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Tripartite quantum state violating the hidden-influence constraints
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The possibility to explain quantum correlations via (possibly) unknown causal influences propagating gradually
and continuously at a finite speed v > c has attracted some attention recently. In particular, it could be shown that
this assumption leads to correlations that can be exploited for superluminal communication. This was achieved
studying the set of possible correlations that are allowed within such a model and comparing them to correlations
produced by local measurements on a four-party entangled quantum state. Here, we report on a quantum state
that allows for the same conclusion involving only three parties.
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I. INTRODUCTION

Despite a lot of research, the question as to how nonlocal,
i.e., Bell-inequality-violating [1] quantum correlations arise
in space-time, is still poorly understood. Ever since the
fundamental work of Bell [1], we know that equipping
the particles with local (hidden) variables [2,3] and hence
shared randomness or local common causes will not suffice.
Experimental evidence demonstrating the existence of such
nonlocal correlations, even when the measurements are space-
like separated, has long been provided (see, e.g., Ref. [4] and
references therein), reawakening our concern about Einstein’s
famous sentence on the “spooky action at a distance” [5].

If we want to cling to the hope of providing a local and
continuous causal explanation of such correlations in space
and time, we have to consider explanations that go beyond
adding only shared randomness. Different such attempts were
proposed, i.e., in Ref. [6] by Eberhard or in Refs. [7,8] by
Scarani and Gisin, where it was proposed that superluminal yet
finite-speed influences carrying information about measure-
ments performed could account for these correlations. These
influences are presumably hidden, i.e., unknown to present-day
physics and their speed is defined with respect to some
privileged reference frame. Moreover, the physical carrier of
such influences should obey the principle of continuity, i.e.,
propagate gradually and continuously through space and time,
which leads to the finite-speed assumption. However, these pa-
pers demonstrated that in such a case and if no additional local
variables are involved, the influence could not remain hidden
and could be exploited for superluminal communication.

Very recently, the proof could be extended to include the
case where additional local variables are allowed too [9]. For
this purpose, the notion of v-causal models was introduced
therein (see also Refs. [10–12]). In such models, correlations
between measurement outcomes, such as those leading to
quantum violations of Bell inequalities [1], are expected
to be a direct consequence of common causes and causal
(superluminal) influences traveling at a finite speed v.

There are different ways to test v-causal models. One
possibility is to conduct experiments with two highly syn-
chronized parties and see if a Bell-inequality violation can be
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observed. This, however, has not ruled out the possibility of
such kinds of models as it is limited by the synchronization
precision possible in a laboratory. It has therefore only yielded
lower bounds on the speed v, as was done in Refs. [13–16].
Nevertheless, those hypothetical privileged reference frames
moving at a constant speed with respect to Earth were tested
in Refs. [14–16] using an idea by Eberhard [6].

A different approach was chosen in Refs. [7,8] and pursued
in Ref. [9]. In the latter, it was shown that the nonlocal character
of quantum theory in combination with v-causal models
leads to (superluminal) signaling, i.e., the spatially separated
observers in a Bell-type experiment can communicate with the
arbitrarily distant parties by simply manipulating their mea-
surement choices and observing their local outcome statistics.
In other words, these influences trying to explain quantum
nonlocality can not remain hidden, in the sense that they can
be exploited by the observer for superluminal communication.
This allows us to disprove such models under the plausible
assumption of a world where faster-than-light communication
is not possible. The argumentation was established with a
quantum state that involved four parties, each equipped with
two measurement settings that produce dichotomic outputs.

No tripartite quantum state could be found at that stage
and it remained an open question as to whether there is
a fundamental difference between the three- and the four-
party cases. Note, however, that a tripartite solution with
supraquantum correlations was already known as was shown
in Ref. [17]. However, the result in Ref. [17] can not be verified
using quantum physics, not even with ideal measurements. It
requires supraquantum correlations that, according to today’s
physics, do not exist. Hence, our result is a major advancement.

In addition, the possibility to test the inequality upon which
our result depends experimentally is an important issue. To
be able to underline this result, it would be very favorable
to find a quantum state whose preparation is technically less
involved and that is more robust to noise in order to conduct
a real experiment. The combination of the evidence provided
by such an experiment and the work mentioned above would
exclude a lot of directly conceivable explanations of quantum
correlations.

