and ρB = tr A[ρAB]. Operations on Alice’s side are described
by their Kraus operators {Ma}. In principle, any operation can
be called a measurement with POVM elements {Ea = M

†
aMa}

and a “classical”measurement outcome corresponding to each
term. We use the term measurement whenever an operation
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has at least one POVM element which is not proportional to
the identity 1. A measurement is rank-1 if and only if all the
POVM elements {Ea} are rank-1.

The probabilities for the classical outcomes are given by
pa = tr (EaρA). The resulting (conditional) state is ρAB|a =
MaρABM

†
a . The conditional state on Bob’s side is ρB|a =

tr A(ρAB|a) = tr A(EaρAB). If we discard the classical out-
comes, the resulting (average) state is given by ρ ′

AB =∑
a MaρABM

†
a . This final state can include any ancillary sys-

tems used on Alice’s side; thus dA = dim(ρA) is not necessarily
the same as d ′

A = dim(ρ ′
A). In principle, it is possible to

encode the results in orthogonal states, for example, ρ ′
AB =∑

a |a〉 〈a| ⊗ ρB|a or ρ ′
AB = ∑

a |a〉 〈a|AL
⊗ ρARB|a , where

the Hilbert space HA = HAL
⊗ HAR

and 〈a|b〉 = δab. For
simplicity of notation we sometimes use �A to denote an
operation on Alice’s side such that �A(·) = ∑

a Ma · Ma . �

without a subscript represents a local operation on both sides.

II. DISCORD AND LOCAL OPERATIONS

A. Quantum correlations

The total correlation in a bipartite quantum system is
given by the mutual information I (A : B) = S(ρAB ||ρA ⊗
ρB), where S(ρ||τ ) = tr [ρ log2 ρ − ρ log2 τ ] is the quantum
relative entropy.

Discord was originally defined via the probabilities for the
outcomes of a measurement [16,17]:

D(B|A) = I (A : B) − max
{Ea}

[
S(B) −

∑
a

paS(ρB|a)

]
. (1)

The maximization depends only on the POVM elements {Ea}
and naturally selects rank-1 measurements [1,18]. Interpreting
the last term as the classical part of the correlations, J (B|A) =
max{Ea}[S(B) − ∑

a paS(ρB|a)], gives

I (B|A) = J (A : B) + D(B|A). (2)

Discord is then the quantum part of the correlations [16,17,21].
We can also define quantum discord as the minimal change

in mutual information after a rank-1 measurement [22]:

D(B|A) = min
{M̄a}

[I (AB) − I (A′B ′)]. (3)

The bar indicates that the corresponding POVM elements
{Ēa = M̄

†
aM̄a} are rank-1. The two definitions, Eqs. (1)

and (3), are equivalent.
Zero discord states are called classical [1]. A state is

classical if an only if it has the form

ρAB =
∑

a

pa�a ⊗ ρB|a, (4)

where {�a} is a set of orthogonal projectors [16]. These
states have only classical correlations. For classical states it
is possible to find a local rank-1 measurement that does not
induce any loss of information. The POVM elements of this
measurement are {�a}.

Discord, classical correlations, and mutual information are
invariant under local unitary operations. Mutual information
and classical correlations are also nonincreasing under local
operations [17]. Discord, on the other hand, can both increase

and decrease under local operations [1]. Both discord and
classical correlations are not symmetric under the interchange
of the subsystems. Here we always consider the discord under
a measurement on Alice’s subsystem.

B. Changing discord with local operations

To show that changing discord implies the loss of cor-
relations we will use a special case of Petz’s theorem
[23,24] regarding the reversibility of completely positive trace
preserving (CPTP) operations.

Lemma 1. Given two states ρAB and τAB = τA ⊗ τB , where
S(ρAB ||τAB) < ∞, and a local (CPTP) operation �, the equal-
ity S[ρAB ||τAB] = S[�A(ρAB)||�(τAB)] holds if and only if
there exists a local operation �∗ such that �∗[�A(τAB)] = τAB

and �∗[�(ρAB)] = ρAB [25].
Taking τAB = ρA ⊗ ρB we get a corollary: I [ρAB] =

I [�(ρAB)] if and only if � can be reversed locally. We now
present our first result.

