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Anyons have exotic statistical properties, fractional statistics, differing from bosons and fermions. They can
be created as excitations of some Hamiltonian models. Here, we present an experimental demonstration of
anyonic fractional statistics by simulating a version of the Kitaev spin-lattice model proposed by Han et al.
[Phys. Rev. Lett. 98, 150404 (2007)] using an NMR quantum-information processor. We use a seven-qubit
system to prepare a six-qubit pseudopure state to implement the ground-state preparation and realize anyonic
manipulations, including creation, braiding and anyon fusion. The anyonic braiding process is equivalent to two
successive particle exchanges. We obtain a phase difference of (0.52 ± 0.01)π × 2 between the states with and
without anyon braiding, which is different from the π × 2 and 2π × 2 phase changes for fermions and bosons
after two successive particle exchanges, and agrees with the prediction of the anyonic fractional statistics.
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I. INTRODUCTION

In three-dimensional space, indistinguishable particles
obey Fermi-Dirac statistics (fermions) or Bose-Einstein statis-
tics (bosons). For both fermions and bosons, upon the exchange
of two indistinguishable particles, the system wave function
gains a π or 2π phase change. However, when restricted to two-
dimensional space, particles appear to obey fractional statistics
[1]. This means that when two indistinguishable particles
in two-dimensional space are exchanged, the system wave
function gains a statistical phase change, ranging continuously
from 0 to 2π . Those quasiparticles are defined as anyons.
Anyons can be grouped in Abelian and non-Abelian anyons.
Abelian anyons are particles that realize one-dimensional
representations of braid groups. In nature, Abelian anyons are
believed to exist and be responsible for the fractional quantum
Hall effect (FQH) [2–4]. Non-Abelian anyons are particles that
behave as multidimensional representations of braid groups.
They are critical in topological quantum computing, for
example, in the Kitaev fault-tolerant quantum computation
models [5,6]. Recently, the interest in anyons is enhanced
by the developing field of quantum computing because of
their potential ability to implement fault-tolerant quantum
computing architecture.

Several theoretical schemes have been proposed to directly
observe the fractional statistics associated with the anyon
braiding motion [7–20]. These schemes are mainly grouped
into two approaches: the first is proposed to be realized in
FQH systems, and the second makes use of the Kitaev models.
In FQH systems, it is difficult to directly observe anyonic
fractional statistics, and to introduce or resolve individual
anyons [21] when compared with the schemes using the
Kitaev spin-lattice models. Experimental demonstrations in
photon systems using the Kitaev spin-lattice models have been
realized [22,23]. However, the anyons are not protected from
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local noise and there is no explicit particle interpretation of the
excitations [15] because the background Hamiltonian vanishes
in such photon systems. In contrast, the background Hamil-
tonian can be simulated in the nuclear magnetic resonance
(NMR) systems.

In our work, an NMR quantum-information processor is
used to demonstrate the anyon braiding scheme proposed
by Han et al. [12] in the smallest Kitaev system utilizing
six qubits. The six-body ground-state preparation, anyon
excitations, and anyonic braiding operations are realized using
a seven-qubit molecule in liquid-state NMR. By comparing
the two final states, of which one is obtained after the anyon
creation, braiding, and fusion processes while the other does
not undergo such processes, the phase difference, which is
mapped into a frequency change of NMR spectrum peaks in
our experiment, can be observed.

II. KITAEV K × K SQUARE-LATTICE MODEL

The first Kitaev spin-lattice model [5] is a k × k square
lattice on the torus, containing qubits on each of the bonds
(Fig. 1) (here, we define the bonds as the minimal lines forming
the lattice). The total number of qubits is 2k2. The spin lattice
contains vertices and faces. A vertex v is the intersection of
four bonds. A face f means the surface with boundary defined
by four bonds. We can then define a Hamiltonian as

HK = −
∑

v

Av −
∑
f

Bf , (1)

where

Av = �j∈vertex(v)σ
x
j , Bf = �j∈face(f )σ

z
j . (2)

Av (Bf ) represents the four-body interactions belonging to
the qubits which live on the vertex v (or the face f ). For
all the vertices and faces, the ground state |�ground〉 for the
Hamiltonian HK satisfies

Av|�ground〉 = |�ground〉, Bf |�ground〉 = |�ground〉. (3)
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FIG. 1. (Color online) Illustration of the first Kitaev model. The
first Kitaev spin-lattice model is a k × k square lattice on the torus.
There is a qubit on each bond. The operators Av and Bf act on the
qubits of the vertex v and face f , respectively.