This work reports on a tripartite quantum state found that
allows for the same conclusion as the four-party example in [9].
In Sec. II, we formally introduce v-causal models. A tripartite
Bell-type inequality that has to be satisfied by nonsignaling
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FIG. 1. Space-time diagram in the preferred reference frame
illustrating the concepts of v-connected and v-disconnected events.
The shaded regions are the c cones (light cones) and the striped
regions show the v cones with v > c. The v cones of K1 contain all
points that can reach K1, or that can be reached from K1, by signals
(influences) propagating at a speed not larger than v.

v-causal models and its quantum violation is presented in
Sec. III. Finally, we give a conclusion in Sec. IV.

II. v-CAUSAL MODELS

We now recall the key ingredients of a v-causal model, as
introduced in Ref. [9]. A v-causal model seeks to provide
explanations of correlations between measurement events,
such that they obey the principle of continuity. In other words,
from the measurement location information spreads gradually
and continuously through space and time. Additionally, such a
model is equipped with shared randomness. We thus first have
to establish the different time orderings between these events.
Bear in mind that in a v-causal model, influences can propagate
at a speed v > c, presumably in some preferred, yet unknown,
reference frame.1 We thus can not rely on the causal structure
of relativity. Rather, causality is defined in the preferred frame,
as represented in the space-time diagram of Fig. 1.

Here, an important distinction has to be made between the
relation of K1 and K2 on the one hand and K1 and K3 on the
other. K2 lies in the future v cone of K1 and can therefore
be causally influenced by K1 via influences propagating at
speed v. These two events are v-connected. We write this as
K1 < K2. On the contrary, K3 lies neither in the future nor in
the past v cone of K1. These events are styled v-disconnected
and denoted by K1 ∼ K3. Formally, a v-causal model for two
measurement events A and C is one that satisfies the following
requirements.

Definition 1. A v-causal model for the measurement events
A, labeled by the measurement setting (input) x and the
outcome (output) a and C with input z and outcome c is one

1See Refs. [18,19] and references therein for a discussion of such a
reference frame.

that satisfies the following equations:

PA<C(ac|xz,ξ ) =
∑

λ

q(λ|ξ )P (a|xλ)P (c|z,axλ), (1a)

PC<A(ac|xz,ξ ) =
∑

λ

q(λ|ξ )P (c|zλ)P (a|x,czλ), (1b)

PA∼C(ac|xz,ξ ) =
∑

λ

q(λ|ξ )P (a|xλ)P (c|zλ). (1c)

Here, λ can be understood as a complete characterization
of a region in the intersection of the past v cones of A and
C that suffices to make predictions about them and q(λ) is its
probability distribution [20,21] [cf. Fig. 2(b)]. As opposed
to the usual locality condition, we included an additional
parameter in this definition to account for the fact that these
decompositions can be conditioned on additional relevant
information in the intersection of the past v cones of A and
C (see Appendix C of Ref. [9] for a more detailed discussion
in the four-party scenario). In particular, in the presence of an
auxiliary party (as we will see in Sec. III) ξ can take the value
of this party’s input and/or output.

Note that in the first two cases, a v-causal model is capable
to reproduce arbitrary quantum correlations. Indeed, we make
the working hypothesis that quantum correlations observed so
far are produced by v-connected measurement events in the
preferred frame. On the other hand, a v-causal model can only
produce local, i.e., non-Bell-inequality-violating correlations
in the case where A ∼ C. This follows from the assumption
that in a v-causal model, Bell-inequality violation arises from
these causal influences propagating at finite speed v. In the
aforementioned case, these influences will not arrive on time
and therefore we can not observe nonlocal correlations.

Clearly, we would like to have a v-causal model that
reproduces Bell-inequality-violating quantum correlations, as
that was the goal to begin with. As explained above, this is not
possible in cases where A ∼ C because our model predicts lo-
cal correlations. If we restrict ourselves to v-connected events,
it is possible to attain a consistent definition of a v-causal
model for quantum correlations (see Appendix A in Ref. [9]).

