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We present a general approach to quantum entanglement and entropy that is based on algebras of observables
and states thereon. In contrast to more standard treatments, Hilbert space is an emergent concept, appearing as
a representation space of the observable algebra, once a state is chosen. In this approach, which is based on the
Gel’fand-Naimark-Segal construction, the study of subsystems becomes particularly clear. We explicitly show
how the problems associated with the partial trace for the study of entanglement of identical particles are readily
overcome. In particular, a suitable entanglement measure is proposed that can be applied to systems of particles
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study of the time evolution of subsystems emerging from restriction to subalgebras. Problems related to anomalies
and quantum epistemology are also discussed.
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I. INTRODUCTION

A. On states and algebras

In a physical theory, the theoretical description of obser-
vations contains two ingredients. The first is the state of the
system being observed; it contains the data specifying the
system. The second is the specific observable of the system
being measured. The output of observations involves a suitable
pairing of the state to the observable, which yields a number.

In both classical and quantum physics, the state ω provides
a probability distribution and observables form an (asso-
ciative) algebra. In classical physics, the state ωc gives a
probability distribution in phase space whereas the algebra
Ac of observables consists of real-valued functions on phase
space.1 The product of two functions α,β on phase space is
pointwise multiplication: for a point x = (q,p) in phase space,
(αβ)(x) = α(x)β(x). The algebra Ac is commutative.

The pairing of ωc to α produces the mean value of α, as
follows. The mean value of α for the state ωc is

ωc(α) =
∫

dμ(x)ρc(x)α(x), (1.1)

dμ(p) = Liouville measure on phase space, (1.2)
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1More generally one talks of observables as ‘Hermitian” functions

on a complexified phase space.

where ρc is the probability density on phase space associated
with ωc. We note that, being a probability density, ρc is
normalized as

ωc(1) ≡
∫

dμ(x)ρc(x) = 1, (1.3)

where 1 is a constant function with value 1:

1(x) = 1. (1.4)

In quantum theory we still have a state ω and an algebra A.
The state ω on an observable α ∈ A is generally representable
in terms of a density matrix ρω and an operator πω(α)
representing α on a Hilbert space. The mean value of the
observable α is then

ω(α) = Tr(ρωα) ≡ Tr[ρωπω(α)]. (1.5)

From now on, we represent πω(α) by α itself, if there is no
ambiguity. The state and its density matrix are normalized just
as in the classical case:

ω(1) = Tr ρω = 1. (1.6)

The basic mathematical difference between classical and
quantum physics lies in this: classical physics is a probability
theory on a commutative algebra Ac, quantum physics is a
probability theory on a noncommutative algebra A.

A state ω need not be presented using a density matrix to
extract numbers from theory. It is enough that ω is a linear
map from A to C with the properties

ω(1) = 1, ω(α∗) = ω(α), ω(α∗α) � 0 for all α in A,

(1.7)
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where “∗” represents a Hermitian conjugation (“antilinear
involution”) that A should have. A state is best understood
in this manner. State vectors and Hilbert spaces play no role at
this point. Where, then, do they come from?

B. On the Gel’fand-Naimark-Segal construction

State vectors and Hilbert spaces are best thought of as
emergent concepts in quantum physics. The primary concepts
are states ω and the algebra A of observables.

In the 1940s, Gel’fand, Naimark, and Segal described the
reconstruction of the Hilbert space Hω from the data (A,ω).
The algebra A acts by a representation πω on Hω. This
reconstruction, known as the GNS construction, has played a
foundational role in the theory of operator algebras. It has also
been an important tool for studies in quantum field theory [1].

We suggest in this paper that the GNS construction is
the proper framework for the study of entanglement as well.
A brief account of our ideas has appeared before [2]. In
Sec. II, we describe the GNS reconstruction of (Hω,πω)
from (A,ω). We do not aspire to rigor but to concepts and
computations. Whatever we say is correct in finite dimensions.
But our presentation omits the fine points of topology for
infinite-dimensional A.

The GNS construction presents the state ω as a density
matrix ρ. We can expand ρ in terms of orthogonal rank-1
density matrices ρi :

ρiρj = δijρi, Tr ρi = 1, (1.8)

and accordingly write

ρ =
∑

i

λiρi, ω =
∑

i

λiωi, λi > 0,
∑

i

λi = 1,

(1.9)

where ωi is the state associated with the density matrix ρi . The
von Neumann entropy for ω is then

S(ω) = − Tr ρ ln ρ = −
∑

i

λi ln λi. (1.10)

We can thus associate an entropy with a pair (A,ω) of a state
and an algebra of observables. This result is important for us.

C. What is entanglement?

For a system of nonidentical constituents Ai with Hilbert
spaces Hi , “entanglement” can be understood in terms of
“partial trace” as follows. It is enough to consider a bipartite
system and the Hilbert space

H = H1 ⊗ H2. (1.11)

Then a density matrix

ρ12 = |ψ〉〈ψ | (1.12)

with a normalized vector state |ψ〉 ∈ H is entangled when the
density matrix

ρi = Trj ρ12 (j,i = 1,2, i �= j ) (1.13)

obtained by partial tracing has nonzero von Neumann entropy
S(ρi):

S(ρi) = − Tr ρi ln ρi �= 0.

There is no entanglement if S(ρi) = 0.
In Sec. III, we consider the restriction to subalgebras [2]

which has relevance to the case of identical fermions, for
which there is no general agreement regarding entanglement
properties [3]. Our approach will allow us to propose an
entanglement measure for identical particles that encompasses
Fermi, Bose, and even braid-group statistics. We thus hope
to contribute to the ongoing debate around entanglement of
identical particles [4–13].

In this section we reformulate the notion of partial tracing
in terms of the restriction ω0 := ω|A0 of a state ω on an algebra
A to a subalgebra A0. The example we choose is very simple:
a bipartite system of nonidentical particles. This restatement is
possible whenever partial tracing can be understood in terms
of a restriction. When such an interpretation is not possible,
partial tracing loses meaning. But the restriction of ω to
subalgebras is always sensible.

The notion of a “local operation” (as used in quantum
information theory) is implemented here through the choice
of an appropriate subalgebra A0 ⊆ A. The importance of
focusing on subsystems using subalgebras has also been
emphasized in [14–17]. In our approach, the restriction of a
state ω on A to the subalgebra A0 will give rise to a “reduced”
or restricted state ω0, whose entropy compared to that of ω

provides a measure of the entanglement of A0 with A in the
state ω. For the purposes of this paper, this is what is meant by
entanglement.

If ω is pure, that is, S(ω) = 0, the entropy of entanglement
is obtained from the expansion

ω0 =
∑

i

λiω0,i , λi > 0,
∑

i

λi = 1 (1.14)

of ω0 in terms of pure states and using the formula (1.10).
There are orderly ways to calculate the expansion (1.9) and
that will be taken up in the following sections.

If ω itself is not pure, we can write it as a convex combi-
nation of pure states. If these resultant states can be chosen to
be nonentangled, then the state will be called nonentangled. In
the present paper we will consider entanglement only for pure
states, leaving the mixed-state case for future work.

The operation of partial trace is very important in practical
applications concerning identical particles. For example, in
atomic physics and quantum chemistry, among other fields,
the concept of the one-particle reduced density matrix ρ(1)

contains important physical information (e.g., the kinetic
energy). The two-particle reduced density matrix ρ(2) is also
extremely important. For instance, for a fermionic system
with pairwise interaction, the energy of a state can be
expressed in terms of only ρ(2); hence its relevance for the
N -representability problem, which can be considered as a
special case of the quantum marginal problem [18].

However, the use of von Neumann entropy obtained from
the partial trace is not completely satisfactory if one wants
to interpret it as an entanglement measure. Consider, for
illustration, the von Neumann entropy of the reduced density
matrix ρ of an N -fermion state computed using the partial
trace. The value of this entropy for a Slater rank-1 state is
ln N [9]. But correlations due solely to the antisymmetric
character of the state should not contribute to the entanglement
of the system. There are strong physical reasons for this. For
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instance, it has been shown in [9] that a Slater rank-1 state
cannot be used to violate Bell’s inequality. Also, in the context
of many-body physics, one should expect vanishing entropy
for a one-body function (whose marginals give precisely the
electronic density) of the Hartee-Fock type [19]. Thus, in the
case of fermions, due to the ln N term the criterion for deciding
whether a state is entangled or not looks quite different from
in the case of nonidentical particles. A similar remark applies
to the case of bosons [9,20]. It will become clear, from the
examples discussed in this paper, that it is indeed possible
to keep a single entanglement criterion, independently of the
statistics of the particles being considered.

D. Examples

We illustrate the GNS approach to entropy by several
examples in Sec. IV. The first is simple and involves just
the matrix algebra A = M2(C).

This example is followed up using those from identical
fermions and bosons. We clarify what is meant by observing
single-particle operators of a boson or a fermion in a two-
particle system. For this purpose, we need at the simplest level
that the single-particle algebra A is Hopf with a coproduct 


compatible with the permutation group which here defines the
statistics2 [21]. This 
 allows us to identify the correct “single-
particle” subalgebra 
(A) of the full two-particle algebra and
to calculate ω|
(A) and its entropy for any two-body state ω. It
does not agree with what one finds from partial tracing.

