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Nonrelativistic limit of the Dirac-Schwarzschild Hamiltonian:
Gravitational Zitterbewegung and gravitational spin-orbit coupling
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We investigate the nonrelativistic limit of the gravitationally coupled Dirac equation via a Foldy-Wouthuysen
transformation. The relativistic correction terms have immediate and obvious physical interpretations in terms
of a gravitational Zitterbewegung and a gravitational spin-orbit coupling. We find no direct coupling of the
spin vector to the gravitational force, which would otherwise violate parity. The particle-antiparticle symmetry
described recently by one of us [Jentschura, Phys. Rev. A 87, 032101 (2013)] is verified on the level of the
perturbative corrections accessed by the Foldy-Wouthuysen transformation. The gravitational corrections to the
electromagnetic transition current are calculated.
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I. INTRODUCTION

The ever-increasing precision of spectroscopic experi-
ments necessitates the consideration of gravitational effects
in relativistic quantum mechanics. General relativity effects
already have to be taken into account in the synchronization
of clocks in the global positioning system (GPS) satellites,
which implies that the satellite-based clocks get ahead of
ground-based clocks by about 45 μs/d. For nonrelativistic
neutron waves, quantum-mechanical phase shifts due to the
gravitational and inertial forces have been measured in Refs.
[1–3]. The derivation of the gravitationally coupled Dirac
equation has been discussed in textbooks [4–10] as well as
original research literature [11–17]. Recently, it has been
argued that a symmetry exists [16] for the gravitationally
coupled Dirac equation, which implies that particles and
antiparticles are both attracted to the gravitational field and
that this symmetry holds to all orders in the velocity of the
particles, i.e., including all relativistic quantum corrections of
motion. This symmetry was obtained [16] for a class of static
space-time metrics which give rise to a (generalized) Dirac-
Schwarzschild equation. We also refer to the corresponding
Hamiltonian as the Dirac-Schwarzschild Hamiltonian.

However, the result obtained in [16] was not reconciled
with other articles from the literature, which investigate
the nonrelativistic limit of the quantum dynamics and, in
particular, discuss the conceivable presence [18] of a spin-
gravity coupling of the form �� · �g, where �� is the (4 × 4)-spin
matrix and �g is the acceleration due to gravity. Specifically,
in Ref. [18], a conceivable spin-gravity interaction and the
pertinent experimental detection have been investigated. In
Ref. [19], via a Foldy-Wouthuysen transformation [20] of
the Dirac-Schwarzschild Hamiltonian, a term proportional to
�� · �g is obtained in the leading nonrelativistic approximation.
References [21,22] discuss whether such a term would violate
parity. Indeed, it is well known that orbital as well as
spin angular momenta constitute pseudovectors. Notably, the
spin operator �� = γ 5 γ 0 �γ transforms under parity as �� →
γ 0 �� γ 0 = �� and therefore as a pseudovector. By contrast, the
gravitational force �Fg = m �g with mg = m |�g| = GmM/r2 =
m rs/(2r) is a vector. (Here, m and M are the masses of the test
particle and planet, respectively, and rs is the Schwarzschild

radius; we use natural units with h̄ = c = ε0 = 1.) One might
thus conclude that any term in the Hamiltonian proportional to
�� · �g would indeed violate parity symmetry. Apparently, the
question of how to physically interpret the leading relativistic
corrections in a curved space-time akin to the Schwarzschild
geometry still constitutes an open problem [23–26].

The gravitational Dirac Hamiltonian is similar in its mathe-
matical structure to the Dirac-Coulomb Hamiltonian [27–29],
and we would a priori expect that the Foldy-Wouthuysen
transformation should yield similar terms but respect the
particle-antiparticle symmetry from [16]. The nature of the
Foldy-Wouthuysen program is inherently perturbative. In
the following, we expand to first order in the gravitational
coupling constant; i.e., we only keep terms of first order in
the Schwarzschild radius rs . The corresponding dimensionless
expansion parameter is χ = rs/r , where r measures the
distance from the center of the black hole (in the sense of a
space-time coordinate). Regarding the momenta and distances,
we assume that the Cartesian components pi are of order ξm

and that ri ∼ 1/(ξm) and expand to order χ ξ 3 or to order ξ 4

(for the gravitationally uncoupled terms). After a rederivation
of the Hamiltonian form of the Dirac-Schwarzschild equation
in Sec. II, the Foldy-Wouthuysen transformation is carried
out explicitly in Sec. III, while conclusions are reserved
for Sec. IV. We again reemphasize the use of natural units
throughout the article (h̄ = c = ε0 = 1).