Theorem 1. If a local operation �(ρAB) = ρ ′
AB changes

discord, D(B|A) �= D(B ′|A′), it also decreases mutual infor-
mation, I (ρAB) > I (ρ ′

AB).
Alternatively, using the fact that local operations cannot

increase mutual information, the theorem reads as follows.
For a local operation, �, we have I [ρAB] = I [�(ρAB)] ⇒

D(B|A) = D(B ′|A′).
Proof. First we show that discord cannot be decreased with-

out affecting mutual information. Neither mutual information,
I (A : B), nor classical correlation, J (B|A), can increase under
local operations [17]. Using Eq. (2) we see that decreasing
discord reduces mutual information by at least the same
amount.

To show that discord cannot be increased we use lemma 1.
The operation � must be reversible if mutual information does
not change. If � increases discord without changing mutual
information then its reverse can decrease discord without
changing mutual information, violating the first part of the
proof. �

Note that this proof is valid for local operations on both
Alice and Bob’s side.

Theorem 1 implies that a local operation that changes
discord results in some loss of information. In the case where
the initial state is unknown this loss of information will usually
affect reversibility even when we allow classical communica-
tion. In what follows we will show that reversible operations
taking sets of initial states to final states require nonlocal
resources if discord changes. This is a consequence of the
effects of measurements on discord and mutual information.

III. DISCORD AND ENTANGLEMENT RESOURCES

A. Restricted distributed gates

To illustrate some of the implications of theorem 1 we ex-
tend the restricted distributed gates paradigm first introduced
in [15]: Alice and Bob may use arbitrary LOCC operations
to implement a reversible quantum gate G on a restricted
set of input states, L. This corresponds to realistic situations
where the input states are very seldom arbitrary. In particular it
corresponds to the case where at each stage of the computation
the system is separable as in some mixed state algorithms [1].
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Restricted distributed gates may prove to be useful for
some quantum computing tasks. However, here we use this
paradigm as a theoretical tool for studying “standard” quantum
information processing scenarios, in particular the quantum
circuit model. With this in mind we restrict ourselves to
reversible operations.

Definition 1. A quantum CPTP operation, G, is called
reversible on the set of states L if and only if there exists
an inverse CPTP operation G−1 such that G−1[G(ρi

AB)] = ρi
AB

for all ρi
AB ∈ L.

A unitary gate is reversible for any input set. More
generally irreversibility is a consequence of information loss
and reversibility can be related to error correction.

Definition 2. Given a reversible operation, G, on a set of
bipartite states, L, we define the distributed, restricted gate,
Gres on L = {ρi

AB} as a CPTP, LOCC operation with

Gres
(
ρi

AB

) = G
(
ρi

AB

)
(5)

for all states ρi
AB ∈ L.

In general Gres(ρx
AB) �= G(ρx

AB) when ρx
AB /∈ L. Since the

operations are linear we can assume L is convex without losing
generality.

When there are no entangled ancillary systems we can,
without losing generality, describe the implementation of Gres

as a set of local CPTP operations �μ at each stage followed by
classical communication from Alice to Bob CA→B or Bob to
Alice CB→A. The classical information is then encoded as part
of the local quantum state before the next step. It is retained
throughout the operation and discarded (traced out) at the end,

Gres(ρAB) = tr cl�An
CB→A · · · CA→B�A1 (ρAB). (6)

Without loss of generality we always assume Alice goes first.
Reversibility of Gres requires S(G[ρi

AB]||G[ρj

AB]) =
S(ρi

AB ||ρj

AB) for all ρi
AB,ρ

j

AB ∈ L. Using the above structure
this requires that at any stage the relative entropy remains con-
stant, in particular S(�A1 [ρi

AB]||�A1 [ρj

AB]) = S(ρi
AB ||ρj

AB).
Note that G−1 is not restricted to LOCC.

If any communication is necessary during the protocol then
the first step, �A1 , should involve a measurement whereby
Alice can gather some information about Bob’s (conditional)
state. A measurement that reveals maximal information [and
maximizes the last term in Eq. (1)] would in general change
discord and in most cases decrease the relative entropy between
some states in the set of initial states. To overcome this
problem Alice can choose her first measurement to reveal
less information. In principle Alice and Bob may have some
physical restriction on their local measurements. We denote
the set of allowed measurements SK . In the most general
case Alice and Bob can make any measurement. We denote
the set of all measurementsS2 for a reason that will be apparent
below.