We can also illustrate all this for parabosons and
parafermions. For these cases, 
 is not changed. So we instead
consider the braid group BN to be the N -particle statistics
group. In that case 
 is changed to 
b. We calculate the
restriction of a chosen three-particle state to single-particle
observables, obtained from 
b in a systematic manner, and
calculate its entropy. This illustrates the effectiveness of the
GNS approach when combined with concepts from Hopf
algebras, in quantum information theory.

If the subalgebra A0 comes from a k-particle subsystem
in an N -particle system, it is necessary that A0 is at least a
coalgebra with a coproduct 
 to extend its meaning beyond
N particles.

Second quantization also requires the notion of the coprod-
uct [21].

E. Time evolution

In the GNS approach, given the time evolution ω(t) of a state
ω ≡ ω(0) on A, it induces a time evolution on the restriction
ω0 = ω|A0 of ω to A0. It is

ω0(t) = ω(t)|A0 . (1.15)

If ω(0) is represented by a density matrix ρ(0) with unitary
time evolution according to

ρ(t) = U (t)−1ρ(0)U (t), U (t) = e−itH (1.16)

(where H is the Hamiltonian), there is no assurance that ρ0(t) =
ρ(t)|A0 also undergoes a unitary evolution. The generic

2It is perhaps enough if A is quasi-Hopf or just a coalgebra.

situation will rather be that of an evolution by positive maps.
This follows from Stinespring’s theorem [22].

We illustrate the evolution ρ0(t) → ρ0(t + τ ) by com-
pletely positive maps, using our algebraic approach, in Sec.
V. Here we only remark that this type of evolution arises very
naturally from the restriction to a subalgebra. This is the basic
mechanism behind quantum decoherence.

F. Anomalies

It has been suggested [23,24] that unwanted anomalies,
such as the T violation associated with the quantum chromo-
dynamics (QCD) angle θ , can be eliminated by using mixed
states. The appearance of such mixed states for restoring
anomalies can also be explained in terms of restrictions
of states to subalgebras, as we show in Sec. VI. This
argument provides further strong evidence for the power of
the proposition for the use of mixed states in that context. The
GNS theory is thus useful in many different physical contexts.

G. On state restrictions and quantum epistemology

We suggest in Sec. VII of this paper that the restriction
ω0 = ω|A0 of a state ω on A can also be understood in terms of
“collapse of wave packets” and an interpretative superstructure
of quantum theory. Thus suppose that we have an algebra A
of observables acting on a Hilbert space H and we observe
a projector p ∈ A. Let A0 ⊂ A be the maximal subalgebra
which commutes with p (and hence includes p). Then we can
interpret ω0 as the restriction of ω to A0. We explain how this
is so in that section.

II. THE GNS CONSTRUCTION

For completeness, we begin with a few definitions. They are
all effortlessly fulfilled in all our examples where we consider
only finite-dimensional matrix algebras.

A ∗-algebra A is an associative algebra over C with an
antilinear involution (“Hermitian conjugation”):

∗ : A → A, ∗2 = id. (2.1)

A C∗ norm ‖ · ‖ on such an algebra A is a norm fulfilling
the property

‖α∗α‖ = ‖α‖2, ∀ α ∈ A. (2.2)

If it exists, it is unique.
Algebras Md (C) of d × d matrices can all be regarded as

C∗ algebras, with the norm fixed by

‖α‖2 = largest eigenvalue of α∗α. (2.3)

The algebra A of observables in quantum theory is a C∗
algebra. Indeed, the algebra of all bounded operators B(H)
on a separable Hilbert space admits a norm to turn it into a C∗
algebra.

We will assume that A is unital with unity 1A. That is
needed to discuss completeness relations, for example.

The data we are given are thus (A,ω). We can construct
(Hω,πω(A)) from these data as follows.
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With each element α ∈ A, we associate a vector |α〉 in a
complex vector space Â with the property

|λα + μβ〉 = λ|α〉 + μ|β〉, λ,μ ∈ C, α,β ∈ A. (2.4)

Next, an inner product is introduced in Â using ω:

〈β|α〉 = ω(β∗α). (2.5)

It fulfills

〈1A|α〉 = ω(α) = 〈α|1A〉 = ω(α∗) (2.6)

and the Schwarz inequality as well in view of (1.7)
[ω(α∗α) � 0]:

|〈β|α〉|2 � 〈β|β〉〈α|α〉. (2.7)

But it may not be a scalar product from which we can build a
Hilbert space, as there may be 0 �= α ∈ A giving vectors |α〉
of zero norm:

〈α|α〉 = 0. (2.8)

Let Nω denote the subspace of A whose image N̂ω ⊂ Â
contains vectors of zero norm:

Nω = {α ∈ A | 〈α|α〉 = 0}. (2.9)

Observe that, from the Schwarz inequality,

〈a|α〉 = 0, ∀ a ∈ A, α ∈ Nω. (2.10)

Hence, Nω is a left ideal. That is,

aNω ⊆ Nω ∀ a ∈ A. (2.11)

This follows from (2.10): if a ∈ A and α ∈ Nω, 〈aα|aα〉 =
〈a∗aα|α〉 = 0 by (2.10). The subspace Nω is called the
Gel’fand ideal.

We next consider the vector space

Â/N̂ω = {|[ a]〉 := |a + Nω〉, a ∈ A}. (2.12)

The label [a] of a vector denotes an equivalence class a + Nω,
a set, in A.

Now:
(a) Â/N̂ω has a well-defined scalar product 〈·|·〉 given by

〈[a]|[b]〉 = ω(a∗b). (2.13)

In particular the vector |Nω〉, playing the role of zero, is the
only vector that has zero norm. Note in this connection that
since ω(a∗(b + α)) = ω(a∗b) for all α ∈ Nω, the right-hand
side of (2.13) does not depend on the choices of representatives
a,b from [a] and [b].

We denote the Hilbert space obtained by the closure of
Â/N̂ω under (2.13) as Hω.

(b) Because of (2.11), Hω carries a representation πω of A:

πω(a)|[b]〉 := |[ab]〉. (2.14)

We have now obtained (Hω,πω(A)) from (A,ω), thereby
completing the GNS construction.

A. Properties of the GNS representation

Consider the vector |[1A]〉. Then, if πω(A) denotes the set
{πω(a) : ∀ a ∈ A},

πω(A)|[1A]〉 = {|[a]〉 | a ∈ A}, (2.15)

so that from |[1A]〉 we can generate all vectors of Hω by
acting with πω(A) and closure. Such a vector |[1A]〉 is said to
be cyclic. The representation πω is a cyclic representation.

The state ω can now be represented as a density matrix ρω,

ρω = |[1A]〉〈[1A]|. (2.16)

That is because

ω(a∗b) = 〈[a]|[b]〉 = 〈[1A]|πω(a∗)πω(b)|[1A]〉
= Tr[ρωπω(a∗)πω(b)]. (2.17)

B. On irreducibility and entropy

The representation πω may not be irreducible. In finite
dimensions at least, which are our concern here, it can be
reduced to a direct sum of irreducible representations π (α)

ω :

πω = ⊕απ (α)
ω . (2.18)

That is because A is a ∗-algebra. The proof is similar to that
for finite groups G, their group algebras also being ∗-algebras.

The proof of (2.18) goes as follows. If H(1)
ω ⊂ Hω is

a nontrivial invariant subspace under πω(A), then so is its
orthogonal complement H(1)⊥

ω . For if

|[α]〉 ∈ H(1)
ω , |[β]〉 ∈ H(1)⊥

ω , (2.19)

so that 〈[α]|[β]〉 = 0, then

〈[α]|[aβ]〉 = 0, ∀ a ∈ A, (2.20)

for the left-hand side is 〈[a∗α]|[β]〉. But a∗ ∈ A (A being ∗)
and hence |[a∗α]〉 ∈ H(1)

ω . The statement follows.
Now, H(1)

ω (and similarly H(1)⊥
ω ) is either irreducible or has

a nontrivial invariant subspace. If the latter is the case, we
repeat the process, ending up with

Hω = ⊕αH(α)
ω , (2.21)

where the sum is the orthogonal direct sum and H(α)
ω carries

π (α)
ω (A).

We now show how to correspondingly decompose ρω into
a convex sum of orthogonal rank-1 density matrices:

ρω =
∑

α

λαρ(α)
ω , λα > 0,

∑
α

λα = 1,

(2.22)
ρ(α)

ω ρ(β)
ω = δαβρ(α)

ω .

For this purpose, we write

|[1A]〉 =
∑

α

∣∣[1(α)
A

]〉
,

∣∣[1(α)
A

]〉 ∈ H(α)
ω , (2.23)

that is, we decompose the left-hand side into its components
in H(α)

ω . Now, since for α �= β〈[
1

(α)
A

]∣∣πω(a)
∣∣[1(β)

A
]〉 = 0, (2.24)

the density matrix ρω can be rewritten as

ρω =
∑

α

∣∣[1(α)
A

]〉〈[
1

(α)
A

]∣∣. (2.25)

If we set

λα = 〈[
1

(α)
A

]∣∣[1(α)
A

]〉
, (2.26)
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we can rewrite ρω in terms of normalized vectors, as follows.
We define

|χ (α)〉 = 1√
λα

∣∣[1(α)
A

]〉
. (2.27)

Then,

〈χ (α)|χ (β)〉 = δαβ. (2.28)

With

ρ(α)
ω := |χ (α)〉〈χ (α)|, (2.29)

we then obtain the decomposition of ρω in terms of pure states
as

ρω =
∑

α

λαρ(α)
ω , (2.30)

where

λα > 0,
∑

α

λα = 1, ρ(α)
ω ρ(β)

ω = δαβρ(α)
ω . (2.31)

The von Neumann entropy of ρω is

S(ρω) = − Tr ρω ln ρω = −
∑

α

λα ln λα. (2.32)

Corresponding to (2.30), we have the decomposition of ω into
extremal or pure states ω(α) [Recall that ω(·) = Tr ρ·]:

ω =
∑

α

λαω(α). (2.33)

It has entropy

S(ω) = −
∑

α

λα ln λα. (2.34)

There are important issues related to the uniqueness of
the decomposition (2.30) and hence of the entropy of ω

as observed by Sorkin [25] [cf. Eq. (4.27)]. For a detailed
discussion of these issues we refer to [26].