II. FORMALISM

We use the same conventions as in Ref. [16] and assume
that the curved-space Dirac γ (overline) and flat-space (tilde)
Dirac matrices fulfill the algebraic relations

{γ μ(x),γ ν(x)} = 2 gμν(x) , {γ̃ μ,γ̃ ν} = 2 g̃μν. (1)

Here, {·,·} is the anticommutator. The curved-space metric is
gμν , with μ,ν = 0,1,2,3, while the “West-Coast” flat-space
metric is g̃μν = diag(1,−1,−1,−1). Overlining the curved-
space Dirac matrices and using the tilde for the flat-space
variants avoids a conceivable confusion with the particle
physics literature [30–34], where one denotes the flat-space
matrices as γ μ and the flat-space metric as gμν , whereas in
the literature on general relativity, one usually denotes the
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curved-space Dirac matrices without a tilde and uses gμν for
both flat-space and curved-space metrics [35–39]. Explicit use
of the overlining and the tilde avoids any possible confusion.

The formulation of the gravitationally coupled Dirac equa-
tion [4–16] suggests the use of the vierbein formalism, which
is particularly straightforward to formulate if the “square root
of the metric” can be taken with ease (see Sec. 6 of Ref. [40]).
The Dirac action in curved space-time is given by the invariant
integral

S =
∫

d4x
√

− det g ψ(x)

(
i

2
γ ρ(x)

←→∇ ρ − m

)
ψ(x),

(2)

where the covariant derivative is ∇ρ = ∂ρ − �ρ and

�ρ = − i

4
gμα

(
∂bν

β

∂xρ
aα

β − �α
νρ

)
σμν (3)

is the affine spin-connection matrix. Here, the curved-space
spin matrices are σμν = i

2 [γ μ,γ ν]. We represent the γ ν

matrices in terms of the flat-space γ̃ μ,

γ ρ = bρ
α γ̃α , γ̃ρ = aα

ρ γ α, (4a)

γ α = aα
ρ γ̃ ρ , γ̃ α = bρ

α γ ρ. (4b)

We use the flat-space Dirac matrices in the Dirac representa-
tion,

γ̃ 0 =
(
12×2 0

0 −12×2

)
, γ̃ 1 =

(
0 σ 1

−σ 1 0

)
, (5a)

γ̃ 2 =
(

0 σ 2

−σ 2 0

)
, γ̃ 3 =

(
0 σ 3

−σ 3 0

)
, (5b)

γ̃ 5 = i γ̃ 0 γ̃ 1 γ̃ 2 γ̃ 3 =
(

0 12×2

12×2 0

)
. (5c)

The metric is recovered as

{γ ρ,γ σ } = bρ
α bσ

β {γ̃α,γ̃β} = 2 g̃αβ bρ
α bσ

β = 2gρσ , (6a)

{γ ρ,γ σ } = aρ
α aσ

β {γ̃ α,γ̃ β} = 2 g̃αβ aρ
α aσ

β = 2gρσ . (6b)

The gravitationally coupled Dirac equation, obtained by
variation of Eq. (2), is

(i γ μ ∇μ − m)ψ(x) = 0. (7)

We now specialize to a static space-time metric [41] of a
generalized Schwarzschild type,

gμν = diag[w2(r),−v2(r),−v2(r),−v2(r)], (8)

where the vierbein coefficients are given as b0
β = δ0

β w(r),
bi

j = δi
j v(r), aα

0 = δ0
α/w(r), and ai

j = δi
j /v(r). The a and

b matrices are symmetric in this case, aμ
ν = aν

μ and bμ
ν =

bν
μ. With these coefficients, using computer algebra [42], it

is easy to evaluate all Christoffel symbols and to establish
that [16]