III. TRIPARTITE CASE

A. Preliminaries

To fully understand the next section, we briefly recall
the important steps followed in Ref. [9]. The space-time
configuration is very important for the argumentation. Up to
permutations of parties there are qualitatively two different
cases to consider:2 The two v-disconnected parties are either
measured before or after the third party that is v-connected to
both of them (as shown in Fig. 2). The major difference be-
tween these two cases manifests itself in the way to impose the
locality constraints for the disconnected parties [cf. Eq. (1c)]. If

2In reality, there are four different temporal configurations of
measurement events. However, in the case where all parties are
v-connected, v-causality imposes no constraint, and when all parties
are mutually v-disconnected, no multipartite quantity needs to be
quantum. These configurations can not be used to demonstrate the
signaling property of v-causal models in the way we do it here.
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(a) The unconditioned time ordering

(b) The conditioned time ordering

FIG. 2. Space-time diagrams showing the two relevant time
orderings for the tripartite scenario. Here, A and C are simultaneous in
the hypothetical preferred frame of reference. In (b), the common past
v cones of A and C also include B, labeled by input y and output b.

the two v-disconnected parties measure before the single party
[see Fig. 2(a)], the locality constraints between them can not be
conditioned on later events, e.g., the measurement of the single
party. In other words, ξ can not contain information about
the measurement settings and outcomes of the single party,
and we might equally take this variable out of the picture
by choosing ξ = ∅. In the other case [see Fig. 2(b)], what
happens to the sole party B is contained in both parties’ past
v cones and thus the locality constraints can be conditioned
on his input y and output b: we can choose ξ = (b,y).

We will refer to these scenarios as unconditioned and
conditioned, respectively. Since the unconditioned locality
condition can always be decomposed as a sum of conditioned
ones, it is more general to consider the conditioned case.
The analysis as well as the results presented in this paper
were carried out considering the conditioned scenario; we will
therefore restrict ourselves to this case from now on.

The next task consists of characterizing the set of cor-
relations that can be described within a v-causal model for
the chosen space-time configuration and which do not allow
for superluminal communication. A sufficient condition for
some tripartite correlations P (abc|xyz) not to be exploitable
for superluminal communication through the manipulation of

inputs is that they satisfy a series of mathematical constraints
known as the nonsignaling conditions [22,23]. Essentially, in
the tripartite case, these conditions stipulate that the bipartite
marginal correlations are well defined and are independent of
the input of the remaining party, i.e.,∑

c

P (abc|xyz) = P (ab|xy) ∀ a,b,x,y,z (2)

and similarly for the other parties. Moreover, as is evident
from the specified space-time ordering given in Fig. 2(b),
no nonlocal correlations between the parties A and C can
be achieved as they lie outside each other’s v cones. The
desired set of nonsignaling correlations described by v-causal
models is thus a convex polytope [24] defined by Eq. (2) and
all the locality constraints imposed between parties A and C

[cf. Eq. (1c)].3

To compare the correlations allowed by nonsignaling v-
causal models against those of quantum theory, a second step
consists of restricting our attention to observable quantities
that do not involve simultaneous measurements. We want to
avoid simultaneity because, as mentioned above, we do not
expect quantum correlations to be reproduced by v-causal
models in this case. Technically, this amounts to projecting
away variables involving simultaneous measurements, e.g.,
the AC correlation terms in the case where A ∼ C. The set of
probability distributions obtained in this way will henceforth
be referred to as the projected hidden-influence polytope.
Using this terminology, the task can be rephrased in the
following way. Characterize the projected hidden-influence
polytope for three parties and find a quantum probability
distribution outside of this set.

B. A tripartite hidden-influence inequality
and its quantum violation

We considered the scenario where the two v-disconnected
parties A and C have two inputs and outputs while the other
party B has three of each. For such a setting, the following
lemma is valid.