III. ON ENTANGLEMENT AND SUBALGEBRAS

For a bipartite system of nonidentical particles A and B

with Hilbert spaces HA and HB , a vector state |ψ〉 ∈ H =
HA ⊗ HB , which in general is of the form

|ψ〉 =
∑
i,j

Cij |χA,i〉 ⊗ |ηB,j 〉, (3.1)

is said to be entangled if it cannot be reduced to the form

|ψ〉 = |χ ′
A〉 ⊗ |η′

B〉 (3.2)

by a change of basis. A measure of entanglement is the von
Neumann entropy of the reduced density matrix

ρA = TrHB
|ψ〉〈ψ |. (3.3)

We assume that 〈ψ |ψ〉 = 1. The vector |ψ〉 is entangled if and
only if

S(ρA) = −ρA ln ρA �= 0. (3.4)

The physical meanings of the partial trace and the reduced
density matrix are as follows. Suppose that we observe only
the subalgebra

A0 = {α0 ∈ A | α0 = KA ⊗ 1B}, (3.5)

where KA is an observable acting on HA and 1B is the identity
operator on HB . The algebra A of all observables on H =
HA ⊗ HB contains A0 as a subalgebra:

A0 ⊂ A. (3.6)

Now, for restricted observations of just A0,

TrH(ρα0) = TrHA
(ρAKA), α0 = KA ⊗ 1B ∈ A0. (3.7)

Thus, ρA is said to be the restriction of ρ to A0.
Let ω be the state for the density matrix ρ = |ψ〉〈ψ |:

ω(α) = Tr(ρα), α ∈ A. (3.8)

In the same way, let ωA be the state for the density matrix ρA:

ωA(α0) = TrHA
(ρAKA), α0 = KA ⊗ 1B ∈ A0. (3.9)

Then ωA is said to be the restriction of the state ω on A to A0:

ωA = ω|A0 . (3.10)

Thus the partial trace in this case maps a density matrix ρ and
a state ω on A to their restrictions ρA,ωA on A0.

But there are many cases where the partial trace is not
amenable to such a restriction. A well-discussed example
is that of identical fermions [6,9,11,12]. Denoting antisym-
metrization by ∧,

|ψ〉 ∧ |χ〉 = 1√
2

(|ψ〉 ⊗ |χ〉 − |χ〉 ⊗ |ψ〉), (3.11)

a generic N -particle vector of identical fermions is a linear
combination of vectors of the form

|ψ〉 = |ψ1〉 ∧ |ψ2〉 ∧ · · · ∧ |ψN 〉. (3.12)

It exists in the N -fold antisymmetric product H of the one-
particle Hilbert space H(1):

H = ∧NH(1), |ψ〉 ∈ H. (3.13)

The algebra A of observables must necessarily leave H
invariant. That means that observables must be permutation
invariant. An operator such as K1 ⊗ 1 ⊗ · · · ⊗ 1 (1 is the
identity on H(1) and K1 �= 1) is not permutation invariant and,
therefore, is not an observable. Hence now partial traces do
not correspond to restrictions to subalgebras of observables
onH.

But the restriction of a state ω on A to a subalgebra A0

is always sensible. What we need is a criterion to select A0

appropriately for a physical question.
For example, the algebra A0 appropriate for single-particle

observables is generated by

K ⊗ 1 ⊗ · · · ⊗ 1 + 1 ⊗ K ⊗ · · · ⊗ 1 + · · · + 1

⊗ · · · ⊗ 1 ⊗ K, (3.14)

where K is an observable on H(1). Choices such as (3.14) are
dictated by a coproduct on the single-particle algebra. We will
return to this point later.

For such reasons, as declared in the Introduction, entangle-
ment is a property characterizing a triple (A,A0,ω). We avoid
the use of the partial trace.
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IV. EXAMPLES

A. The algebra M2(C)

The choice A = M2(C) of 2 × 2 complex matrices is a
simple nontrivial example to illustrate the GNS construction.
It is discussed already in Appendix 3 of Landi [27]. We will
recall this example here and, in addition, use it to illustrate the
entropy calculation.

The algebra A acts on C2. Let

{|i〉 : i = 1,2, 〈i|j 〉 = δij } (4.1)

be an orthonormal basis of C2. Then the matrix units

eij = |i〉〈j | (4.2)

span M2(C). Note that

eij ekl = δjkeil . (4.3)

An element α of A can be expanded in this basis as

α =
∑
i,j

αij eij . (4.4)

Following [2], for the state ω we choose

ω(α) = λα11 + (1 − λ)α22, 0 � λ � 1. (4.5)

The null space Nω is determined by the condition

ω(α∗α) = 0. (4.6)

For our choice (4.5) for ω we obtain, making use of (4.3),

ω(α∗α) = λ(|α11|2 + |α21|2) + (1 − λ)(|α12|2 + |α22|2).

(4.7)

The solution depends on λ. We consider three cases.
Case 1. λ = 0.
In this case, α ∈ Nω if α12 = α22 = 0. So

Nω =
{(

α11 0

α21 0

)
: α11,α21 ∈ C

}
∼= C2. (4.8)

Since Â ∼= C4, we obtain

Hω = Â/N̂ω
∼= C2, (4.9)

with basis

{|[ek2]〉}k=1,2. (4.10)

The representation πω of A on Hω is given by

πω(eij )|[ek2]〉 = δjk|[ei2]〉. (4.11)

It is isomorphic to the defining representation onC2. Therefore
it is irreducible. So we conclude that ρω is a rank-1 projector
and has vanishing entropy:

S(ρω) = 0. (4.12)

Case 2. λ = 1.
This is similar to the case λ = 0. The null space N̂ω

∼= C2

is spanned by

|e12〉, |e22〉. (4.13)

and Hω = Â/N̂ω has basis

{|[ek1]〉}k=1,2. (4.14)

The representation πω is irreducible, isomorphic to the λ = 0
representation, and carries zero entropy.

Case 3. 0 < λ < 1.
There are no nonzero null vectors in this case:

Nωλ
= {0}. (4.15)

Hence

Hω = Â/N̂ω
∼= C4. (4.16)

It has basis

{|[eij ]〉}i,j=1,2. (4.17)

The representation πω is given by

πω(eij )|[ekl]〉 = |[eij ekl]〉 = δjk|[eil]〉. (4.18)

This representation is reducible into two two-dimensional
irreducible ones: Hω = C2 ⊕ C2. The first C2 has basis

{ea1}a=1,2 (4.19)

and the second

{ea2}a=1,2. (4.20)

We must next express |[1A]〉 in terms of its components in
these subspaces. That is easy:

|[1A]〉 = |[e11]〉 + |[e22]〉. (4.21)

It follows that ωλ is not pure and can be expressed in terms of
the following density matrix:

ρωλ
= |[e11]〉〈[e11]| + |[e22]〉〈[e22]|. (4.22)

Since

〈[e11]|[e11]〉 = ω(e∗
11e11) = ω(e11) = λ,

(4.23)
〈[e22]|[e22]〉 = ω(e∗

22e22) = ω(e22) = 1 − λ,

ρωλ
= λρ11 + (1 − λ)ρ22, (4.24)

where ρ11 and ρ22 are the rank-1 density matrices

ρ11 = 1

λ
|[e11]〉〈[e11]|,

(4.25)

ρ22 = 1

1 − λ
|[e22]〉〈[e22]|.

We can read off the entropy of ρωλ
to be

S(ρωλ
) = −λ ln λ − (1 − λ) ln(1 − λ). (4.26)

Remark. This example shows that the irreducible repre-
sentations of dimension 2 occur with multiplicity 2. This is
a general feature: for any representation π of a C∗-algebra
A with a cyclic and separating vector3 [1], an irreducible
representation of dimension d occurs with multiplicity d. This
is as in regular representations of compact groups and follows
from Tomita-Takesaki theory [1].

Sorkin has pointed out to us [25] that if d > 1, the splitting
ofHω into irreducible subspaces such asH = C2 ⊕ C2 before

3A vector state |�〉 ∈ H is cyclic when π (A)|�〉 is dense in H. A
state |�〉 ∈ H is separating when the map A → π (A)|�〉 is injective.

022301-6



ALGEBRAIC APPROACH TO ENTANGLEMENT AND ENTROPY PHYSICAL REVIEW A 88, 022301 (2013)

(4.19) is not unique. For example, we could have chosen
another pair of C2’s with basis∑

α

ξα|[eaα]〉,
∑

α

ηα|[eaα]〉, ξ †ξ, η†η �= 0, ξ †η = 0,

(4.27)

and recalculated ρωλ
and its entropy. They depend on ξ,η. This

feature is generic for d > 1. The entropy (4.26) is the least one.
Further discussion of such issues will be given elsewhere [26].