γ 0 γ μ �μ = − γ̃ 0 �̃γ · �r
v(r)w(r)

G(r), (9a)

G(r) = 2 v′(r) w(r) + v(r) w′(r)

2 v(r) w(r)
. (9b)

The Hamiltonian form of the gravitationally coupled Dirac
equation,

i(γ 0)2 ∂tψ = (γ 0 γ j pj + i γ 0 γ μ �μ + γ 0 m)ψ, (10)

translates into i∂tψ = H ψ , where H is given by

H = w

v
�α · �p − i

2v
�α · �∇w − iw

v2
�α · �∇v + βmw. (11)

Here, we use the notation �α = γ 0 �̃γ and β = γ 0. We now
stretch space according to the scaling

ψ ′ = v3/2 ψ , H ′ = v3/2 H v−3/2. (12)

This leads to a Hermitian Hamiltonian, which acts on the
Hilbert space of square-integrable functions with the scalar
product 〈φ,ψ〉 = ∫

d3 φ∗(�r) ψ(�r) and in three-space reads as

H ′ = 1

2
{�α · �p,F} + βmw, F = w

v
. (13)

We here confirm the result given in Eq. (14) of Ref. [19].
For the Schwarzschild metric in isotropic coordinates (see
Sec. 43 of Chap. 3 of Ref. [41]), we have to first order in the
Schwarzschild radius rs ,

w =
(

1 − rs

4r

)(
1 + rs

4r

)−1

= 4r − rs

4r + rs

≈ 1 − rs

2r
,

v =
(

1 + rs

4r

)2

≈ 1 + rs

2r
, (14)

w

v
= 16 r2 (4r − rs)

(4r + rs)3
≈ 1 − rs

r
.

The Schwarzschild radius is given as rs = 2 GM , where G

is Newton’s gravitational constant and M is the mass of the
planet. So, to first order in rs , we have to analyze the Dirac-
Schwarzschild Hamiltonian HDS, which is given by

HDS ≈ 1

2

{
�α · �p,

(
1 − rs

r

)}
+ βm

(
1 − rs

2r

)
. (15)

We can now carry through the Foldy-Wouthuysen program as
usual.

III. FOLDY-WOUTHUYSEN TRANSFORMATION

A. Transformation of the Hamiltonian

Contrary to widespread belief, the rationale of the Foldy-
Wouthuysen transformation [20] actually is rather well defined
[30] and in some sense tied to the Dirac representation of the
Dirac matrices given in Eq. (5). (i) One has to identify the
odd (in spinor space) part of the Hamiltonian H , which is
denoted as O. (ii) One then defines the Hermitian operator
S = −i β O/(2m) and the unitary operator U = exp(iS).
(iii) The calculation of multiple nested commutators of
U and H proceeds until further nested commutators only
yield higher-order terms when expressed in terms of defined
operational parameters of the expansion. (iv) If there are odd
terms left after the first transformation, to the desired order in
the expansion, then one employs a second Foldy-Wouthuysen
transformation by identifying the odd part of the new Hamil-
tonian, which resulted from the first Foldy-Wouthuysen step,
as O′. One does this recursively until all odd parts of the
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input Hamiltonian are eliminated. In the case of the free Dirac
Hamiltonian, it is possible to perform a Foldy-Wouthuysen
transformation to all orders in the momenta [30], but one
may also choose a perturbative approach (see the Appendix).
However, an exact Foldy-Wouthuysen transformation has not
been described for more complicated Hamiltonians like the
Dirac-Coulomb Hamiltonian [27–29]

HDC = �α · �p + βm − Zα

r
, (16)

where Z is the nuclear charge number and α is the fine-
structure constant, or for other, nontrivial extensions of the
standard free Dirac equation [43]. The Dirac-Schwarzschild
Hamiltonian (15) still is of an intricate nature. A nonperturba-
tive Foldy-Wouthuysen transformation has not been described
in the literature for the Dirac-Coulomb Hamiltonian (16), and
we can thus conclude that a perturbative approach seems most
promising for the Dirac-Schwarzschild Hamiltonian.