The ground states are fourfold degenerate. They form a
protected subspace G:

G = {|ξ 〉 ∈ N,Av|ξ 〉 = |ξ 〉,Bf |ξ 〉 = |ξ 〉 for all v and f }.
(4)

N is the Hilbert space of the 2k2 qubits. This is the definition
of the toric code, which is a special kind of stabilizer code [5].
Av and Bf are its stabilizer operators. Because of the periodic
boundary conditions, for each qubit j , σx

j and σ z
j appear twice

in different Av’s and Bf ’s. It can be easily obtained that

�vAv = 1, �f Bf = 1. (5)

If a state does not satisfy several (for example, n) of the
Av|�〉 = |�〉 and Bf |�〉 = |�〉 constraints, it is an excited
state with n elementary excitations (or quasiparticles). The
relationships in Eq. (5) imply that the quasiparticles should
appear in pairs.

If a σx operation is applied to a qubit, for example, qubit
mm, in a ground state, the state wave function is |�〉mm =
Xmm|�ground〉 (Xmm means the σx operation to qubit mm).
It satisfies Bf 1|�〉mm = −|�〉mm and Bf 2|�〉mm = −|�〉mm.
f 1 and f 2 are the two faces next to qubit mm. That
means two quasiparticles have been created at those particular
locations. The two quasiparticles can be considered as two
“defects” localized on faces f 1 and f 2. They are called m
particles. Instead, if a σz operation is applied to a qubit, for
example, qubit ee, in a ground state, the state wave function
is |�〉ee = Zee|�ground〉 (Zee means the σz operation to qubit
ee). It satisfies Av1|�〉ee = −|�〉ee and Av2|�〉ee = −|�〉ee.
This also means two quasiparticles occur. Here, v1 and v2 are
the two neighboring vertices which are connected by the bond
qubit ee lives on. The two quasiparticles can also be considered
as “defects” localized on vertices v1 and v2. They are called
e particles. The states with quasiparticles (excitations) are
excited states. The creation operations of e and m particles
are illustrated in Fig. 2(a).

FIG. 2. (Color online) Illustration of anyon creation and braiding
operations. (a) The creation of two m (e) anyons by the operation
Xmm (Zee). Xmm means σx operation to qubit mm, and Zee means
σz operation to qubit ee. The two m anyons are localized on faces
f 1 and f 2. The two e anyons are localized on vertices v1 and
v2. (b) The braiding motion of an m anyon around an e anyon by
operations Xl1Xl2Xl3Xl4. Qubits l1, l2, l3, and l4 are the qubits
along the braiding path.

Since two m (e) particles at the same site annihilate, the
m (e) particle can be moved by applying σx (σz) operations
along the path [Fig. 2(b)]. A braiding operation is to move an
m (e) particle around an e (m) particle along a closed-circle
path, which is equivalent to two successive particle exchanges
[16]. For fermions and bosons, states do not change after two
successive particle exchanges. For the m and e particles, it
has been shown that after a braiding operation, the global
state gains a π

2 × 2 phase change [5], which is different from
fermions and bosons. Therefore, the m and e particles are
anyons that obey fractional statistics.

III. SIX-QUBIT KITAEV SPIN-LATTICE MODEL AND THE
EXPERIMENTAL SCHEME

The minimum amount of qubits needed to implement the
smallest version of the periodic Kitaev model for anyon
braiding operations is eight. However, by abandoning periodic
condition, the spin-lattice model can be extended from a square
lattice to any planar graph [24], and an anyonic model can
be found with six qubits where we can demonstrate braiding
statistics [12]. The graphic structure of the six-qubit model is
shown in Fig. 3(a). The Hamiltonian of the system is

H6 = −A1 − A2 − B1 − B2 − B3 − B4, (6)

where

A1 = σx
1 σx

2 σx
3 , A2 = σx

3 σx
4 σx

5 σx
6 , B1 = σ z

1 σ z
3 σ z

4 ,

B2 = σ z
2 σ z

3 σ z
5 , B3 = σ z

4 σ z
6 , B4 = σ z

5 σ z
6 .