B. A C2 ⊗ C2 example

The matrices

σμ : σ0 = 12, σi = Pauli matrices, (4.28)

form a basis for M2(C). So the algebraA = M4(C) onC2 ⊗ C2

is generated by

σμ ⊗ 12, 12 ⊗ σμ, μ = 0, . . . ,3. (4.29)

For the state ω ≡ ωθ , let us choose

ρωθ
= |ψθ 〉〈ψθ |, |ψθ 〉 = cos θ |+−〉 − sin θ |−+〉. (4.30)

Here

|+−〉 = |+〉 ⊗ |−〉, etc., (4.31)

with

|+〉 =
(

1

0

)
, |−〉 =

(
0

1

)
.

Let us now choose, for the subalgebra A0, the subalgebra
generated by the (“local”) operators

{σμ ⊗ 12}μ=0,...,3. (4.32)

In this context, entanglement can be understood in terms of cor-
relations between measurements performed by two observers
A and B having access to observables corresponding only to
A0 (in the case of, say, A) and observables corresponding only
to the commutant of A0 (in the case of B).

For A, the state ωθ becomes the restriction of ωθ to A0:

ωθ,0 = ωθ |A0 . (4.33)

Notice that, in this case, the result of the restriction coincides
with the one obtained by partial trace. In fact, since every
element of A0 is of the form α̃ = α ⊗ 12 [for some α ∈
M2(C)], we obtain

ωθ,0(α̃) = 〈ψθ |(α ⊗ 12)|ψθ 〉
= cos2 θ〈+|α|+〉 + sin2 θ〈−|α|−〉
= cos2 θ α11 + sin2 θ α22. (4.34)

Taking into account the fact that A0
∼= M2(C), and comparing

Eqs. (4.34) and (4.5), we see that the entropy obtained from
the GNS construction is given by (4.26) upon replacing λ by
cos2 θ :

S(θ ) = − cos2 θ ln cos2 θ − sin2 θ ln sin2 θ. (4.35)

Clearly, S(θ ) corresponds to the entanglement of the vector
state |ψθ 〉. In particular, for θ = π/4 the state is the (maximally

entangled) Bell vector state

|ψθ=π/4〉 = 1√
2

(|+−〉 − |−+〉), (4.36)

for which (4.35) reduces to ln 2.
Now, in order to illustrate how to deal with cases where

A0 does not act on just one factor of a bipartite system, we
consider the Bell state (4.36) together with different choices
for A0. We focus on choices for which the partial trace has no
meaning. For instance, we now consider the following three
choices:

(a) A±, generated by {σμ ⊗ ( 1±σ3
2 )}μ;

(b) A+ ⊕ A−.
(Note that A+A− = {0}.)
Case 1. A0 = A+. The null space N̂+

ω ⊂ Â+ is determined
by the equation

ρω(α∗α) = 〈ψθ=π/4|α∗α|ψθ=π/4〉 = 0 for α ∈ A+,

(4.37)

or

α|ψθ=π/4〉 = 0. (4.38)

Hence

N̂+
ω =

{∣∣∣∣(α11 0

α21 0

)
⊗

(
1 + σ3

2

)〉
: αi1 ∈ C

}
∼= C2.

(4.39)

The quotient space Â/N̂+
ω

∼= C2 is spanned by{∣∣∣∣[(
0 α12

0 α22

)
⊗

(
1 + σ3

2

)]〉
: αi2 ∈ C

}
. (4.40)

It transforms irreducibly under A+. So ρω remains pure with
zero entropy.

Case 2. A0 = A−. This is similar to case 1. The null space
is

N̂−
ω =

{∣∣∣∣( 0 α12

0 α22

)
⊗

(
1 − σ3

2

)〉
: αi2 ∈ C

}
∼= C2,

(4.41)

the quotient space being

Â−/N̂−
ω =

{∣∣∣∣[(
α11 0

α21 0

)
⊗

(
1 − σ3

2

)]〉
: αi1 ∈ C

}
∼= C2. (4.42)

It transforms irreducibly under A−. So ρω remains pure with
zero entropy.

Case 3. A0 = A+ ⊕ A−. The null space N̂ω is the direct
sum

N̂ω = N̂+
ω ⊕ N̂−

ω , (4.43)

while the quotient space is

(Â+ ⊕ Â−)/N̂ω =
{∣∣∣∣[(

0 α12

0 α22

)
⊗

(
1 + σ3

2

)
+

(
α11 0

α21 0

)
⊗

(
1 − σ3

2

)]〉}
.

(4.44)
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This representation is the direct sum of two irreducible
representations given by the two terms in (4.44). We must
now restrict

|1A〉 =
(

1 0

0 1

)
⊗

(
1 0

0 1

)
(4.45)

into its components in (Â+ ⊕ Â−)/N̂ω.
Its component in Â+/N̂+

ω is(
0 0

0 1

)
⊗

(
1 0

0 0

)
:= 1+, (4.46)

while that in Â−/N̂−
ω is(

1 0

0 0

)
⊗

(
0 0

0 1

)
:= 1−. (4.47)

The squared norm of |[1±]〉 is 1/2:

〈[1±]|[1±]〉 = Tr[ρω(1±)∗1±] = 1

2
. (4.48)

Hence

ρω|(A+⊕A−) = 1
2 (

√
2|[1+]〉〈[1+]|√2

+
√

2|[1−]〉〈[1−]|
√

2), (4.49)

giving S(ρω|(A+⊕A−)) = ln 2 for the entropy.

C. Role of Hopf algebras

In elementary quantum physics, one starts with a Hilbert
space HAi

which typically carries the representation of the
algebra AAi

of single-particle observables for particle Ai . In
the second-quantized version, there is an isomorphism of AAi

into the full algebra AA1,A2,...,Ak
of observables on

HA1,A2,...,Ak
= HA1 ⊗ · · · ⊗ HAk

, (4.50)

if the particles A1,A2, . . . ,Ak are nonidentical.
We must identify the A1-particle observables in the

k-particle Hilbert space to be able to observe properties of
A1, say, in HA1,A2,...,Ak

. They are given by the isomorphism

k for nonidentical particles defined by


k(αA1 ) = αA1 ⊗ 1A2 ⊗ · · · ⊗ 1Ak
, αA1 ∈ AA1 , (4.51)

as we saw earlier.
When the particles are identical so that A1 = A2 = · · · =

Ak and are fermions or bosons, such an isomorphism still
exists: they are the totally symmetrized versions of (4.51) as
we also saw [cf. (3.14)]. This is, in fact, the simplest choice of
a coproduct


 ≡ 
1, (4.52)

given by


k(α) := α ⊗ 1 ⊗ · · · ⊗ 1 + 1 ⊗ α ⊗ · · · ⊗ 1 + · · ·
· · · +1 ⊗ · · · ⊗ α. (4.53)

When the particles are identical, but fulfill braid-group
statistics, there still exists 
k as we will show below. As a
special case, the same holds for parastatistics, its expression
then being the same as for bosons and fermions.

The importance of 
k is as follows: it identifies the
single-particle observables in the k-particle Hilbert space.

The choice of 
k typically comes from the statistics group.
It can differ if the latter differs. If the statistics group is
the braid group or its quotient, the permutation group, then
(AAi

,
k) defines a “quasitriangular Hopf algebra” [21]. The
isomorphism 
1 ≡ 
 then defines a “coproduct” from which

k can be deduced.

More general possibilities than the braid group and accord-
ingly more general single-particle algebras than the above can
also be contemplated [28–30].

There is conceptually no problem in restricting a state ω

on AA1,A2,...,Ak
to the subalgebra 
k(AAi

) and comparing the
entropies of ω|AA1 ,A2 ,...,Ak

and ω|
k(AAi
).

We may also wish to study a group of k particles with an
algebra A(k) in an n-particle Hilbert space, for any n > k. If
A(k) is Hopf, then we can find its isomorphic algebra at the
n-particle level, often more than one. The ambiguity in its
choice has to be resolved by the context. Entropy considera-
tions can again be pushed through.

D. Identical particles

In this section we illustrate the use of the GNS construction
for the evaluation of entanglement entropy in systems of iden-
tical particles, making use of the coproduct in order to identify
subalgebras of one-particle observables. The general setting
for the three examples we consider below is the following. We
consider a one-particle Hilbert space H(1) ∼= Cd . In this case,
the full one-particle observable algebra is given by the group
algebra of U (d), CU (d). The two-particle Hilbert space is
then given by the subspace of H(1) ⊗ H(1) consisting of either
symmetric (bosonic statistics) or antisymmetric (fermionic
statistics) tensors. The coproduct is a homomorphism 
 :
CU (d) → CU (d) ⊗ CU (d) that allows us to map one-particle
observables from the one-particle sector to the two-particle
sector. The map 
 is not fixed a priori. Here we consider the
standard choice


(g) = g ⊗ g, (4.54)

for g ∈ U (d), linearly extended to all of CU (d). This coprod-
uct is the exponentiated form of (4.53) (see also below). The
crucial property is coassociativity:

(
 ⊗ id)
 = (id ⊗ 
)
. (4.55)

This property allows us, starting from CU (d) and via the
coproduct, to construct observables acting at the k-particle
level, for any k. In the next section, other choices of the
coproduct will be used in order to apply our ideas to examples
with braid-group statistics.

We always consider algebras A with unity and subalgebras
A0 which contain this unity. The physical reason for including
the unity of A in A0 will become apparent in Sec. VI.

