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Positive operator valued measures representing phase observables for systems with arbitrary discrete, possibly
degenerate, spectra are constructed. The general construction is presented and discussed using illustrative
examples. The phase POVM shows intricate discontinuous dependence on the eigenfrequencies. Special
discussion is devoted to the systems with degenerate energy spectrum, in which case the phase observable
is nonunique. We present arguments that can be used to reduces this nonuniqueness.
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I. INTRODUCTION

Classical mechanical systems which are integrable possess
only periodic and quasiperiodic motions, and have a well-
defined physical quantity representing the phase of a point
evolving on a periodic or a quasiperiodic orbit. A state vector
of a bounded quantum system always undergoes periodic or
quasiperiodic motion in the corresponding Hilbert space. This
paper is devoted to a construction of a measurable quantity
that represents the phase of the state vector motion on its orbit
in the Hilbert space. An adequate and mathematically correct
definition of the phase of quantum motion, as corresponding
to the notion of phase of classical oscillatory dynamics, proves
to be a highly nontrivial task, even for the simplest systems,
like the harmonic oscillator. Constructions of a meaningful
object representing the phase of quantum motion have been
attempted in at least three conceptually different frameworks.
In the first approach [1,2], the phase is considered as a
parameter and the problem is then to estimate the phase shift
during evolution of a state vector. In the second [3], which
might be called semiclassical, one again treats the phase
as a parameter of the quantum state introduced using the
geometry of the quantum phase space. The third approach
attempts to define the phase as an observable conjugate to
the system’s Hamiltonian. The main well-known problem
with this approach is the Pauli’s obstacle [4,5] coming
from the semibounded nature of the energy spectrum. Many
different nonequivalent answers were suggested. Illustrative
references for this approach are Refs. [6–15]. The major
breakthrough was to realize that measurements of quantum
observables can be consistently described using an appropriate
positive operator valued measure (POVM), which provides
nonorthogonal resolutions of unity and cannot be reduced
to the more common projective measures (PM) [16,17]. In
the simplest case of the harmonic oscillator, the phase is
mathematically represented by the corresponding (POVM)
denoted M̂(dθ ), which satisfies the covariance condition
[16,17]:

exp[iθ1Ĥ ]M̂(a,b)exp[−iθ1Ĥ ]

= M̂(a + θ1,b + θ1) mod 2π, (1)

where θ1 is a particular phase parameter value, (a,b) and
(a + θ1,b + θ1) are an interval of the phase and its θ1 shift,
and Ĥ is the Hamiltonian. Obviously, in cases of systems with

symmetries, implying Hamiltonians with degenerate spec-
trum, the covariance condition does not fix uniquely the phase
POVM. Nevertheless, the covariance condition is taken as the
defining property of the phase observable. Corresponding con-
struction of the phase observable for an arbitrary quantum sys-
tem with periodic or quasiperiodic state vector dynamics has
not been formulated in full generality. The original definition of
the covariant phase observable provided for the harmonic os-
cillator by prof. Holevo [16] has been generalized for systems
with rationally related nondegenerate energy eigenvalues in
Refs. [18,19]. Alternative constructions of POVM represen-
tations of phase observables have been suggested for qubits
and qutrits [20–25] using polar decomposition analogously as
for the harmonic oscillator. An interesting approach explores
the complementarity of the putative phase and amplitude
observables formalized using the concept of mutually unbiased
bases [26].

In a recent publication we have briefly sketched a definition
of a covariant phase observable for an arbitrary system with
finite dimensional state space and no degeneracy [27]. It is the
purpose of this communication to provide a detailed and gen-
eral construction of the POVM for the phase observable for an
arbitrary quantum system given by a discrete possibly infinite
and degenerate energy spectrum, and to compare the phase
POVM of systems with different characteristic frequencies. In
the elementary case of a system with an equidistant energy
spectrum, the phase introduced here reduces to the known
phase observable for the harmonic oscillator [16] and in the
case of finite systems with rationally related nondegenerate
energy levels to the one discussed in Refs. [18,19]. The
physical interpretation of the phase observable for periodic
systems introduced here (and in Ref. [27]) is that of the
system’s normalized phase (or normalized age, or angle),
normalized to the system’s period. This is different from the
notion of an absolute phase or absolute age [9]. The notion
of normalized phase has been criticized in Ref. [28]. Step
by step comments on this criticism appear in Ref. [29], and
shall be discussed in Sec. IV. At this point, it is enough
to stress that the normalized phase, introduced here, is a
direct analog of the classical phase variable, and it measures
the part of the total period T undergone by the system
during an interval (0,t). In this way the normalized ages
of two systems with different periods can be meaningfully
compared.
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The paper is organized as follows. In the second section
we present an explicit construction of the phase POVM
valid for arbitrary, possibly degenerate, energy spectrum with
rationally related eigenvalues. We than discuss the case of
a system whose energy spectrum has an accumulation point
and systems with irrationally related energy eigenvalues.
Peculiar discontinuous dependence of the phase POVM on the
system’s parameters is illustrated and discussed in Sec. III A
using the Morse potential as an example. In Sec. III B we
illustrate the nonuniqueness of the phase POVM for systems
with degenerate spectrum and discuss physically the most
plausible way to reduce such nonuniqueness. Section IV
contains an example of a system with clear physical in-
terpretation, that can be studied experimentally. Detailed
discussion and summary are given in Secs. V and VI,
respectively.