The ground state of the six-qubit Kitaev spin lattice is

|�ground〉 = 1
2 (|000000〉 + |111000〉 + |110111〉
+ |001111〉). (7)

Because the boundary conditions have changed, the ground
state is not degenerate anymore. The ground state can be
created from a six-qubit graph state shown in Fig. 3(b) [12]. A
graph state is a type of multiqubit state represented by a graph
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FIG. 3. (Color online) (a) The six-qubit Kitaev model and its
braiding loop. A pair of m (e) anyons are created by the operation X4

(Z3) and the braiding operation is realized by X6X5X3X4. (b) The
graph state that is equivalent under local unitary operations to the
ground state of the Hamiltonian in (a). The corresponding qubits in
the NMR spin system are also labeled at each vertex.

with the vertex set V and the edge set E, and is defined as

|G〉 = �(i,j )∈EUi,j |+〉
⊗

V , (8)

where the operator Ui,j is the controlled-σz operation between
the qubits i and j , and |+〉 = 1√

2
(|0〉 + |1〉). The six-qubit

graph state corresponding to the graph in Fig. 3(b) is

|G6〉 = U1,2U1,3U3,6U4,6U5,6| + + + + + +〉. (9)

The ground state of the six-qubit Kitaev spin lattice is

|�ground〉 = O|G6〉, (10)

where O = IHHHHI , I is the identity operator, and H is
the Hadamard operator. The |�ground〉 can be prepared by first
preparing a six-qubit graph state |G6〉, then implementing an
O operation. This gives a method to prepare the ground state.

For the ground state of the six-qubit system in Fig. 3(a), if
a σx operation is applied to qubit 4, a pair of m particles are
created on its two neighboring faces, and if a σz is applied to
qubit 3, a pair of e particles are created on its two neighboring
vertices. By applying successive σx operations on qubits 6, 5,
3, and 4, one m particle moves in a loop around one e particle.
After such a braiding operation, the global wave function will
obtain a phase factor of −1. By observing this phase change,
one can verify the fractional statistics of anyons.

Han et al. [12] give the basic circuit for ground-state
preparation, anyon creation, anyon braiding, and anyon fusion.
It should be noted that if one does the braiding operation to
a state with a pair of e particles and a pair of m particles
[Fig. 2(b)], the phase change after braiding is a global phase,
which can not be observed in experiments directly. In the
scheme proposed by Han et al. [12], the anyon creation step is
realized by σx and

√
σz = ei π

4 e−i π
4 σz instead of σx and σz. The

σx operation creates a pair of m particles. The
√

σz operation
creates a superposition between the states with and without a
pair of e particles. Therefore, after the anyon creation step, the
state of the system is

|�〉 = 1√
2

(|ψ1〉 + |ψ2〉), (11)

where |ψ1〉 is a state with a pair of m particles only, |ψ2〉
is a state with a pair of m particles together with a pair of
e particles. |ψ1〉 will not change after a braiding procedure
because no e particles exist. |ψ2〉 will obtain a phase factor
of eiδ after a braiding procedure. Therefore, the total wave
function becomes

|� ′ 〉 = 1√
2

(|ψ1〉 + eiδ|ψ2〉). (12)

In this way, the phase change caused by braiding operation
becomes a local phase factor in front of |ψ2〉 and is observable
in experiments.

The fusion operation is realized by applying
√

σz and σx .

In such case, the state of the system becomes i 1−eiδ

2 |�ground〉 +
1+eiδ

2 |�excited〉 after the fusion operation, where |�excited〉 =
σz|�ground〉. For the m and e particles, the statistical phase
change δ = π

2 × 2. Thus, the state after fusion is |�ground〉.
This means the e particle pair and the m particle pair are both
fused.

In our experimental scheme,
√

σz
−1 and σx operations are

performed as the fusion step (Fig. 5). The state of the system
is 1+eiδ

2 |�ground〉 + i 1−eiδ

2 |�excited〉 after the fusion operation.
With the statistical phase change δ = π

2 × 2 introduced by
a braiding operation, the state after the fusion step should
be |�excited〉. Otherwise, if δ = 2nπ (n = 0,1,2, . . .), the
state after the fusion step should be |�ground〉. Therefore, by
observing the difference between the state after the fusion
step and the ground state, we can demonstrate the fractional
statistics of anyons.

IV. EXPERIMENTAL IMPLEMENTATION

In our experiments, 13C-labeled transcrotonic acid dis-
solved in d6 acetone was used. The methyl group (denoted as
M) contains three hydrogen nuclei. M can be used as a spin-half
nucleus after a gradient-based subspace selection [26]. Thus,
the system contains seven qubits: H1, C1, M, C2, C4, H2, and
C3. The natural NMR Hamiltonian of this system is as follows:

HNMR = −	7
i=1πνiZi + 	7

i<j,i=1
πJi,j

2
ZiZj . (13)

Here, Z is the Pauli matrix σz, νi is the chemical shift of the ith
spin, and Ji,j is the J -coupling constant between the ith and
the j th spins. The molecule and its parameters are described
in Fig. 4.