Now, if we perform measurements where only a restricted
set of one-particle observables is considered, we may study
the entanglement of a given two-particle state |ψ〉 that arises
from the corresponding restriction. For example, if from the
d available “levels” in H(1) = Cd we consider only d ′ of
them (d ′ < d), the algebra of one-particle observables will
be reduced to the algebra generated by CU (d ′) and unity. Its
dimension is d ′ 2 + 1. The two-particle Hilbert space will then
decompose into irreducible representations of this algebra,
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this being directly reflected in the entanglement structure of
the state |ψ〉.

1. Two fermions, H(1) = C4

As a first example, we consider the case d = 4, d ′ = 2.
The two-fermion space �2H(1) is six dimensional, as can
be seen from the decomposition 4 ⊗ 4 = 10 ⊕ 6 of C4 ⊗ C4

into symmetric and antisymmetric tensors. Let us consider a
particular orthonormal basis {|e1〉,|e2〉,|e3〉,|e4〉} for H(1). A
basis for the two-fermion space �2H(1) ∼= C6 is then given by
{|ei〉 ∧ |ej 〉}1�i<j�4.

Now we will assume that only one-particle observables
containing 14 and those causing transitions between the states
|e1〉 and |e2〉 are considered. Then, the relevant algebra of
observables is isomorphic to CU (2) ⊗ 14. This example is
very relevant physically. For example, we can consider two
electrons located in a two-well potential modeling a couple of
nearby quantum dots. This is an example that has also been
discussed in [31], in the context of entanglement of identical
particles. In this case, our choice of subalgebra corresponds to
local observations on one of the dots. Thus, the correlations
obtained in such a setup will go beyond the ones coming from
indistinguishability. The corresponding entanglement entropy
will reflect this fact.

Using the coproduct, we can obtain the image of this
algebra acting on the two-particle sector. For our choice of the
subalgebra, the relevant observables are generated by operators
of the form Mij = |ei〉〈ej |, with 1 � i,j � 2, and 14. In this
context, it turns out to be useful to work with the “infinitesimal”
version of (4.54), that is, if L is an element of the Lie algebra
of U (d), we set


(L) = L ⊗ 1 + 1 ⊗ L. (4.56)

It is also convenient to label the basis vectors of �2H(1) in the
following way:

|a〉 = |e1〉 ∧ |e2〉 ≡ 1√
2

(|e1〉 ⊗ |e2〉 − |e2〉 ⊗ |e1〉),
|α1〉 = |e1〉 ∧ |e3〉, |α2〉 = |e2〉 ∧ |e3〉,

(4.57)
|β1〉 = |e1〉 ∧ |e4〉, |β2〉 = |e2〉 ∧ |e4〉,
|b〉 = |e3〉 ∧ |e4〉.

From (4.56) it is easy to obtain explicit expressions for the
matrix representations of the relevant one-particle observables.
As an illustration, we compute


(M12)|α2〉 = 
(M12)|e2〉 ∧ |e3〉
= (M12 ⊗ 1 + 1 ⊗ M12)|e2〉 ∧ |e3〉 (4.58)

= 1√
2

(|e1〉 ⊗ |e3〉 − |e3〉 ⊗ |e1〉) = |α1〉.

The four matrices Aij ≡ 
(Mij ) (for i,j = 1,2) turn out to be
block diagonal in the chosen basis:

A11 = diag{1,e11,e11,0},
A22 = diag{1,e22,e22,0},
A12 = diag{0,e12,e12,0},
A21 = diag{0,e21,e21,0}, (4.59)

where eij denote the standard matrix units on M2(C), i.e.,

e11 = ( 1 0
0 0 ), and so on. To this must be added the unit matrix

16.
The algebra A0 will be generated by exponentials of these

matrices and their products. It has a basis consisting of the
five matrices A11,A22,A12,A21, and 16. This same example
can be worked using creation and annihilation operators. In
that case, as explained in [2], the algebra corresponding to
observables involving only the identity and transitions between
|e1〉 and |e2〉 is six dimensional. However, one of the basis
elements corresponds to a two-particle observable, being the
product of the number operators of particles 1 and 2. The
one-particle observable algebra is therefore the one obtained
after taking the quotient by the ideal generated by that basis
element. Here we are using coproducts, and only one-particle
observables appear upon application of the homomorphism 
.

We now consider a θ -dependent state vector, given by

|ψθ 〉 = cos θ |β1〉 + sin θ |α2〉. (4.60)

As mentioned above, at the two-particle level the full ob-
servable algebra A is given by M6(C). The subalgebra of
one particles we have chosen is the A0 constructed above.
We proceed to the construction of the GNS representation
corresponding to different values of θ when the state |ψθ 〉 is
restricted to A0.

Case 1. 0 < θ < π
2 . When 0 < θ < π/2 we can easily

check that the only nonzero elements α ∈ A0 for which

ωθ (α∗α) ≡ 〈ψθ |α∗α|ψθ 〉 = 0 (4.61)

are linear combinations of B = diag{1,02,02,0} and 16 −
A11 − A22, that is, the null space Nθ is generated by these
elements. The GNS Hilbert space Hθ is thus four dimensional.

Let πθ denote the corresponding GNS representation of A0

onHθ . A convenient basis forHθ is given by {|[Aij ]〉}i,j=1,2. A
straightforward computation shows that the subspace spanned
by |[A12]〉 and |[A22]〉, as well as the subspace spanned by
|[A11]〉 and |[A21]〉, is irreducible. The two representations are
isomorphic.

The corresponding projections P1 and P2 can then be used
in order to obtain the components of |[16]〉 in each irreducible
subspace. From

|[16]〉 = |[A11 + A22]〉 (4.62)

we obtain

P1|[16]〉 = |[A11]〉, P2|[16]〉 = |[A22]〉. (4.63)

Using (4.60), we compute

‖P1|[16]〉‖2 = cos2 θ, ‖P2|[16]〉‖2 = sin2 θ. (4.64)

A density matrix acting on the GNS space of the restricted
state can be obtained as explained above and its entropy can
be computed. The result is

S(θ ) = − cos2 θ ln cos2 θ − sin2 θ ln sin2 θ. (4.65)

Case 2. θ = 0. In this case we have

|ψ0〉 = |β1〉. (4.66)
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So the space of null vectors is given by the four-dimensional
space

N0,0 = Span{|B〉,|[16 − A11]〉,|[A22]〉,|[A12]〉}. (4.67)

This means that Hθ=0
∼= C2. Hence, the representation is

irreducible so that the corresponding entropy vanishes.
The situation is completely equivalent for the case θ = π

2 .
Thus, Hθ decomposes into irreducible subspaces according to
the following pattern:

Hθ
∼=

{
C2, θ = 0,π/2,

C4 ∼= C2 ⊕ C2, θ ∈ (0,π/2).
(4.68)

The significant aspect of this example is the fact that for the
values of θ for which the Slater rank of |ψθ 〉 is 1, namely,
θ = 0 and π

2 , we obtain exactly zero for the entropy. In
previous treatments of entanglement for identical particles,
the minimum value for the von Neumann entropy of the
reduced density matrix (obtained by partial trace) has been
found to be ln 2. This has been a source of embarrassment:
it seems to suggest that different entanglement criteria have
to be adopted, depending on whether one is dealing with
nonidentical particles, or with bosons or fermions. For a critical
review of previous attempts at a solution to this problem,
see [3]. We have shown here that, by replacing the notion
of the partial trace by the more general one of restriction to a
subalgebra, all cases can be treated on an equal footing.

2. Two fermions, H(1) = C3

As a second example, we consider the case d = 3, with two
choices for d ′: d ′ = 2,3. In this case, the two-fermion space
is given by H(2) = �2C3 ⊂ H(1) ⊗ H(1). Let {|e1〉,|e2〉,|e3〉}
denote an orthonormal basis for H(1). Then

{|f k〉 := εijk|ei ∧ ej 〉}1�k�3 (4.69)

provides an orthonormal basis for H(2). This choice of basis
is particularly useful if we take into account that it provides
a basis for the [SU(3)] representation 3̄ obtained from the de-
composition 3 ⊗ 3 = 6 ⊕ 3̄, corresponding to symmetrization
and antisymmetrization of tensors in H(1) ⊗ H(1). The |f i〉
span the 3̄ representation.

Here, the representation 3 stands for the defining U (3) rep-
resentation on H(1) [U (1)(g) = g]. This means that, at the two-
fermion level, one-particle observables are given by the action
ofCU (3) onH(2). This action is obtained from the restriction of
operators of the form α̂ = ∫

U (d) dμ(g)α(g)U (1)(g) ⊗ U (1)(g)
to 3̄, regarded as a subspace of 3 × 3.

It follows that the algebra A of observables for the two-
fermion system is generated by |f i〉〈f j | (i,j = 1,2,3). Hence,
A ∼= M3(C).

Below we consider two different choices for the subalgebra
A0. This will make clear that the notion of entanglement is
very sensitive not only to the choice of state, but also to the
choice of the observable algebra.

Choice 1 for A0. Here we consider A0 to be the full algebra
A. That is, A0 is chosen to be the full algebra of one-particle
observables acting on H(2). Now, we pick any two-fermion
pure state ω : A → C. Being a pure state onA ∼= A0, the GNS
representation corresponding to the pair (A0,ω) is irreducible.
This is equivalent to the statement that 3̄ is an irreducible SU (3)

representation. This in turn corresponds to the well-known fact
that, for H(1) = C3, all two-fermion vector states have Slater
rank 1 (cf. [9]). These states are therefore to be considered
as nonentangled states. Notice, however, that if we use partial
trace to compute the von Neumann entropy we get a result
different from zero. In contrast, computing the von Neumann
entropy via the GNS construction automatically gives zero in
this case (because of irreducibility), this being in accordance
with the fact that all states for d = 3 are nonentangled (as long
as A0 = A).