II. GENERAL CONSTRUCTION OF THE PHASE POVM

Consider a system with a discrete spectrum of possibly
degenerate energy eigenvalues Ek, k = 0,1,2 . . . . If all the
energy levels are rationally related then there exists the cor-
responding smallest interval �E such that all the eigenvalues
can be written as

Ek = E0 + �Eqk, (2)

where qk, k = 1,2 . . . are positive integer numbers. The
spectra with irrationally related energy eigenvalues can be
approximated arbitrary well by the form (2) with sufficiently
small �E and sufficiently large integers qk . However, it will
turn out that the phase observables for systems with spectra that
have nearby energy eigenvalues might be quite different so that
the phase observable of an irrational cannot be approximated
by a simple continuity argument.

We shall first define the phase observable for arbitrary but
fixed sequence of integers qk , and then compare the phase
observables for different integer approximations of a spectra
with some irrationally related eigenvalues.

The covariance condition on putative M̂(θ ) suggests to
attempt the construction of M̂(θ ) as a discrete Fourie sum over
the eigenbases of the Hamiltonian, as was done for the case
of the equidistant spectrum of the harmonic oscillator [16]. In
the case of a nondegenerate spectrum with arbitrary rational
ratios of the eigenenergies, the discrete Fourie transform with
an appropriate rescaling would indeed result in a POVM
with the desired covariance property (1). However, the simple
procedure does not work in the case of a degenerate spectrum.
One difficulty is that the simple Fourier sum in the degenerate
case does not give an object which represents a resolution
of unity. Some of the matrix elements of the simple Fourier
transform have to be eliminated in a consistent way. However,
there are different possible ways that this can be done and as
a result the phase POVM is not uniquely defined. This will be
illustrated after we introduce the procedure that works also in
the degenerate case. There is also another source of nonunique-
ness of the phase POVM in the degenerate case with a more
transparent physical origin. Suppose that the eigenvalue En is
twofold degenerate with the corresponding two-dimensional
(2D) eigenspace Pn. In the construction of the discrete Fourier

sum one is free to chose arbitrary bases in Pn, and different
choices might render different results. This nonuniqueness
of the phase POVM satisfying the covariance condition,
like the degeneracy of the spectrum, is a consequence of
the system’s symmetry. In fact, if M̂(θ ) satisfies (1) the
equation is satisfied also by M̂ + Ĉ where Ĉ generates sym-
metry transformations. A unique choice of the phase POVM
may be attempted by imposing conditions additional to the
covariance Eq. (1).

In what follows we shall present a sufficiently general
algorithm for the construction of phase POVMs which works in
the case of arbitrary degeneracy. It will turn out that the matrix
elements of the phase POVM in the chosen bases depend
also on the procedure that is used in the definition to split
the degenerate energy eigenspaces. In order to formulate the
general procedure that defines the phase POVM we shall first
introduce the notion of a legitimate partition of the energy
eigenbases.

Denote by � = {Qi, i = 1,2,3 . . . } a partition of the
spectra and the relevant integers numbers qk into cells Qi , and
introduce a double index (i,j ) so that all integers qi,j are from
the ith cell, and those from the ith cell are enumerated by the
index j : Qi = {qi,j , j = 1,2,3 . . . }. Furthermore, require that
the partition is such that no two integers qi,l and qi,m from the
same cell Qi (and different l �= m) correspond to the same
energy eigenvalue. In other words, if Ei,j = E0 + �Eqi,j

then

l �= m → qi,l �= qi,m → Ei,l �= Ei,m. (3)

For convenience, we call partitions satisfying the condition
(3) legitimate. Motivation for the introduction of legitimate
partitions will be cleared during the construction of the phase
POVM.