We now ask the following. Given a set of measurements
SK can Alice and Bob implement the gate Gres without
ancillary entanglement? If the answer is yes, we say that Gres

is pseudoclassical for SK ; otherwise, we say it is nonlocal for
SK . Gres is fully nonlocal when it is nonlocal for S2. It is fully
local if it is pseudoclassical for the empty set. In the fully local
case Alice and Bob do not need to communicate in order to
implement the gate.

1. Examples for S K

The set of measurements SK will generally depend on the
physical scenario. One set that has been extensively studied in
the past is the set of all rank-1 orthogonal projective measure-
ments or fully dephasing channels S�. The corresponding set
of �-classical states (see below for a definition of K-classical
states) is the same as the set of zero discord (or classical) states
in Eq. (4).

More general are the sets of all rank r orthogonal projec-
tions,SR=r . Classicality under these sets of measurements was
studied in [20]. While these sets have a simple mathematical
structure it is not clear what is the physical scenario where
such restrictions apply. In [19] these sets were studied from
the perspective of local unitary operations with degenerate
eigenvalues.

Other sets of interest are the sets of measurements with at
least N outcomes (or linearly independent POVM elements)
SN . The physical motivation here is a bit more clear since
the number of outcomes is a property of the measurement
device. A special case which has a clear physical significance
is N = 2. This is the set of all possible measurements since
a measurement must have at least two outcomes. Some of
our main results below will be derived using this set of all
measurements, S2.

B. K -classical states

We now define a notion of classical states with respect to a
set of measurements SK . The relation between this definition
and the classicality of distributed gates will become apparent
in the next subsection.

Definition 3. A state is called K classical if I [ρAB] =
I [�A(ρAB)] for some measurement �A ∈ SK . A state is
K discordant if it is not K classical.

K-classical states can have nonzero discord. An example
is a 3 × 3 discordant state which is a mixture of a maximally
entangled state, 1/

√
2[|00〉 + |11〉], and a product state, |22〉,

such a state is two classical (classical with respect to the set of
all measurements) and entangled.

Classicality under SN—the set of measurements with at
least N outcomes—is related to reversibility under SN .

Proposition 1. A state ρAB is N classical if and only if there
exists �A ∈ SN such that �A(ρAB) = ρAB .

Proof follows directly from lemma 1.
We use the following necessary and sufficient condition for

K classicality to show a relation between K-discordant states,
the change in discord, and entanglement resources.

Lemma 2. A state ρAB is K classical if and only if there
is a local measurement �A ∈ SK and a product state τAB =
τA ⊗ τB , with S(ρAB ||τAB) < ∞, such that S[ρAB ||τAB] =
S[�A(ρAB)||�A(τAB)].

Proof. From lemma 1 the equality above holds if and only
if there is a local reverse operation �∗

A. This reversibility
condition is also necessary and sufficient for K classicality
since a local operation which reverses �A on ρAB will also
reverse it on ρA so �A preserves mutual information. �

C. Operations that require entanglement

Let us now examine the following general scenario: Alice
and Bob are limited to local operations where all measurements
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are in the set SK . They implement a restricted gate Gres over a
set of states L that includes a product state τAB = τA ⊗ τB and
a K-discordant state ρAB with S(ρAB ||τAB) < ∞. What can
we say about the nonlocal resources required for this gate?

From lemma 2 any measurement on Alice’s side �A1 ∈ SK ,
will decrease the relative entropy and will conflict with
the reversibility condition. This leaves two options: (a) the
implementation of Gres does not require any measurements in
which case it is fully local or (b) some ancillary entanglement
is necessary for the implementation, so Gres is nonlocal
for SK .

In the special case where there is no restriction on the
local measurements, SK = S2, the restricted gate is either
fully local (can be implemented without communication or
entanglement) or fully nonlocal (requires nonlocal resources).
In the fully local case we can appreciate theorem 1. Since the
operation is fully local any change in discord would reduce
mutual information. Consequently the operation would not
be reversible locally and the relative entropy between ρAB

and τAB would decrease (lemma 2), violating the (nonlocal)
reversibility condition. The above proves the following.

Theorem 2. A restricted, distributed gate on an input set L
that includes a product state τAB = τA ⊗ τB cannot be imple-
mented without entanglement resources if it changes discord
for any 2-discordant state ρAB ∈ L, with S(ρAB ||τAB) < ∞.