Choice 2 for A0. Now we let A0 be the subalgebra of A
consisting of all one-particle observables that involve only the
one-particle states |e1〉 and |e2〉 and unity 1A = 13. It can
be easily checked that this subalgebra is generated by the
operators Mij := |f i〉〈f j | (i,j = 1,2), as well as 1A. This is,
therefore, a five-dimensional matrix algebra.

Consider the following two-fermion vector state:

|ψθ 〉 = cos θ |f 1〉 + sin θ |f 3〉, (4.70)

and let ωθ : A → C denote the corresponding state:

ωθ (α) = 〈ψθ |α|ψθ 〉, ∀ α ∈ A. (4.71)

Consider now the restriction of ωθ to the subalgebra A0:

ωθ,0 = ωθ |A0 . (4.72)

We proceed to perform the GNS construction corresponding
to the pair A0,ωθ,0, assuming that 0 < θ < π

2 . By direct
computation we check that both M12 and M22 are null vectors:

|[M12]〉 = |[M22]〉 = 0.

In this range of values for θ these are all the linearly
independent null vectors. This can be seen from

〈ψθ |α∗α|ψθ 〉 = 0 ⇒ α|ψθ 〉 = 0 ⇒ α =
∑

ciM
i2,

ci ∈ C. (4.73)

This means that the null space Nθ,0 is two dimensional and
that, therefore, Hθ = Â0/Nθ,0 is isomorphic to C3, with basis
{|[M11]〉,|[M21]〉,|[E3]〉}, where E3 := 1A − M11 − M22.

Noticing that α0 ∈ A0 implies α0 E3 = 0, we can check
that the GNS space has the following decomposition in terms
of irreducible representations: Hθ = C2 ⊕ C1.

Denoting by P1 and P2 the corresponding projections and
using the fact that [M11 + M22] = [12], we obtain

P1|[1A]〉 = |[M11]〉,P2|[1A]〉 = |[E3]〉. (4.74)

Using the inner product of Hθ to compute |μi |2 =
‖Pi |[1A]〉‖2, we obtain

|μ1|2 = cos2 θ, |μ2|2 = sin2 θ. (4.75)

Hence,

ωθ,0 = cos2 θ

(
1

cos2 θ
|[M11]〉〈[M11]|

)
+ sin2 θ

(
1

sin2 θ
|[E3]〉〈[E3]|

)
. (4.76)

The result for the entropy as a function of θ is therefore

S(θ ) = − cos2 θ ln cos2 θ − sin2 θ ln sin2 θ. (4.77)
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The cases θ = 0 and θ = π/2 differ from the above mainly
in the dimension of the GNS Hilbert space. Nevertheless, the
result for the entropy remains the same. It is given by the
same formula (4.77), extended now to the values θ = 0 and
θ = π/2. This means that the entropy for θ = 0 or θ = π/2
is zero, and corresponds to the fact that, for these values of θ ,
the GNS Hilbert space is irreducible. Indeed, the result for the
GNS space in the range θ ∈ [0,π/2] is

Hθ
∼=

⎧⎪⎨⎪⎩
C2, θ = 0,

C3 ∼= C2 ⊕ C, θ ∈ (0,π/2),

C, θ = π/2.

(4.78)

This result should be contrasted against the fact that the 3̄
representation, when regarded as a representation space for
SU(2), splits as 2 ⊕ 1.

3. Two bosons, H(1) = C3

This is the bosonic counterpart of the previous example. Let
{|e1〉,|e2〉,|e3〉} denote an orthonormal basis for H(1) = C3.
Recalling the decomposition 3 ⊗ 3 = 6 ⊕ 3̄ of the previous
example, we see that the six-dimensional space corresponds
to the two-particle space H(2), i.e., the space of symmetric
tensors in H(1) ⊗ H(1). The algebra A of observables for this
two-boson system is then isomorphic to M6(C). As a basis for
H(2) we choose the vectors {|ei ∨ ej 〉}i,j∈{1,2,3}, where

|ei ∨ ej 〉 ≡
{

1√
2
(|ei〉 ⊗ |ej 〉 + |ej 〉 ⊗ |ei〉), i �= j,

|ei〉 ⊗ |ei〉, i = j.

(4.79)

They form an orthonormal basis.
Now we consider the (pure) state ω(θ,φ) : A → C that

corresponds to

|ψ(θ,φ)〉 = sin θ cos φ|e1 ∨ e2〉 + sin θ sin φ|e1 ∨ e3〉
+ cos θ |e3 ∨ e3〉. (4.80)

We are interested in the restriction of ω(θ,φ) to the subalgebra
A0 of one-particle observables which besides 16, pertains only
to the one-particle vectors |e1〉 and |e2〉. Proceeding in the
same way as in the previous examples, we recognize that the
6 representation, when regarded as a representation space for
SU(2) acting nontrivially on |e1〉 and |e2〉, splits as 6 = 3 ⊕
2 ⊕ 1. The basis vectors for these three invariant subspaces are
given below:

3 : |1〉 = |e1 ∨ e1〉, |0〉 = |e1 ∨ e2〉, |−1〉 = |e2 ∨ e2〉,
2 : |1/2〉 = |e1 ∨ e3〉, |−1/2〉 = |e2 ∨ e3〉, (4.81)

1 : |0̃〉 = |e3 ∨ e3〉.
The one-particle observables on H(2) are obtained from the
operators |ei〉〈ej | (with i,j = 1,2), as well as from the unit
operator on H(1), by means of the coproduct. Thus, the
subalgebra A0 is generated by operators of the form |u〉〈v|,
with both |u〉 and |v〉 belonging to the same irreducible
component of H(2). (Note that the image of unity on H(1)

under the coproduct 
 is 1A. Hence by taking combinations
of images of the above H(1) observables under 
, we see
that A0 contains |0̃〉〈0̃|.) In other words, A0 is given by block-
diagonal matrices, with each block corresponding to one of the

irreducible components in the decomposition 6 = 3 ⊕ 2 ⊕ 1.
The dimension of A0 is therefore 32 + 22 + 12 = 14.

The construction of the GNS representation corresponding
to each particular value of the parameters θ and φ is performed
following the same procedure as in the previous examples. Let
us introduce the notation Bu,v ≡ |u〉〈v|, for any pair |u〉,|v〉
in (4.81). Then, from (4.80) we see that as long as the (θ,φ)
coefficients are all different from zero, those elements of A0 of
the form Bj,±1 (j = 0, ± 1) and Bσ,−1/2 (σ = ±1/2) generate
the null vectors. That these generate all the null vectors follows
from the fact that (4.80) contains one basis element for every
irreducible component, so that no further linear relation can
arise that lead to null vectors. So in this case we have

H(θ,φ) := Â0/N(θ,φ),0 = C6,
(4.82)

N(θ,φ),0 = nullspace.

In terms of irreducible subspaces, one can readily see that C6

decomposes according to C6 = C3 ⊕ C2 ⊕ C1.
In general, we can read off the decomposition of H(θ,φ) into

irreducible subspaces from (4.80), depending on which of its
coefficents vanish. For example, if only the first one vanishes,

H(θ,φ) = C2 ⊕ C1. (4.83)

It is interesting to consider the entropy as a function of
(θ,φ). For the case in which all (θ,φ) coefficients are nonzero,
we have

|[1A]〉 = |[B1,1]〉 + |[B1/2,1/2]〉 + |[B0̃,0̃]〉, (4.84)

from which the entropy is readily computed as before. The
result is

S(θ,φ) = − sin2 θ [cos2 φ ln(sin θ cos φ)2

+ sin2 φ ln(sin θ sin φ)2]

− cos2 θ ln(cos θ )2. (4.85)

The analytic formulas for entropy when one or more of the
coefficients in (4.81) vanish can be obtained from (4.85) by
taking suitable limits on θ and φ.

We can see that the entropy vanishes whenever |ψ(θ,φ)〉 lies
in a single irreducible component. This happens precisely at
those points of the two-sphere generated by the parameters
(θ,φ) that correspond to the coordinate axes. There are
therefore six points where the entropy vanishes exactly. This
is depicted in Fig. 1, where the (θ,φ)-sphere has been mapped
to the x-y plane through a stereographic projection. The figure
shows the entropy as a function of the coordinates of that plane.

From the examples above we see that all Slater rank-1 states
will be nonentangled whenever the full algebra of one-particle
observables is chosen as subalgebra. But, in addition, for a
state that has Slater rank greater than 1, the entanglement will
also depend on the choice of subalgebra. This is, in fact, one
of the main points of our approach: Entanglement depends not
only on the state, but also on the choice of subalgebra.

E. Entanglement for braid-group statistics

Let us now outline how this approach can be used to com-
pute entanglement entropy for systems with braid statistics.
For that we need to recollect some facts from [32] about the
quantum group Uq(su(n)).
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FIG. 1. The entropy equation (4.85) as a function of x and y, the
(dimensionless) coordinates of a plane representing the unit (θ,φ)-
sphere through stereographic projection. Darker regions correspond
to lower values of the entropy. Five of the six vanishing points of
the entropy can be seen on the picture (black spots). The sixth one,
corresponding to the north-pole of the sphere, lies “at infinity” in this
representation.