Which are the legitimate partitions is determined by the
degeneracy of the energy spectrum. For example, consider
a system with the Hilbert space C4 of complex dimension
4, and energy eigenvectors |1〉,|2〉,|3〉,|4〉. Let the vectors
|2〉 and |4〉 belong to the same energy eigenvalue. Then,
for example, the partitions �1 = {{|1〉,|2〉},{|3〉,|4〉}}, �2 =
{{|1〉,|2〉,|3〉},{|4〉}}, and �3 = {{|1〉},{|2〉},{|3〉},{|4〉}} are le-
gitimate, while the partitions �4 = {{|1〉,|2〉,|4〉},{|3〉}} and
the trivial one �5 = {{|1〉,|2〉,|3〉,|4〉}} are not legitimate.
In the case of partition �1 the vectors would be indexed
as |1〉 = |1,1〉,|2〉 = |1,2〉,|3〉 = |2,1〉,|4〉 = |2,2〉. Notice that
if the spectra are nondegenerate then all partitions, and in
particular the trivial one with all the levels in a single cell like
in �5, are legitimate. As another example, we might consider
a one-dimensional (1D) free particle with doubly degenerate
energy spectrum p2/2m. Each 2D eigenspace is spanned by
the generalized eigenvectors |p〉,|−p〉. A legitimate parti-
tion is, for example, the one with only two cells Q+,Q−
such that Q+ contains all |p〉,p > 0 and Q− contains all
|p〉,p � 0. Of course there are infinitely many other legitimate
partitions.

We can now proceed with the definition of the phase
observable corresponding to a general legitimate partition of an
energy spectrum Ei,j with rationally related eigenfrequencies.
First define for each cell the vector |θ,i〉 using the Fourier
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combination of all Ni vectors from the cell Qi :

|θ,i〉 = 1√
2π

Ni∑
j=0

exp(iqi,j θ )|i,j 〉. (4)

Then define positive operator valued density M̂(θ ) as

M̂(θ ) =
NQ∑
i=1

|θ,i〉〈i,θ |

=
NQ∑
i=1

1

2π

Ni∑
n=0

Ni∑
m=0

exp[(iqi,n − iqi,m)θ ]|i,n〉〈m,i|, (5)

where NQ is the number of cells in the considered partition.
Finally construct the quantity,

M̂(θ1,θ2) =
∫ θ2

θ1

M̂(θ )dθ. (6)

Properties of the expression (6) are best studied by explicitly
computing its matrix elements. For the vectors in different
cells, i.e., those with necessarily different eigenenergies and
different values of the coefficients satisfying (3), one has

i �= j → 〈i,ni |M̂(θ1,θ2)〉|j,nj 〉 = 0. (7)

For example, cells containing a single element contribute only
the corresponding diagonal elements.

Matrix elements between different vectors from the same
cell are

〈i,n|M̂(θ1,θ2)〉|i,m〉
= 1

2πi

[exp i(qi,n − qi,m)θ2 − exp i(qi,n − qi,m)θ1]

qi,n − qi,m

. (8)

Finally, the diagonal elements are

〈i,n|M̂(θ1,θ2)〉|i,n〉 = 1

2π
(θ2 − θ1). (9)

With these formulas it is easily checked that with any
legitimate partition the formula (6) indeed gives a POVM
on the interval [0,2π ]. One can now see clearly the reason
for partitioning of the eigenvectors. If all vectors belong to
a single cell then there are off-diagonal matrix elements in
M̂ that correspond to the eigenvectors with the same energy
eigenvalues, and those do not give zero after integration over
[0,2π ]. Such M̂(θ ) does not generate a partition of unity. This
is avoided by the above procedure based on the legitimate
partitions.

We propose to represent the phase observable of the system
with the energy spectra given by integers qi,j by the POVM
(6) constructed using any of the legitimate partitions. Any
such POVM indeed satisfies the covariance condition (1). In
fact it can be shown, using the explicit formulas for the matrix
elements, that the following commutation relation between the
phase observable θ̂ = ∫