The condition S(ρAB ||τAB) < ∞ is always satisfied when
τAB is the completely mixed state. In this case the convex set
L also includes noisy states of the form ρAB = (1 − N )ρ0

AB +
N1AB/dAB . These are the standard states for NMR quantum
information processing [11].

Corollary 1. Take the noisy family of states ρAB = (1 −
N )ρ0

AB + N1AB/dAB where 0 � N � 1 is a free parameter
and ρ0

AB is two discordant. A restricted gate on this family
cannot be implemented without entanglement resources if it
changes the discord of ρ0

AB .

1. Example

Consider a distributed quantum simulation of an NMR
protocol that includes only a single factorized input state
(1 − N )ρA ⊗ ρB + N1AB/dAB but varied amounts of noise
N . Assume that at some point during the computation the
state becomes two discordant across the relevant bi-partition.
The next quantum gate that changes discord will require some
ancillary entanglement to simulate on a distributed quantum
computer. Simulate here means producing the exact output
state. The relation to classical simulation is not immediate, but
in the case where a fully local implementation exists there is an
efficient classical algorithm for obtaining an arbitrarily good
estimate of the possible measurement probabilities at the end
of the quantum algorithm [14].

IV. DISCUSSION AND OUTLOOK

The results presented here are useful for tackling a number
of questions regarding the role of discord and discordant states
in various processes. Manipulating discordant states has an
associated resource cost. Any change in discord using local
operations results in a loss of mutual information.

With respect to quantum computational resources, it is
possible to regard entanglement as a resource by examining
a distributed implementation of the relevant algorithm. In this
picture there is a cost associated with manipulating discord.
This cost is related to a more general sense of classicality than
the one defined by zero discord. Classicality under the set of
all local measurements, which we call 2-classicality, is the
most sensitive indicator of the requirement for entanglement
resources. Changing discord in a noisy 2-discordant set
requires nonlocal resources when the operation is reversible.
In light of theorem 1 this is also a statement about decreasing
mutual information. Either way discord should not be viewed
as a resource in this context.

2-discordent states provide an obstacle that can only
be overcome using nonlocal resources. More generally K-
discordant states are an obstacle that can be overcome by either
nonlocal resources or less disturbing measurements than those
in SK . Each of these limitations has implications regarding
quantum resources. One can also try to quantify the set of
allowed measurements as a resource.

This notion of discord as an obstacle was used to discuss
the verification of nonlocal gates in the cases of one way
communication [5] and qubits [26]. The definition of K

discord allows a more general approach to this problem.
Surprisingly variable depolarizing noise can help the verifier
(corollary 1).

A. K discord

The results are qualitative: we showed that changing discord
has an associated resource cost but we did not calculate this
cost explicitly. A quantitative relation between discord in a
set of initial states and the entanglement and communication
resources required to manipulate the states in this set is
still missing. Another missing parameter is a quantitative
measure of K discord defined in an operationally meaningful
way. Apart from vanishing for K-classical states it should
be directly related to the problem at hand. One candidate is
the expression inf�A∈SK {I [ρAB] − I [�A(ρAB)]}. In the case
of SR=1 this is the standard quantum discord, Eq. (1). For
R > 1 this expression was analyzed in [20]. In many other
cases and in particular for SN this quantity may vanish for all
states [27] and some meaningful normalization should be used.
Alternatively the distance from the set of K-classical states CK

can be used, e.g., min�AB∈CK S(ρAB ||�AB), in a similar way to
other operationally meaningful quantities [1,28,29].

K discord can also be related to the thermal discord
(see [1,22,30]) using the distance to the completely mixed
state, e.g., by taking the difference: S[ρAB ||1AB/dAB] −
S[�A(ρ)||�A(1AB/dAB)]; such a quantity may play a role
in finding the number of rounds (times the parties exchange
information) required for extracting maximal work from a
heat engine. It is also related to an open question regarding
the difference between the one-way and two-way quantum
deficit [1,31].

A quantitative relation between discord and entanglement
resources in restricted gates may also answer practical ques-
tions regarding the use of restricted gates in place of standard
reversible gates. It would be interesting to find a useful
algorithm for restricted gates that are simple to implement
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compared to their nonrestricted counterparts. Moreover, such
a quantitative relation will provide an operational approach to
a long sought-after resource theory for discord. Here discord
indicates the need for other resources rather then playing the
role of a resource per se.
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