Lemma 1. For a tripartite probability distribution
P (abc|xyz) with a,c,x,z ∈ {0,1} and b,y ∈ {0,1,2} that

(i) satisfies the nonsignaling constraints (2), and
(ii) is local between the parties A and C conditioned on

B, i.e.,

P (ac|xz,by) =
∑

λ

q(λ|by)P (a|xλ)P (c|zλ), (3)

the following inequality S holds:

S = − PA(0|0) − PA(0|1) − PB(0|0)

+ PB(1|0) − PB(0|1) − PB(1|1)

+ PAB(00|00) + PAB(00|10) + PAB(01|00)

− PAB(01|10) + 2PAB (00|01) + 2PAB(01|01)

+ 2PAB(00|12) + PAB(01|12) + PC(0|0)

3Formally, the locality constraints that have to be imposed in
the space-time ordering of Fig. 2(b) are captured by lifted Bell
inequalities [25].
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+ PBC(00|00) − PBC(00|10) − PBC(10|10)

− PBC(00|20) − PBC(10|20) − PBC(10|01)

+ PBC(00|11) + PBC(10|11) − PBC(00|21)

� − 2. (4)

Proof. Define PB(2|0) = ∑
a,c P (a2c|x0z) to be the

marginal probability P (b = 2|y = 0) and let PAC|B(ac|xz) de-
note the AC|B marginal probabilities P (ac|xz,b = 2,y = 0),
similarly for PA|B and PC|B . That inequality (4) holds can be
seen by rewriting the above expression as follows:4

I = PABC(000|101) + PABC(000|011)

+ PABC(010|011) + PABC(000|100)

+ PABC(000|000) + PABC(010|000)

+ PABC(110|121) + PABC(120|121)

+ PABC(120|010) + PABC(120|120)

+ PABC(001|120) + PABC(011|120)

+ PABC(001|121) + PABC(001|010)

+ PABC(011|010) + PABC(001|001)

+ PABC(011|001) + PABC(121|011)

+ PABC(111|100) + PABC(111|101)

+ PB(2|0)[1 − PA|B(0|1) − PC|B(0|0)

+ PAC|B(00|00) + PAC|B(00|10)

− PAC|B(00|01) + PAC|B(00|11)]

= S + 2. (5)

The first 20 terms in Eq. (5) and the one in front of the square
brackets are probabilities and therefore non-negative, and the
expression in the square brackets is exactly the Clauser-Horne
(CH) expression [26] for the parties A and C conditioned on B

and therefore by condition (ii) this term is non-negative too. In
summary, we can conclude that I � 0 and therefore S � −2
if conditions (i) and (ii) of Lemma 1 are satisfied. �

Let us return to the two crucial steps to establish our
argument. By looking at the expression for the inequality S, we
notice that it does not involve any term with both the parties A

and C. Taking into consideration the locality condition in the
lemma, we have indeed found an inequality for the projected
hidden-influence polytope for the space-time configuration of
Fig. 2(b) as well as Fig. 3.

The next task comprises of finding a quantum state violating
the inequality S shown above. It turns out that a quantum
state |�〉ABC ∈ C 2 ⊗ C 3 ⊗ C 2 suffices. Indeed, considering
the quantum state given in Eq. (A1) and the measurement in
Eq. (A2), one finds a small but clear5 violation of inequality
(4) that amounts to −2.00015.6

4This can be done using the nonsignaling conditions (2), the normal-
ization of probabilities, and the definition of marginal probabilities.

5Although the value might seem small, it lies well above the
numerical precision. This can be verified using the explicit state and
the measurements given in Appendix A.

6From the converging hierarchy [27–29] of semidefinite programs,
one can check that the strongest possible quantum violation of
inequality (4) is of the same order of magnitude, namely, −2.0003.

FIG. 3. The space-time configuration to demonstrate superlumi-
nal communication for correlations P (ac|xz,by) that depend on y

and b. The solid lines represent the c cones and the dashed lines the
v cones, respectively.

Let us briefly explain why the combination of these two
steps indeed allows us to see that v-causal models for quantum
theory are signaling, i.e., do not obey Eq. (2). First of all,
note that, as mentioned in the paragraph above, there exists a
quantum violation for inequality (4). Second, a v-causal model
can reproduce the quantum marginals P (ab|xy) and P (bc|yz)
in the configuration considered [of Fig. 2(b)] because if one
of A or C decided to postpone his measurement, the BC

or AB marginal would remain unchanged and would have
to be the correlations issued from |�〉ABC since all parties
would be v-connected. However, inequality (4) only involves
those marginals for a violation; it must thus be violated by the
v-causal model as well, and hence either one of the conditions
in Lemma 1 must be wrong. Given the fact that condition (ii)
holds for a v-causal model per definition (recall that this is
always the case if A ∼ C), we must conclude that condition
(i) has to be dropped, making the model signaling which was
the claim.