θM̂(dθ ) based on the POVM (6) and
the Hamiltonian Ĥ = ∑

i,j Ei,j |i,j 〉〈i,j |,
[Ĥ ,θ̂ ] = i�E[1̂ − 2πM̂(0)], (10)

where M̂(0) is given by formula (5) for θ = 0, is satisfied.
The phase POVM given by (6) obviously depends on the

arbitrary phase factor exp iθ0
i,j that might multiply each of

FIG. 1. m ≡ m(θ ; q1,q2; ψ) ≡ 〈ψ |M̂q1,q2 (0,θ )|ψ〉 − θ/2π are
plotted for pairs of rationals (q1,q2 − q1) = (2,3) (gray);
(q1,q2 − q1) = (3,5) (thin line); (q1,q2 − q1) = (5,8) (thick line) and
in the states (a) |1/

√
3,1/

√
3,1/

√
3〉; (b) |1/

√
2, − 1/

√
2,0〉; and

(c) |1/
√

6,1/
√

6, − √
2/3〉. In this, and all other figures all quantities

are dimensionless.

the energy eigenvectors |i,j 〉. This dependence is analogous
to the dependence of the phase of an integrable classical
system on the arbitrary initial phases. Furthermore, in the
degenerate case the quantity M̂(θ1,θ2) depends on the choice
of the energy eigenbasis {|i,j 〉} and also, for a fixed basis, on
the partition into the legitimate cells. Nonuniqueness of the
phase POVM due to the choice of the energy bases and the
legitimate partition will be discussed in Sec. IV.2.

Figures 1 and 2 illustrate some of the main properties
of the phase observable in the simple case of only three
nondegenerate rationally related energy eigenvalues. The
system is three-dimensional, so that there are two integers
(q1,q2) in the formula (2). In fact, the phase is determined
by the ratio of the energy eigenvalue differences given by
ν = q1/(q2 − q1), which might be called the characteristic
frequency.

Figures 1(a)–1(c) illustrate shapes of the phase ex-
pectations 〈ψ |M̂q1,q2 (0,θ )|ψ〉 over the full domain θ ∈
(0,2π ), and for three different states |ψ〉. The three
states are chosen such as to form an orthonormal bases:
|ψ〉 = |1/

√
3,1/

√
3,1/

√
3〉; |ψ〉 = |1/

√
2, − 1/

√
2,0〉; and
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FIG. 2. Plotted are value of m(θ0; q1,q2; ψ) ≡
〈ψ |M̂q1,q2 (0,θ0)|ψ〉 − θ0 for the same state as in Fig. 2(a) and
for several co-prime rational ν ≡ q1/(q2 − q1) that appear at the
first six levels of the Farey tree and are bigger then 1/2. The fixed
angle θ0 = 1. Figure 2(b) illustrates the same quantity but at different
values of the angle θ = θmax for different ν as in Fig. 2(a), such that
m(θ ; q1,q2; ψ) obtains its maximum at θmax.

|ψ〉 = |1/
√

6,1/
√

6, − √
2/3〉. The shapes of the phase

expectations are illustrated for their systems with the
spectra (2) with integers q1,q2 satisfying (q1,q2 − q1) =
(2,3); (3,5); (5,8).

Figure 2(a) illustrates the value of m(θ0; q1,q2; ψ) ≡
〈ψ |M̂q1,q2 (0,θ0)|ψ〉 − θ0/2π for ψ = |1/

√
3,1/

√
3,1/

√
3〉

and for several co-prime rational ν ≡ q1/(q2 − q1) that appear
at the first six levels of the Farey tree and are bigger then
1/2. The fixed angle θ0 = 1. Figure 2(b) illustrates the same
quantity for ν as in Fig. 2(a) but at different values of the angle
θ = θmax such that m(θ ; q1,q2; ψ) obtains its maximum at θmax.
The dependence of the phase expectation on the characteristic
frequency, at the given θ [Fig. 2(a)] or at θ corresponding to
the maximum [Fig. 2(b)], is obviously discontinuous.

It is seen, from the above examples, that the phase
observables for systems with spectra that have nearby energy
eigenvalues might be quite different. In particular, the phase
observable for a spectrum with some irrationally related
eigenvalues cannot be approximated by a simple continuity
argument. However, special sequences of sets of rational
numbers {q2/q1,q3/q1 . . . qk/q1 . . . }j , such that the kth entry
of the j th and j + 1st sets are the neighbors in j th and j + 1th
level of the Farey tree of rational numbers, which we call
Farey close sets of qk’s, prove to be of special significance

for the treatment of phase observables. In fact, the major
observation is that expectations of phase observables for two
systems with spectra (2) corresponding to j th and j + 1st
sets of Farey close q ′