For the gravitational correction terms, the expansions below
are carried through to first order in χ = rs/r and to third order
in ξ = �p/m or ξ = 1/(m r), and we assume the exchanged
photons to be soft, i.e., k ∼ ξ 2m. This is the same expansion
as for the Lamb shift [30,44] if we identify χ with Zα, where
Z is the nuclear charge number and α is the fine-structure
constant. Terms are calculated up to order χ4 if there is no
gravitational interaction and up to order ξ χ3 if there is a
gravitational interaction. Terms of order ξ 2 (second order in
the gravitational interaction) are ignored.

To leading order in rs , we have to analyze the Hamiltonian
H1 = HDS as given in Eq. (15). For the first Foldy-Wouthuysen
transformation, we therefore have

S1 = − i

2m
β O1, O1 = 1

2

{
�α · �p,

(
1 − rs

r

)}
. (17)

The transformation is calculated as

H2 = eiS1 H1 e−iS1

= H1 + i [S1,H1] + i2

2!
[S1,[S1,H1]] + · · · . (18)

The result is

H2 = β

(
m + �p 2

2m
− �p 4

8m3

)
− β

m rs

2 r

+ β

(
−3rs

8m

{
�p 2,

1

r

}
+ 3πrs

4m
δ(3)(�r) + 3rs

8m

�� · �L
r3

)

− (�α · �p)3

3m2
+ 1

4

{
rs

r
,�α · �p

}
. (19)

A central ingredient of the Foldy-Wouthuysen transformation
is the presence of the term β m in the initial Hamiltonian and
the commutator relation [βO,βm] = −2mO, which holds for
any odd (in the spinor space) term O in the Hamiltonian.
Indeed, the first commutator in Eq. (18) then eliminates the
leading odd terms in the initial Hamiltonian H1. One might
think that this scheme is not applicable to the Hamiltonian (15)
because the mass term is multiplied by a factor [1 − rs/(2r)],
but that is not the case: The nature of the Foldy-Wouthuysen
transformation is perturbative, and the term −β m rs/(2r)
is a perturbative gravitational correction to the mass. The
modification of the mass term therefore is of higher order

in χ and does not inhibit the application of the perturbative
approach to the Foldy-Wouthuysen transformation.

For the second Foldy-Wouthuysen transformation, we have

S2 = − i

2m
β O2, O2 = − (�α · �p)3

3m2
+ 1

4

{
rs

r
,�α · �p

}
. (20)

The transformation is calculated as HFW = eiS2 H2 e−iS2 .
Taking notice of the well-known identity �p 2( 1

r
) = 4 π δ(3)(�r),

the Foldy-Wouthuysen transformation gives the result

HFW = β

(
m + �p 2

2m
− �p 4

8m3

)
− β

m rs

2 r

+ β

(
−3rs

8m

{
�p 2,

1

r

}
+ 3πrs

4m
δ(3)(�r) + 3rs

8m

�� · �L
r3

)
.

(21)

In retrospect, this result is simple and also offers a straightfor-
ward physical interpretation as follows: First, we have the usual
relativistic corrections to the kinetic energy. The second term
on the right-hand side of Eq. (21) is the gravitational potential,
duly decorated with a β prefactor, which ensures that antiparti-
cles are attracted. The third term consists of a kinetic correction
to the gravitational coupling and a Darwin (Zitterbewegung)
term which is not experimentally relevant because it is located
at the center of the planet, i.e., inside the Schwarzschild radius.
However, for completeness, we should include this term. The
very last term on the right-hand side of Eq. (21) is a spin-orbit
coupling term, which is also decorated with a β prefactor. It
commutes with the Dirac angular operator K = β( �� · �L + 1)
and with the total angular momentum (orbital + spin), and
the prefactor β ensures that the particle-antiparticle symmetry
E ↔ −E holds. The spin-orbit coupling term describes the
gravitational spin-orbit coupling; it is in agreement with the
classical result for the interaction of a spinning classical
particle with the gravitational field, which is otherwise known
as the geodesic precession or Fokker precession [45,46]. When
comparing the spin-orbit term with Eq. (26) of Ref. [45], which
has a prefactor of 3/2 instead of 3/8, one should take note
that the spin operator carries a factor one half (�S = 1

2
��),

and there is an additional factor 2 in the definition of the
Schwarzschild radius. The prefactor β in Eq. (21) describes
the particle-antiparticle symmetry, which cannot be obtained
based on classical considerations [45,46].