To implement the anyon braiding, we first prepared the
molecule in the labeled pseudopure state with a deviation
matrix [27] of the form ρi = ZH10C10M0C20C40H20C3 where
0 = |0〉〈0|, using the method in Ref. [26]. We chose H1 as the
label qubit, and C1, M, C2, C4, H2, C3 as qubits 1, 2, 3, 4, 5,
and 6, to match to Fig. 3(b), using the neighboring couplings
for shortening the gate operations in implementation.

Figures 5 and 6 show the circuits for the experiments with
and without anyonic manipulation, respectively. There is a part
indicated as “measurement” from which one can observe the
phase change from the spectrum of the probe qubit (C2). These
two experiments illustrated in Figs. 5 and 6 were carried out
for comparison.
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FIG. 4. (Color online) Characteristics of the molecule of tran-
scrotonic acid [26,28]. The chemical shifts (diagonal elements) and
J -coupling constants (off-diagonal elements) are given in Hz. The
spin-lattice and spin-spin relaxation times T1 and T2 are listed at
the bottom. The chemical shifts are given with respect to reference
frequencies of 700.13 MHz (hydrogens) and 176.05 MHz (carbons).
The three hydrogen nuclei in the methyl form a spin- 3

2 group M. After
using a gradient-based subspace selection, this group acts in its spin- 1

2
subspace [26]. Therefore, M can be used as a single qubit. We thus
have seven qubits, including the two hydrogens and four carbons.

The wave functions of the labeled states (a), (b), (c), (d) in
Fig. 5, and (f) in Fig. 6 are as follows (the label qubit stays in
the state Z and is omitted in the following equations):

|�a〉 = 1
2 (|0C10M0C20C40H20C3〉 + |1C11M1C20C40H20C3〉
+ |1C11M0C21C41H21C3〉 + |0C10M1C21C41H21C3〉)

= |�ground〉, (14)

|�b〉 = 1

2
(|0C10M0C21C40H20C3〉 + i|1C11M1C21C40H20C3〉

+ |1C11M0C20C41H21C3〉 + i|0C10M1C20C41H21C3〉)
= XC4

(
1√
2

(ei π
4 |�ground〉 + e−i π

4 |�excited〉)
)

= 1√
2

(|ψ1〉 + |ψ2〉), (15)

FIG. 5. The quantum network for the experiment with anyonic
manipulation. H represents the Hadamard operation. Z = σz, X =
σx . Y90 is the read pulse, Y90 = e−i π

4 σy .

|�c〉 = 1

2
(|0C10M1C20C41H21C3〉 + i|1C11M0C20C41H21C3〉

+ |1C11M1C21C40H20C3〉 + i|0C10M0C21C40H20C3〉)
= XC4

(
1√
2

(ei π
4 |�ground〉 − e−i π

4 |�excited〉)
)

= 1√
2

(|ψ1〉 − |ψ2〉), (16)

|�d〉 = i

2
(|0C10M0C20C40H20C3〉 − |1C11M1C20C40H20C3〉

+ |1C11M0C21C41H21C3〉 − |0C10M1C21C41H21C3〉)
= iZC2|�ground〉 = i|�excited〉, (17)

|�f 〉 = 1
2 (|0C10M0C20C40H20C3〉 + |1C11M1C20C40H20C3〉
+|1C11M0C21C41H21C3〉 + |0C10M1C21C41H21C3〉)

= |�ground〉. (18)

In the experiment with anyonic manipulation, |�a〉 is
obtained after the ground-state preparation. It is the ground
state of the six-qubit Kitaev model. After anyon creation, the
wave function of the state is |�b〉. After anyon braiding, |�b〉
is transformed to |�c〉. |�b〉 and |�c〉 are the superpositions
of |ψ1〉 and |ψ2〉. |ψ1〉 is a state with a pair of m particles.
|ψ2〉 is a state with a pair of e particles and a pair of m
particles. Due to the e anyons present in |ψ2〉, it has a phase
change acquired when the m particle braiding around the e
particle. This causes the difference between |�b〉 and |�c〉.
After anyon annihilation, the state goes to the excited state
|�d〉. As a comparison, there is no anyonic manipulation part
in the experiment illustrated in Fig. 6. Since the ground-state
preparation procedure is the same as the experiment with
anyonic manipulation, the state |�f 〉 equals |�a〉.