1. Preliminaries: Bosonic realization of Uq(su(n))

The q number [s]q is defined by

[s]q = qs/2 − q−s/2

q1/2 − q−1/2
. (4.86)

It satisfies the following properties of importance for us:
(1) [s + t]q = q− s

2 [t]q + q
t
2 [s]q .

(2) The Jacobi identity: [r]q[s − t]q + [s]q[t − r]q +
[t]q[r − s]q = 0.

(3) [1]q = 1. By definition, [0]q = 0.
Let A,A† be q-deformed oscillators and let a,a† be the

standard undeformed bosonic oscillators. They are related by
a dressing transformation:

A = a

√
[N ]q
N

=
√

[N + 1]q
N + 1

a, (4.87)

A† =
√

[N ]q
N

a†, (4.88)

where

N = a†a. (4.89)

From this dressing transformation we may find the represen-
tation for the q-deformed oscillators A,A† from the known
representation of a,a†. In particular, both sets have the same
vacuum |0〉 such that A|0〉 = a|0〉 = 0.

From (4.87) and (4.88), we see that

A†A = [N ]q, AA† = [N + 1]q, (4.90)

N = a†a. (4.91)

This gives

AA† − q1/2A†A = q−N/2. (4.92)

Also

[N,A†] = A†, [N,A] = −A;
(4.93)

[N,a†] = a†, [N,a] = −a.

We may now construct Uq(su(n)) using a set of N Ai,A
†
i

oscillators with a fix q following the Schwinger procedure. Let
λa , with a = 1, . . . ,n2 − 1, be the n × n Gell-Mann matrices
of su(n). Then

�a = A
†
i (λa)ijAj (4.94)

are the generators of Uq(su(n)). We may organize this set
of generators in the Cartan-Chevalley basis, where Hi , with
i = 1, . . . ,n − 1, generates the Uq(su(n)) Cartan subalgebra,
and E±α are ladder operators:

Eij = A
†
i Aj , E

†
ij = A

†
jAi for i < j, (4.95)

Hl = 1
2 (Nl − Nl+1) for l � n − 1, (4.96)

where

Nl = a
†
l al . (4.97)

In the case of Uq(su(2)), the Gell-Mann matrices are the
2 × 2 Pauli matrices so that

�a = A
†
i (σa)ijAj with a = 1,2,3 and i = 1,2.

(4.98)
From this we obtain

E12 := J+ = A
†
1A2, E21 := J− = A

†
2A1,

H1 := J3 = N1 − N2

2
, (4.99)

which satisfy

[J3,J±] = ±J±, [J+,J−] = [2J3]q . (4.100)

From now on, we consider only the cases for which q is real
and positive, q > 0. In this case, Uq(su(n)) is a ∗-Hopf-algebra
with coproduct


(J±) = q−J3/2 ⊗ J± + J± ⊗ qJ3/2,
(4.101)


(J3) = 1 ⊗ J3 + J3 ⊗ 1.

The unitary irreducible representations of Uq(su(2)) are la-
beled by j ∈ Z+/2. For fixed j , −j � m � j , an orthonormal
basis for the carrier vector space is

|jm〉 = (A†
1)j+m(A†

2)j−m√
[j + m]q![j − m]q!

|0〉, (4.102)

where for k ∈ Z+, [k]q! = [1]q[2]q · · · [k]q . The generators
J± and J3 act in (4.102) as expected:

J±|jm〉 = √
[j ∓ m]q[j ± m + 1]q |j,m ± 1〉, (4.103)

J3|jm〉 = m|jm〉. (4.104)

2. The braid group

We illustrate the ideas using the “two-particle” representa-
tion of Uq(su(2)). For the undeformed oscillators, we can easily
see that the vector state a

†
1|0〉 ⊗ a

†
2|0〉 for example decomposes
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in terms of the action of the symmetric group S2 as

a
†
1|0〉 ⊗ a

†
2|0〉 = 1

2 (a†
1|0〉 ⊗ a

†
2|0〉 + a

†
2|0〉 ⊗ a

†
1|0〉)

+ 1
2 (a†

1|0〉 ⊗ a
†
2|0〉 − a

†
2|0〉 ⊗ a

†
1|0〉)

≡ |1,2〉S + |1,2〉A, (4.105)

where the indices S and A stand for symmetric and antisym-
metric, respectively.

For the q-deformed case, the symmetric group decomposi-
tion has to be changed. This is simple to see.

We start with the highest-weight state, call it |1,1〉, with
respect to Uq(su(2)):

|1,1〉 = A
†
1|0〉 ⊗ A

†
1|0〉, (4.106)


(J+)|1,1〉 = 0, (4.107)


(J3)|1,1〉 = |1,1〉. (4.108)

Next we lower using J−:


(J−)|1,1〉 = [q−J3/2 ⊗ J− + J− ⊗ qJ3/2]A†
1|0〉 ⊗ A

†
1|0〉

= [q−1/2A
†
1|0〉 ⊗ A

†
2|0〉 + q

1
2 A

†
2|0〉 ⊗ A

†
1|0〉].
(4.109)

It is thus clear that this state vector cannot be decomposed
under the symmetric group, since the q powers are breaking
the structure of the symmetric tensor product.

Formally, the structure we have just seen carries a rep-
resentation of the braid group. We will not go into details
here; they can be found in [21,32]. In particular, as discussed
by Biedenharn and Lohe, the multiparticle q-boson states
constructed from the q-deformed oscillators are invariant
under the braid group.

3. Example

The Schwinger realization of q-deformed oscillators given
above is adapted to treat bosons. So we generalize the q = 1
bosonic example above where H = C3 and we observe just
the algebra generated by the observables mixing 1 and 2 and
the unit operator.

Thus we now have three q-deformed oscillators Ai,A
†
i

which commute for i �= j . The two-particle q-boson states
are spanned by A

†
i A

†
j |0〉 and are six-dimensional. Following

(4.81), we construct the orthonormal basis for the three
subspaces invariant under the observables acting on 1 and
2 particles and the unit operator:

3 : |1〉q = (A†
1)2√

[2]q
|0〉, |0〉q = A

†
1A

†
2|0〉,

|−1〉q = (A†
2)2√

[2]q
|0〉,

(4.110)
2 : |1/2〉q = A

†
1A

†
3|0〉, |−1/2〉q = A

†
2A

†
3|0〉,

1 : |0̃〉q = 1√
[2]q

(A†
3)2|0〉.

We also generalize the vector state (4.80) to the normalized
vector state

|ψ(θ,φ)〉q =
(

sin θ cos φA
†
1A

†
2 + sin θ sin φA

†
1A

†
3

+ cos θ
(A†

3)2√
[2]q

)
|0〉. (4.111)

It induces a state ω
(q)
(θ,φ) on the full algebra of 6 × 6 matrices.

We now restrict ω
(q)
(θ,φ) to the observables pertaining to

operators acting on 1 and 2 indices and the unit operator.
This subalgebra A0(q) is spanned by

|i〉q q〈j |, i,j ∈ [−1,0,1], and 16. (4.112)

Now, the algebra A0(q) generated by (4.112) and the
scalar products induced by ω

(q)
(θ,φ) are all independent of q.

The conclusion is that the GNS Hilbert space and its properties
are all quite independent of q. That includes entropy as
well. These observations can be generalized to more involved
situations.

This simple example, to be contrasted with the usual
two-fermion system already worked out here, shows once
more that our approach allows one to naturally obtain a zero
von Neumann entropy for separable systems even in the case
of more sophisticated statistics. We think that this sets the
stage for a more comprehensive study of systems with braid
statistics, like the Kitaev model, that may play a crucial role
for developments in quantum computation.

V. TIME EVOLUTION

If a unitary time evolution U (t) of a pure state ω on an
algebra A is given, then the time evolution of its restriction
ω|A0 = ω0 is determined by

ω0 → ω0(t) = [U (t)ω]|A0, ω0(0) = ω0. (5.1)

The evolution of ω0 is in general by positive maps. This fact
is a consequence of the Stinespring-Choi theorem. That is
the case even when U (t) gives a unitary evolution on ω with
Hamiltonian H :

U (t)ω = eiHtωe−iH t . (5.2)

Here ω is a density matrix.
An important point is that the rank of ω0(t) need not be

continuous in t even if that of U (t)ω is continuous in t . It can
change discontinuously. This is shown by the example below.
In that example, entropy is periodic in time, not monotone
increasing in time, as is thought to be the case in nature.

The case of a fermion with three internal degrees of freedom
treated in Sec. IV D is a simple example. The single-particle
Hilbert space H(1) was C3 with orthonormal basis {|ei〉}i=1,2,3.
The two-particle state space was 3̄ = ∧2H(1) ≡ H(2), with an
orthonormal basis {|f i〉 = εijk|ej ∧ ek〉}i=1,2,3.

The single-particle algebra acting onH(2) wasCU (3) ⊗ 16.
We chose the pure state

ωθ = |ψθ 〉〈ψθ |, |ψθ 〉 = cos θ |f 1〉 + sin θ |f 2〉, (5.3)

in the two-particle sector.
The subalgebra A0 was the image under the coproduct of

the single-particle algebra on H(1) acting just on |e1〉 and |e2〉.
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Our results pertinent for the discussion of time evolution
were

ωθ,0 = cos2 θρ
(1)
θ + sin2 θρ

(3)
θ , (5.4)

where

ρ
(1)
θ = 1

cos2 θ
|[M11]〉〈[M11]|,

(5.5)

ρ
(3)
θ = 1

sin2 θ
|[E3]〉〈[M3]|,

and

HGNS
θ =

⎧⎨⎩
C2, θ = 0,

C3 = C2 ⊕ C, 0 < θ < π/2,

C, θ = π/2.