C. From signaling to superluminal communication

Having established a violation of the nonsignaling con-
straints let us try to gain a deeper insight of the exact meaning
behind this statement. First and foremost, the probability
distributions we are dealing with will not fulfill the relations
given in Eq. (2). In this formal definition of nonsignaling, the
speed of light never appears. The justified question arises as
to how one can achieve superluminal communication from a
violation of these constraints. If we can choose the space-time
configuration of the involved parties freely, this is always
possible. Indeed, a violation of the nonsignaling constraints
implies that the outputs of certain parties depend on the input
of the other party. So, by placing the single party at a large
enough distance from the other parties, the first party can
transmit information by merely changing his input.

However, let us recall the space-time configuration dis-
cussed in Fig. 2(b). In the tripartite case, there are three

This violation can be achieved using a similar state and settings to
those given in Appendix A, but using more significant digits.
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different possibilities for signaling to surface. Either the AB

marginal depends on C’s input or the AC marginal depends
on B’s input or the BC marginal depends on A’s input. In
our case, only the second solution is possible because both the
AB and the BC marginals are, by assumption, quantum and
therefore nonsignaling.

Hence, in the situation of Fig. 2(b), there is no hope to
achieve superluminal signaling by varying the inputs of B since
there is no point outside the future light cone of B at which
the AC marginal can be evaluated. But, we can create such a
point if we change the space-time configuration, positioning
the parties as shown in Fig. 3, thus using the dependence of
the AC marginal on B to carry information outside of B’s
future light cone. Note also that the reasoning we followed to
demonstrate a violation of the nonsignaling condition (2) in
the configuration of Fig. 2(b) can be reproduced to show that
this condition is also violated in this new configuration.

Note also that in Fig. 3, A and C can be chosen as close to
each other, and as close to the border of Bob’s v cone as desired.
In this way, superluminal communication at a speed arbitrarily
close to that of the hidden influences v can be obtained.

D. Related and intermediate results

Independently of the case we just presented in which all
parties use binary inputs and outputs, except for Bob who has
three of each, we also considered simpler Bell scenarios. In the
first and most obvious one where all parties have dichotomic
inputs and outputs, we could show in the conditioned case that
the projection of the nonsignaling and the hidden-influence
polytope coincide. The unconditioned scenario can be ruled
out by appealing to the monogamy of nonsignaling correlations
[30,31] as was already pointed out in Ref. [17]. Here, however,
we could rule out the possibility of quantum or nonsignaling
violations in the conditioned case as well. As quantum states

TABLE I. Summary of the results of a selection of studied cases.
The Bell-type scenarios are labeled as follows: The number of square
brackets corresponds to the number of parties and the number of
entries therein is the number of inputs for that party. The actual
value in the square brackets stands for the number of outputs for
that particular input. In the first and the third scenarios listed above,
the corresponding projected hidden-influence polytope can be solved
completely and no violation from quantum nor correlations respecting
Eq. (2) (abbreviated as N-S) is possible. For all the other scenarios
shown, it is possible to find violations with N-S correlations, but a
quantum violation (which also implies a N-S violation) was found
only in the last case.

Violation

Scenario N-S Quantum

{[2 2] [2 2] [2 2]} ✘ ✘

{[3 3] [3 3] [3 3]} � ?
{[3 2] [2 2] [2 2]} ✘ ✘

{[2 2] [3 2] [2 2]} � ?
{[2 2] [3 3] [2 2]} � ?
{[2 2] [3 2] [3 2]} � ?
{[2 2] [3 3] [3 2]} � ?
{[2 2] [3 3 3] [2 2]} � �

are nonsignaling, there is no hope to find a state violating
the hidden-influence constraints if these two polytopes are
identical.