The “measurement” part is designed in such a way that the
state |�d〉 is transformed to |�e〉 and |�f 〉 goes to |�g〉, where

|�e〉 = i
√

2

2
(|0C10M1H10C40H20C3〉

+ |1C11M1H11C41H21C3〉), (19)

FIG. 6. The quantum network for the experiment without anyonic
manipulation. It serves as a comparison with the experiment in Fig. 5.

022305-4



EXPERIMENTAL SIMULATION OF ANYONIC FRACTIONAL . . . PHYSICAL REVIEW A 88, 022305 (2013)

|�g〉 =
√

2

2
(|0C10M0H10C40H20C3〉

+ |1C11M0H11C41H21C3〉). (20)

It should be noted that at the end of the “measurement” part,
the states of qubits H1 and C2 are exchanged via a swap gate.
Therefore, after the “measurement” part, C2 becomes the label
qubit in the state Z, and it is used as the probe qubit in the
“observe” part. The state |�g〉 is almost the same as |�e〉,
except that the qubit H1 is in state |0〉 in |�g〉 (the global phase
is ignored).

In NMR experiments, we can detect the states of the qubits
through measuring the free induction decay (FID) signal S(t),
which is the time-varying current signal induced by the rotating
bulk magnetization. We have

S(t) ∝ tr[ρ(t)	k(Xk + iYk)e−t/T ∗
2,k ]. (21)

Here, ρ(t) = U (t)ρ0U
†(t), where ρ0 is the density matrix of

the state that needs to be measured and U (t) = e−itHNMR . T ∗
2,k

is the effective transverse relaxation time of spin k. By doing
Fourier transform to S(t), the NMR spectrum can be obtained.
Specifically, in our experiments, the detection is realized, as
shown in the “observe” part in Figs. 5 and 6, by implementing
a π/2 read pulse to the probe qubit, collecting the FID signals
and then doing Fourier transform to get NMR spectra. After the
read pulse, the deviation density matrices of the joint system
(the probe qubit together with the remaining six qubits) for the
marked states (o1) in Fig. 5 and (o2) in Fig. 6 are as follows:

ρo1 = XC2 ⊗ |�e〉〈�e| =
(

L |�e〉〈�e|
|�e〉〈�e| L

)
, (22)

ρo2 = XC2 ⊗ |�g〉〈�g| =
(

L |�g〉〈�g|
|�g〉〈�g| L

)
. (23)

Here, L is the 64 × 64 zero matrix. Equations (22) and (23)
indicate that the information of the remaining six qubits is
encoded in the coherent part of the reduced density matrix
of the probe qubit. The coherent part is observable and can
be directly measured in the NMR spectrum, which means the
peaks of the probe qubit (C2) are associated with the states
of the other spins. Therefore, by observation of C2, one can
obtain information of the other six qubits (see Appendix).

To identify the state difference of H1 between
|�e〉 and |�g〉, complete information of the six qubits
is not necessary, and we only need to know the
diagonal elements of their density matrices, which
stand for the population distribution among the 64
eigenstates (|0C10M1H10C40H20C3〉, |1C11M1H11C41H21C3〉,
|0C10M0H10C40H20C3〉, and |1C11M0H11C41H21C3〉 are 4 of
them) of the six-qubit system. Therefore, we employ the
method used in the previous work [28,29], extracting infor-
mation of the other qubits by observing the probe qubit to
reconstruct the deviation density matrix partially which is
enough to measure the appropriate phase. To reconstruct the
diagonal elements of the density matrices of the six qubits
(M, H1, H2, C1, C3, C4), one observation of the probe
qubit (C2) is enough for each experiment (see Appendix). For
the experiment with anyonic manipulation, the observation is
fulfilled by doing Fourier transform to the FID signals of the
state ρo1, and for the experiment without anyonic manipulation

the observation is fulfilled by doing Fourier transform to the
FID signals of the state ρo2.

For the state |�e〉, by observing the probe qubit, a two-peak
spectrum can be obtained. The intensity of the left peak in
the spectrum is proportional to the population distribution
on the eigenstate |1C11M1H11C41H21C3〉 while that of the
right peak is proportional to the population distribution on
|0C10M1H10C40H20C3〉 (see Appendix). For the state |�g〉, by
observing the probe qubit, also a two-peak spectrum can be
obtained. Similarly, the left peak in the spectrum corresponds
to |1C11M0H11C41H21C3〉 while the right peak corresponds
to |0C10M0H10C40H20C3〉. The frequency distance between
the two left (right) peaks in the two spectra is |JC2,H1|,
corresponding to the state difference of H1 between |�e〉 and
|�g〉. We conclude that the difference between the two spectra
is caused by anyon braiding. Because m and e anyons do
not obey integral statistics, after two successive exchangings
in the experiment illustrated in Fig. 5, they give rise to a
phase factor, which is mapped into a frequency change of
peaks in our experiments (or to say a change in the population
distribution among the 64 eigenstates). Thus, by implementing
the “measurement” part we succeed in observing directly the
anyonic phase change in relatively simple spectra.