Let us conclude the discussion by pointing out a subtlety.
One might think that, if the total angular momentum operator
commutes with the Hamiltonian, then it should automatically
commute with the Foldy-Wouthuysen transformed Hamilto-
nian. However, that is not the case. If A is an operator that
commutes with the Hamiltonian, [HDS,A] = 0, and HFW =
U HDS U−1, then the transformed operator AFW = U AU−1

commutes with HFW. This can be seen as follows:

[HFW,AFW] = U [HDS,A] U−1 = 0 . (22)

So, if �J commutes with HDS, then this does not automatically
mean that �J commutes with HFW. Let us recall that the total
angular momentum �J and the Dirac angular operator K are
defined as follows:

�J = �L + 1
2
��, K = β( �� · �L + 1). (23)
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We can establish the following commutator relations:

[HDS,K] = 0, [HDS, �J ] = �0, (24a)

[HFW,K] = 0, [HFW, �J ] = �0. (24b)

In view of (22), it is not a triviality to separately establish
that both �J and K commute with HDS and HFW individually,
but the relations hold. Eigenfunctions of HDS and of HFW

are eigenstates of �J and K; i.e., the spinor components of
the eigenfunction are χκμ(r̂) (upper component) and χ−κμ(r̂)
(lower component), and they have the same j = |κ| − 1/2.

B. Transformation of the transition current

The main result derived in the current work concerns the
Foldy-Wouthuysen Hamiltonian HFW derived in Eq. (21).
However, it is also interesting to investigate the gravitational
corrections to the electromagnetic transition current. The
transition current operator for the emission of transverse
photons in flat space is given by the matrix-valued expression
j i = αi exp(i�k · �r); an illustrative discussion can be found
in Refs. [30,44,47]. The Hermitian adjoint of this operator
is obtained by the replacement exp(i�k · �r) → exp(−i�k · �r),
i.e., by the replacement of a photon emission by a photon
absorption process.

The Dirac-Schwarzschild Hamiltonian (15) is coupled to
an external electromagnetic field by the replacement �p →
�p − e �A, where �A is the vector potential. The interaction
Hamiltonian is Hint = −�j · �A. So with relativistic gravitational
coupling included, the transition current reads

j i = 1

2

{
1 − rs

r
,αi exp(i�k · r)

}
. (25)

We now employ the multipole expansion

αi exp(i�k · r) ≈ αi + αi (i�k · �r) − 1
2αi(�k · r)2 (26)

in Eq. (25). A subsequent calculation of the Foldy-Wouthuysen
transformation j i

FW = U ji U−1 of the transition current [with
U = exp(iS2) exp(iS1)] gives the result

j i
FW = pi

m
− pi �p 2

2m
− i

2m
(�k × �σ )i + 1

2

{
pi

m
, (i�k · �r)

}

− 1

4

{
(�k · �r)2,

pi

m

}
+ 1

2m
(�k · �r)(�k × �σ )i

− 3

4

{
pi

m
,
rs

r

}
+ rs

2r

(�σ × �r)i

m r2

− 1

2

{
(i�k · �r),

{
pi

m
,
rs

r

}}
+ 3irs

4r

(�k × �σ )i

m

+ 1

4

{
rs

r
(i�k · �r),

pi

m

}
. (27)

In addition to the canonical corrections to the relativistic
transition current [30,44,47] (kinetic corrections and magnetic
coupling), this result contains a gravitational kinetic correction
and gravitational corrections to the magnetic coupling.