(5.6)

Thus the rank of ωθ,0 = ωθ |A0 jumps from 2 to 1 as θ

approaches 0 or π/2.
Now consider the unitary evolution of |ψθ 〉 and ωθ under

the self-adjoint Hamiltonian

H = −i|f 2〉〈f 1| + i|f 1〉〈f 2|. (5.7)

It generates rotations in the plane of {|f 1〉,|f 2〉} and hence
changes θ :

eitH |ψθ 〉 = cos(θ + t)|f 1〉 + sin(θ + t)|f 2〉. (5.8)

The restriction of this evolution to ωθ,0 is

U (t) : ωθ,0 → ωθ+t,0. (5.9)

It is not unitary. It does not even preserve the rank of ωθ,0: it
jumps from 2 to 1 and back as t increases.

We can write the time evolution as positive maps so long as
the rank of the density matrix stays constant or decreases. Thus
we consider ωθ,0 for 0 < θ < π/2. It is of rank 2 expressible
in terms of the orthonormal eigenvectors

|χ (1)(θ )〉 = 1

cos θ
|[M11]〉, |χ (3)(θ )〉 = 1

sin θ
|[M21]〉

(5.10)

and the corresponding eigenvalues

λ1(θ ) = cos2(θ ), λ3(θ ) = sin2(θ ). (5.11)

For 0 < θ < π/2, we can then write

ωθ ′,0 =
2∑

a=1

�†
a(θ ′,θ )ωθ,0�a(θ ′,θ ), (5.12)

�a(θ ′,θ ) =
(

λa(θ ′)
λa(θ )

)1/2

|χa(θ )〉〈χa(θ ′)|. (5.13)

This makes sense for θ = 0 (π/2) if the a = 2 (a = 1) term in
(5.12) is understood as zero.

But positive maps cannot increase the rank of a state. Hence
we cannot write evolution starting from θ = 0 or π/2 in terms
of positive maps.

VI. ANOMALIES AND RESTRICTIONS

In this paper, mixed states emerge from restrictions of pure
states ω on an algebra A to a subalgebra A0. In a series
of recent papers [23,24], mixed states were introduced to
eliminate anomalies. There it was proposed that anomalies
can be eliminated by averaging, say, a pure state ω over the
anomalous group.

We will now argue that the averaged state in the second case
can also be regarded as the restriction of ω to a subalgebra. Let
us focus on parity anomaly caused for example by the QCD
θ angle. The discussion is valid for any Z2 symmetry group
though.

Let A be the algebra of observables with unity 1. If P is
the parity, then A has the parity-even subalgebra

A+ = {a+ ∈ A : Pa+P = a+} (6.1)

and also its complement

A− = {a− ∈ A : Pa−P = −a−}, (6.2)

which is not an algebra. The unity 1 is clearly in A+. But we
assume that A+ has its own unity (projector) 1+:

1+a+ = a+1+ = a+, 1+a− = a−1+ = 0. (6.3)

There is good physical meaning in assuming that A+
contains both 1+ and 1. The projector 1+ is the unity on
the parity-even elements. We need its orthogonal projector as
observable to tell us that the state of the system certainly has
no component in A+. This orthogonal projector is 1−. And
1 = 1+ + 1−.

Then

1− = 1 − 1+ (6.4)

is the projector onto A−:

1−a+ = a+1− = 0, 1−a− = a−1− = a−. (6.5)

The parity-even subalgebra we consider is A0 = A+ ⊕ C1−
Let ωθ , regarded as a density matrix, be such that

PωθP = ω−θ . (6.6)

For instance, a θ QCD state in QCD is of the above kind.
Since

1 = 1+ + 1−, (6.7)

ωθ splits on restriction to A0 as

ωθ = |[1+],θ 〉〈[1+],θ | + |[1−],θ 〉〈[1−],θ |
= ωθ,+ + ωθ,−. (6.8)

Now consider the expectation value ωθ (α) for

α = α+ + λ1− ∈ A0. (6.9)

We have

ωθ (α) := Tr ωθα = ωθ,+(α+) + ωθ,−(λ1−). (6.10)

Since

Pα+P = α+, (6.11)

ωθ,+(α+) = ω−θ,+(α+) = 1
2 [ωθ,+ + ω−θ,+](α+). (6.12)
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Similarly, since P1−P = 1−,

ωθ,− = 1
2 [ωθ,− + ω−θ,−]. (6.13)

Hence

ωθ |A0 = 1
2 (ωθ + ω−θ )|A0 . (6.14)

But

(ωθ + ω−θ )(α−) = ωθ (α−) + ωθ (Pα−P ) = 0, (6.15)

which is true of the right-hand side of (6.13) as well, extended
to A−.

Hence restriction and averaging give the same answer.
They will coincide whenever A0 has a projector, the analog of
1+ here. This is clear from the computations above. Note that
the normalization of vectors in (6.8) is given by

〈[1±],θ |[1±],θ 〉 = ωθ (1±). (6.16)

VII. STATE RESTRICTIONS AND QUANTUM
OBSERVATIONS

Suppose we study the restriction of a state ω on an algebra
A of observables to a subalgebra A0. For reasons explained in
Sec. VI, we assume that A0 contains the projector 1+ and its
orthogonal projector

1− = 1 − 1+, (7.1)

1 being the unity of A. The projectors satisfy

1+1− = 0. (7.2)

Using these projectors, we can decompose A0 into two parts:

A0 = A01+ ⊕ A01−. (7.3)

Let ω be pure on A. Observe that A01+, A01− are both
invariant by A0. Then, in the GNS construction, the restricted
state splits into two parts:

ω|A0 = |[1+]〉〈[1+]| + |[1−]〉〈[1−]| (7.4)

and is not pure.
Can we interpret (7.4) as emergent from observations? The

answer seems to be yes. If one measures the probability of
finding either 1 or 0 for the observable 1+ on an ensemble
with state ω, the resultant state ω|A0 is after measurement
exactly (7.4)

ω → ω|A0 = 1+|[1]〉〈[1]|1+ + 1−|[1]〉〈[1]|1−. (7.5)

In this case, we are given the projector 1+ and we can
reconstruct A0 ⊆ A as its commutant:

A0 = commutant of 1+ in A. (7.6)

Working from this A0, we then show that the state
restricted to (7.6) coincides with (7.5).

VIII. CONCLUSIONS

We have seen in this work that there is a natural formulation
of quantum physics dispensing with the use of the Hilbert
space as initial data which is well adapted to the study of
entanglement and entropy. In this approach, the Hilbert space is
an emergent concept. Instead, the initial data are the algebra of
observables and their expectation values. From the expectation
values one abstracts the notion of a state on the algebra.

In this formulation, the Hilbert space is obtained from
the GNS construction that resembles the construction of
the regular representation of finite (or compact) groups.
Furthermore, one may compute the von Neumann entropy
associated with a density matrix that is obtained from a state
on the algebra. It should be emphasized that with each state
one may associate many distinct density matrices and therefore
distinct von Neumann entropies. A discussion of this point is
carried out in [26].

A state ω on an algebra A can be restricted to a subalgebra
A0. The new state ω|A0 may not be pure even if ω is. Its entropy
is a measure of entanglement of A0 with A.

This approach to entanglement constitutes a generalization
and extension of the approach based on the partial trace and lets
us treat identical particles obeying Bose, Fermi, or even braid
statistics with ease. Particle identity has posed severe problems
in conventional approaches, in the context of entanglement of
particles.

We have also shown how time evolution by positive maps
for ω|A0 emerges when ω evolves unitarily.

We have treated further points concerning quantum anoma-
lies and their elimination by restricting states to subalgebras.
In this manner, we can understand the use of mixed states
to eliminate anomalies suggested by our previous work
[23]. We also discussed how the restriction ω|A0 emerges
from a standard interpretation of quantum physics from the
observation of projectors.

ACKNOWLEDGMENTS

The authors would like to thank Alonso Botero for
discussions that led to this work. We also thank M. Asorey,
B. Carneiro da Cunha, S. Ghosh, K. Gupta, A. Ibort, G.
Marmo, V. P. Nair, and A. Pinzul for fruitful discussions
during different stages of this work. A.P.B. is supported
by the Institute of Mathematical Sciences, Chennai. A.R.Q.
is supported by CNPq under Process No. 307760/2009-0.
A.F.R.L. is supported by Universidad de los Andes.

[1] R. Haag, Local Quantum Physics, 2nd ed., Text and Monographs
in Physics (Springer, Berlin, 1996).

[2] A. P. Balachandran, T. R. Govindarajan, A. R. de Queiroz, and
A. F. Reyes-Lega, Phys. Rev. Lett. 110, 080503 (2013).

[3] M. C. Tichy, F. Mintert, and A. Buchleitner, J. Phys. B 44,
192001 (2011).

[4] Y. S. Li, B. Zeng, X. S. Liu, and G. L. Long, Phys. Rev. A 64,
054302 (2001).

[5] R. Paskauskas and L. You, Phys. Rev. A 64, 042310 (2001).
[6] J. Schliemann, J. I. Cirac, M. Kuś, M. Lewenstein, and D. Loss,
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