It should be mentioned that the J -coupling constant
between C2 and H2 |JC2,H2| = 0.66 Hz is the smallest of the
couplings between C2 and the other nuclei. |JC2,H2| can be
resolved in our experiments, which means all the 64 peaks
of C2 spectrum are resolved (Fig. 7). |JC2,H1| = 155.42 Hz is
the largest J -coupling constant of C2. Therefore the braiding-
induced changes can be easily and explicitly observed in our
experiments.

The gates used in the ground-state preparation were realized
by combining single-qubit rotations and evolutions of the
J -coupling constants between the neighboring qubits, while
all the anyonic manipulations were realized by single-qubit
rotations [30,31]. The pulses of single-qubit rotations along
x and y axes were generated using the GRAPE algorithm [32]
for H1 and H2, and were standard Isech-shaped rf pulses for
M and C1–C4. The single-qubit rotations along the z axis
were realized using the evolutions of the chemical shifts in
the Hamiltonian of the spin system [33]. The J -coupling
evolutions were realized by implementing refocusing pulses.
We combined all the pulses using a custom-built software
compiler, which numerically optimizes refocusing pulses and
minimizes the errors due to undesired J -coupling evolutions
[29,33]. The duration of the experiments shown in Figs. 6
and 5 was 195.1 and 250.2 ms, respectively.

V. EXPERIMENTAL RESULTS

The final results for the experiments are shown in Fig. 7.
Figure 7(a) shows the superposed spectra between the sim-
ulated thermal state spectrum of C2 and the experimental
pseudopure state spectrum. It shows the experimentally
realized |0C10M0H10C40H20C3〉 peak (peak o). It should be
mentioned that there is an antiphase peak (peak w) in
Fig. 7(a). This antiphase peak was caused by the label qubit
H1, which was in the Z state. Figure 7(b) displays the
spectrum of the experiment without anyonic manipulation,
and Fig. 7(c) displays the spectrum of the experiment with
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FIG. 7. (Color online) (a) The superposed spectra of the theoretical C2 thermal state spectrum (red dotted line) and the experimental
pseudopure state spectrum (black solid line). There are 64 peaks in the thermal state spectrum, each corresponding to a computational basis
state. (b) The experimental spectrum corresponding to the experiment in Fig. 6. It has two dominant peaks: i and j . (c) The experimental
spectrum corresponding to the experiment in Fig. 5. It has two dominant peaks: s and t . The amplitude of peak o in the experimental pseudopure
state spectrum in (a) is taken as reference to normalize the experimental signals shown in (b) and (c). On the right are the zoomed-in spectra
for the peaks o, i, j , t , and s. The states which the experimental peaks correspond to are labeled on top of each zoomed-in spectrum. There is
a |JC2,H1| distance between peaks i and s, j and t . p, q, u, and v are the small peaks that have the same frequencies as those of peaks s, t , i,
and j , respectively.

anyonic manipulation, both generated by observing C2,
whose deviation density matrix was X. Peaks i (−18.3 Hz),
j (−137.2 Hz), s (137.1 Hz), and t (18.2 Hz) corre-
spond to states |1C11M0H11C41H21C3〉, |0C10M0H10C40H20C3〉,
|1C11M1H11C41H21C3〉, and |0C10M1H10C40H20C3〉, respec-
tively. We obtain the intensities of these peaks via a spectral
fitting procedure [29]. The sum intensity of the two dominant
peaks, both in Figs. 7(b) and 7(c), is about 0.7, normalized
using the intensity of peak o. More detailed, the intensities for
peaks i, j , s and t are 0.41±0.01, 0.30±0.01, 0.31±0.01, and
0.38±0.01 (the error bars are estimated from the uncertainty of
the fitting parameters), respectively. From the Eqs. (14)–(18),
we can know that peak i and peak t originated from the same
part (|1C11M0C21C41H21C3〉 + |0C10M1C21C41H21C3〉) of the
ground state, and similarly peak j and peak s originated from
the other part (|0C10M0C20C40H20C3〉 + |1C11M1C20C40H20C3〉)
of the ground state. The fact peak t is slightly larger than peak
s is consistent with the fact peak i is slightly larger than peak j .