Without any results in the easiest case a broadening to
either more inputs or outputs was necessary. Equipping all
parties with three outputs for each of their two inputs we
could establish a difference between the projected hidden-
influence polytope and the nonsignaling one. This difference
also emerges if instead of increasing the number of outcomes,
the number of inputs is set to three [32]; see also [17] for
an example with four inputs. Studying the case with more
outcomes in more depth, we could observe that neither all
parties nor all inputs necessarily utilized the maximum number
of three outputs at their disposal. Hence, the features of some
intermediate cases were explored as well. A summary of the
results achieved can be found in Table I.

IV. CONCLUSION

The first reported tripartite quantum state that forces any
v-causal model for quantum correlations to be signaling
was described. As mentioned in previous sections, Bell tests
involving only two parties have only set a lower bound for
the speed of such hypothetical influences. Therefore, this
result closes the gap between what has been experimentally
achieved in the two-party case and what has been theoretically
demonstrated in the four-party scenario.

Albeit with a difference to the four-party case where
two inputs and outputs per party were enough to conclude
the argument, this was not achievable in the tripartite case.
Nevertheless, this finding shows that there is no fundamental
difference between three and four parties in what concerns
refuting v-causal models.

We also note that the argumentation involved for our
tripartite example, as well as the results presented in Ref. [9],
do not rely on the “transitivity of nonlocality” (as formulated
in Ref. [17]). Indeed, the marginal correlations AB that are
involved in our example can be easily shown to satisfy all Bell
inequalities.

From an experimental perspective, this work has to be seen
as a proof of principle, as the weak violation and hence the
low robustness to noise of the reported quantum state makes
an experimental test exceedingly demanding. It remains an
open question as to whether a quantum state violating the
hidden-influence constraints can be found that is robust against
noise as well as easily producible experimentally.
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APPENDIX: TRIPARTITE QUANTUM STATE

Inequality (4) can be violated with the quantum state
and the measurements given below. The superscript denotes
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the different inputs, while the subscript gives information
about the outputs. Only the positive-operator-valued measure
(POVM) elements for all but the last output are given; the
remaining one can be obtained from the fact that POVM
elements for the same input must sum to the identity operator.
Since some coefficients are given numerically, we use the
notation ∝ to mean that a state should be multiplied by a
coefficient in order to be normalized.

|�〉 ∝ (−0.0003 − 0.0075i)|001〉
+ (0.0029 + 0.0093i)|010〉
+ (0.6769)|021〉
+ (−0.1145 − 0.2881i)|100〉
+ (−0.5782 − 0.3330i)|111〉
+ (−0.0154 + 0.0055i)|120〉, (A1)

Â0
0 = 1

2 (1 + σz),

Â1
0 = Pα1

0
, α1

0 ∝
[

0.5289 − 0.4693i

0.7071

]
,

B̂0
0 = Pϕ0

0
, ϕ0

0 ∝
⎡
⎣

0.0368 − 0.2164i

0.7070
0.6584 + 0.1357i

⎤
⎦,

B̂0
1 = Pϕ0

1
, ϕ0

1 ∝
⎡
⎣

−0.0368 + 0.2164i

0.7072
−0.6583 − 0.1357i

⎤
⎦,

B̂1
0 = Pϕ1

0
, ϕ1

0 ∝

⎡
⎢⎣

0.1466 − 0.0131i

0.9891

−0.0001 − 0.0027i

⎤
⎥⎦,

B̂1
1 = Pϕ1

1
, ϕ1

1 ∝

⎡
⎢⎣

0.9889

−0.1467 − 0.0131i

0.0006 − 0.0181i

⎤
⎥⎦,

B̂2
0 = Pϕ2

0
, ϕ2

0 ∝

⎡
⎢⎣

0.0002 + 0.0053i

0.6925 − 0.1428i

0.7072

⎤
⎥⎦,

B̂2
1 = Pϕ2

1
, ϕ2

1 ∝

⎡
⎢⎣

1.0000

0

−0.0003 + 0.0075i

⎤
⎥⎦,

Ĉ0
0 = Pγ 0

0
, γ 0

0 ∝
[

0.4800 − 0.8751i

0.0619

]
,

Ĉ1
0 = Pγ 1

0
, γ 1

0 ∝
[

0.0298 − 0.0543i

0.9981

]
. (A2)
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