IV. CONCLUSIONS

In this paper, we investigate the nonrelativistic limit of
the gravitationally coupled Dirac Hamiltonian for a Dirac

particle bound to the gravitational field of a planet. In order
to calculate the relativistic corrections in the gravitational
field, we carry out a Foldy-Wouthuysen transformation with
relativistic corrections up to fourth combined third order in
the momenta ( �p 4) and first order in the gravitational constant
G. Within our expansion, we have | �p| ∼ ξ m, where m is the
fermion mass. Our calculations include terms up to the order
ξ 4 and to the combined fourth order χ ξ 3, where χ = rs/r

is the gravitational expansion parameter. We verify that the
equivalence principle holds for the gravitational interaction
of particles and antiparticles based on an inspection of the
functional form of the relativistic corrections, which are all
proportional to the β ≡ γ 0 matrix [see Eqs. (5) and (21)]. The
conceivable existence of a spin-gravity coupling, which would
otherwise break parity and the equivalence principle, had been
discussed in various studies in the literature; we find that the
corresponding terms vanish.

It has recently been argued [48] that one might speculate
about alternative forms for the relativistic spin operator, which
might not be given by �� but by a different operator which
commutes with the Hamiltonian. However, the spin of the
electron is not a constant of motion. Rather, the total angular
momentum �J = �L + 1

2
�� is conserved (a particularly clear

exposition can be found in Sec. 11.3 of Ref. [49]). Indeed,
�J (not �L or ��) is an integral of the relativistic motion; if

we could observe the spin of the electron in real time, then
we would see it precess during the motion. Indeed, the spin
of the electron couples to the orbital angular momentum,
and this spin-orbit coupling term expresses that the spin
is not conserved; i.e., it precesses while being coupled to
the orbital angular momentum, and only the total angular
momentum is conserved. This fact is precisely confirmed in
our approach, and the gravitational analogs of the spin-orbit
coupling and the Zitterbewegung term are found. We can thus
uniquely identify the gravitational spin-orbit coupling term
corresponding to the classical geodesic precession (Fokker
precession) of a spinning object in the gravitational field [45],
formulated within quantum mechanics and respecting the
particle-antiparticle symmetry (prefactor β).
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APPENDIX: FOLDY-WOUTHUYSEN TRANSFORMATION
OF THE FREE DIRAC HAMILTONIAN

It is instructive to carry out the Foldy-Wouthuysen transfor-
mation of the free Dirac Hamiltonian in exactly the same two-
step approach with two iterative transformations as described
in Ref. [30] for the Dirac-Coulomb Hamiltonian (keeping in
mind that the Foldy-Wouthuysen transformation of the free
Dirac Hamiltonian can otherwise be carried out in a single
step). The free Dirac Hamiltonian is given as

HFD = H1 = �α · �p + βm. (A1)
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For the first Foldy-Wouthuysen transformation, we have

S1 = − i

2m
β O1 , O1 = �α · �p. (A2)

The transformation is calculated as

H2 = eiS1 H1 e−iS1 . (A3)

This leads to the result

H2 = β

(
m + �p 2

2m
− �p 4

8m3

)
− (�α · �p)3

3m2
. (A4)

For the second Foldy-Wouthuysen transformation, we have

S2 = − i

2m
β O2, O2 = − (�α · �p)3

3m2
. (A5)

The transformation is calculated as

HFW = eiS2 H1 e−iS2 . (A6)

The transformed Hamiltonian is

HFW = β

(
m + �p 2

2m
− �p 4

8m3

)
. (A7)

This result corresponds to our Eq. (21) and is the limit of
vanishing rs , as it should be.

All unitary transformations discussed here respect the basic
symmetries of the Dirac Hamiltonian such as parity. This is
essential; as an extreme example, let us briefly supplement the
discussion by considering the nonrelativistic free Schrödinger
Hamiltonian H0 = �p 2/(2m) and the unitary transformation
U = exp(i �A · �r), where �A is a constant vector. Then, H ′

0 =
U H0 U+ = ( �p − �A)2/(2m). Upon binomial expansion, one
obtains a term proportional to �A · �p, which breaks parity.
However, the parity-breaking term in H ′

0 is an artifact
generated by the parity-breaking unitary transformation. As
a further illustrative remark, let us consider the transformation
S1, given in Eq. (A2), under parity,

S1 = − i

2m
β �α · �p

P→ β

[
− i

2m
β �α · (− �p)

]
β = i

2m
�α · �p β = S1. (A8)

By construction, the iterative Foldy-Wouthuysen transforma-
tions discussed here respect parity symmetry, and so does the
final result given in Eq. (21).
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