There is a frequency difference which equals |JC2,H1|
between peaks i and s, j , and t (Fig. 7), which was caused by
the process of anyonic manipulation, demonstrating that after
the braiding operation, the state with e and m anyons acquired
an experimental phase change δexpt = (π

2 + η) × 2. Here, 2η

is the deviation of the experimental phase change from π
2 × 2.

By doing simulations, we estimate that the intensity
difference between peaks i and j and that between peaks s

and t mainly arise from imperfect ground-state preparation
and it has little influence on the anyonic braiding process
(see the note in Ref. [34]). Thus, for an evaluation of the
anyonic braiding process, we only focus on the imperfection
of the braiding operation, which caused the deviation of the
experimental phase change δexpt from π

2 × 2. Let us assume
that the experimentally realized labeled state (a) in Fig. 5 and
labeled state (f) in Fig. 6 were

|�f
′〉 = |�a

′〉 = α|�ground〉 + β|�excited〉 + γ |�error〉. (24)

α|�ground〉, β|�excited〉, and γ |�error〉 are all orthogonal to each
other. The experimentally realized labeled state (g) in Fig. 6
was

|�g
′〉 =

√
2

2
[α(|0C10M0H10C40H20C3〉

+ |1C11M0H11C41H21C3〉)
+β(|0C10M1H10C40H20C3〉
+ |1C11M1H11C41H21C3〉)] + γ |�error

′〉. (25)
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Here, γ |�error
′〉 was transformed from γ |�error〉 via the part

labeled “measurement” in Fig. 6, and it was responsible for
the peaks other than peaks i, j , p, and q in Fig. 7(b).

From Eq. (25), we know that |α|2 is proportional to the pop-
ulation distribution on the eigenstates |0C10M0H10C40H20C3〉
and |1C11M0H11C41H21C3〉, and |β|2 is proportional to the pop-
ulation distribution on the eigenstates |0C10M1H10C40H20C3〉
and |1C11M1H11C41H21C3〉. Therefore, | β

α
| can be determined

from the peak intensities (denoted as �) of the experimental
spectrum shown in Fig. 7(b) (see Appendix). | β

α
| depends on

the sum of the intensities of peaks i and j , and the sum of p

and q:

∣∣∣∣βα
∣∣∣∣ =

√
�p + �q

�i + �j

= 0.18 ± 0.09. (26)

The experimentally realized labeled states (b), (c), (d), and
(e) in Fig. 5 were

|�b
′〉 =

√
2

2
[α(|ψ1〉 + |ψ2〉) + βe−i π

2 (|ψ1〉 − |ψ2〉)]
+ γXC4

√
ZC2|�error〉, (27)

|�c
′〉 =

√
2

2
[α(|ψ1〉 + ei(π+2η)|ψ2〉) + βe−i π

2 (|ψ1〉
− ei(π+2η)|ψ2〉)] + γXC4

√
ZC2|φerror〉, (28)

|�d
′〉 = ieiη[(−α sin η − β cos η)|�ground〉

+ (α cos η − β sin η)|�excited〉] + γ |φerror〉
= ieiη[α′|�ground〉 + β ′|�excited〉] + γ |φerror〉, (29)

|�e
′〉 =

√
2ieiη

2
[α′(|0C10M0H10C40H20C3〉

+ |1C11M0H11C41H21C3〉)
+β ′(|0C10M1H10C40H20C3〉
+ |1C11M1H11C41H21C3〉)] + γ |φerror

′〉. (30)

Here, η = δexpt

2 − π
2 , α′ = −α sin η − β cos η, β ′ = α cos η −

β sin η. γ |φerror〉 was transformed from γ |�error〉 via anyonic
manipulation, and became γ |φerror

′〉 after the “measurement”
part. γ |φerror

′〉 was responsible for the peaks other than s, t ,
u, and v in Fig. 7(c). The difference between |�b

′〉 and |�c
′〉

was the phase difference δexpt = π + 2η for |ψ2〉, caused by
the braiding operation. α′|�ground〉, β ′|�excited〉, and γ |φerror〉
are all orthogonal to each other. Comparing Eqs. (24) and (29),
we know that |�ground〉 and |�excited〉 compose a closed sub-
space upon the anyonic manipulation, which was confirmed
in our experiments that the sum intensity of peaks i, j , p, and
q approximately equals to that of peaks s, t , u, and v, with
�i+�j +�p+�q

�s+�t+�u+�v
≈ 1.0.

From Eq. (30), we know that, similar to |α|2 and
|β|2, |α′|2 is proportional to the population on the eigen-
states |0C10M0H10C40H20C3〉 and |1C11M0H11C41H21C3〉, and
|β ′|2 is proportional to the population on the eigenstates
|0C10M1H10C40H20C3〉 and |1C11M1H11C41H21C3〉. Therefore,
| β ′
α′ | can be determined from the experimental spectrum shown

in Fig. 7(c) (see Appendix):∣∣∣∣α′

β ′

∣∣∣∣ =
√

�u + �v

�s + �t

= 0.24 ± 0.06. (31)

The error bars in Eqs. (26) and (31) are estimated from the
uncertainty of the fitting parameters. Combining Eqs. (26)
and (31), we can obtain

tan η =
| α′
β ′ | − | β

α
|

1 + | β

α
| ∗ | α′

β ′ |
= 0.06 ± 0.03. (32)

η = 0.06 ± 0.03 = (0.02 ± 0.01)π and the phase change
δexpt = (π

2 + η) × 2 = (0.52 ± 0.01)π × 2. This agrees with
the prediction of the fractional statistics.

VI. DISCUSSION

The signal loss mainly came from the spin-spin relaxation
and pulse imperfection. Through comparing the signal inten-
sities of the simulation with and without the T2 effects, we
estimate that T2 effects contributed to about 15% of the loss
of signal. Comparing the experimental results (peak intensity
∼0.7) with the results of the simulation without T2 effects
(peak intensity ∼1), we estimate that imperfections of the
implementation of rf pulses caused an additional approximate
15% signal loss.

Despite the signal loss, the phase factor, which was acquired
during the anyonic braiding process, can still be extracted
from the experimental spectra. The experimental deviation
from the theoretically predicted value was mainly caused
by imperfections of the experimental refocusing protocols
and the implementation of rf pulses, and decoherence did
not contribute much, which was checked by the numerical
simulations with and without T2 effects which both gave about
4% error, matching well with the experimental data.

VII. CONCLUSION

In summary, we demonstrated the anyonic fractional statis-
tics, using a seven-qubit NMR system. We obtain a phase
difference of (0.52 ± 0.01)π × 2 between the states with and
without anyon braiding, which agrees with the prediction of
the fractional statistics. This is a demonstration on topological
quantum computing using nuclear spins. One advantage of our
experimental scheme is that we can use the same technique to
simulate a nine-qubit Kitaev spin model mentioned by Han
et al. [12] using an NMR system with more spins, so that
we can do a demonstration that anyonic operation is robust
to different braiding paths and thus taking an important step
towards showing the fault tolerance properties of the Kitaev
model.
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APPENDIX: PARTIAL STATE TOMOGRAPHY

We use the spectra obtained from the probe qubit C2
to partially reconstruct the density matrices of the remain-
ing six qubits (C1, M, H1, C4, H2 and C3) [29,35]. We
span the density matrices in Eqs. (22) and (23) as a sum
of product operators, whose expansion coefficients can be
directly related to the peak amplitudes in the spectra of the
probe qubit [35]. Specifically, when considering the NMR
observables XZn1Zn2Zn3Zn4Zn5Zn6 (n1, . . . ,n6 = 0,1), the
relation between them and the peak intensities of the probe
qubit can be expressed as

C = 2A · P. (A1)

C and P are column vectors, and A is an n × n matrix.
The nth element of C, C(n), is the coefficient related to the
operator XZn1Zn2Zn3Zn4Zn5Zn6 with the order of qubits C2,

C1, M, H1, C4, H2, C3. The vector n = (n1,n2,n3,n4,n5,n6)
is the six-digit binary representation of the integer n − 1.
The nth element of P , P (n), is the intensity of the peak
whose frequency is 	6

i=1(−)ni−1Ji/2, where J1 = JC2,C1, J2 =
−JC2,M, J3 = JC2,H1, J4 = JC2,C4, J5 = JC2,H2, J6 = JC2,C3.
The elements of A are given by

A(k,m) = �6
i=1(−1)kimi . (A2)

P can be obtained from one spectrum of the probe qubit.
Thus, by one measurement of the probe qubit, we can have
full knowledge of C, and reconstruct the diagonal elements
of the density matrix of the remaining six qubits via linear
combinations of C(n). By simple calculations, we can also
know that P (n) is proportional to the nth diagonal element
of the density matrix of the six qubits, which stands for the
population distribution on the nth eigenstate of the six-qubit
subsystem.
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