ks are much closer to each other then
in the case the two sets are such that the kth entries of the
corresponding q2/q1,q3/q1 . . . qk/q1 . . . are quite close but are
in the same time on quite distant Farey levels. The phase
observables for systems with spectra corresponding to this
special set of sequences are in fact continuously approaching
the phase for irrationally related energy eigenvalues. The
nontrivial dependence of the phase POVM on the characteristic
frequencies was reported for the first time in Ref. [27], where
slightly more details about the Farey tree construction can
be found. Such dependence of physical dynamical quantities
on the number-theoretic nature of characteristic frequencies
is commonly encountered in classical Hamiltonian dynamics
[30]. Thus, the phase POVM for a system with irrationally
related energy eigenvalues is defined as the limit of the phase
POVMs over the special sequence of systems with Farey
close sets of qk’s. The result of such limiting procedure is
a phase POVM with zero off-diagonal matrix elements and
the diagonal ones given by (9) independently of the energy
spectra. In this way the unique phase POVM given by uniform
density is associated with any system with irrational ratios
of the energy eigenvalues. This is as it should be expected
since the orbits of a system with irrationally related energy
levels generate a linear irrational rotation, which is an ergodic
system with uniform invariant measure independent of the
irrationally related rotation numbers. Differences among the
invariant measures for different irrational rotations is to occur
only in the case of nonlinear rotations, and these do not occur
in quantum mechanics.

Previous general prescription works in the case of an
arbitrary discrete spectrum without an accumulation point.
Spectra with an accumulation point can be considered as a
limit of a sequence of approximations as follows. Suppose that
the accumulation point in the energy spectrum corresponds to
the index k → ∞. Then all energy eigenvalues for k > k0

where k0 is large enough are close. k0 approximation is
obtained if all levels with Ek < Ek0 are the same as in
the spectra with the accumulation point but the levels with
Ek > Ek0 are considered as equal to Ek0, that is, as a single
infinitely degenerate eigenvalue. The phase POVM of such
k0th approximation is computed using formulas for the matrix
elements (7)–(9). The first k0 × k0 matrix elements of the
k0 + 1th approximation coincide with the k0th approximation,
and this is true for any k0. In the limit k0 → ∞ we obtain the
phase POVM for the original spectrum with the accumulation
point. The procedure indicates that the constructed phase
distribution of a system with an accumulation point in its
spectrum is uniform, like for systems with irrationally related
eigenenergies.

III. ILLUSTRATIVE EXAMPLES

In this section we shall first illustrate further the peculiar
discontinuity of the phase POVM dependence on the parame-
ters in a given Hamiltonian, and then illustrate and discuss the
nonuniqueness of the phase POVM in the case of a degenerate
spectrum.
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A. Morse spectrum

The phase POVM depends discontinuously on the charac-
teristic frequencies and on the parameters in the Hamiltonian.
These discontinuous dependencies are illustrated in this
subsection using the well-known Morse oscillator [31]. The
potential of the Morse oscillator is given by

V (x) = D{1 − exp[−a(x − x0)]}2, (11)

where x − x0 is the distance from the equilibrium x0, and
D and a are parameters that describe the depth and the
width of the potential well, respectively. The discrete energy
eigenvalues are nondegenerate and are given by the following
formula:

Ek = hν0(k + 1/2) − [hν0(k + 1/2)]2

4D
, (12)

where k is an integer valued quantum number, and ν0 has
dimension of a frequency and is related to the particle mass m

and the Morse constant D via

ν0 = a

2π

√
2D/m. (13)

The potential (11) has a finite number of the discrete
eigenvalues (12) and the maximal possible k is determined
as

kmax =
[

2D − hν0

hν0

]
, (14)

where the brackets denote the integer part of the argument. For
fixed values of D and a (and h = 1) the energy eigenvalues
and kmax are functions of the mass m only.

The difference between the successive Ek is not constant but
is such that the ratio (Ek − Ek−1)/(Ek−1 − Ek−2) is constant.
Thus, although there could be a large number of Ek , i.e., qk

in Eq. (2), their relations can be characterized by a single
characteristic frequency ν = (Ek − Ek−1)/(Ek−1 − Ek−2).

The number of discrete eigenvalues, the characteristic
frequency, the corresponding numbers q1, . . . qk , and conse-
quently the phase POVM depend on the mass m, with a

and D conveniently fixed as a = 1/
√

2 and D = 1/π . This
dependence is illustrated in Fig. 3, where the values of m

are chosen such as to illustrate the discontinuous dependence
of the phase on m. For example, following three values
of m: m1 = 2.26354; m2 = 2.29192; and m3 = 2.19335 all
imply the same number of discrete energy eigenvalues kmax =
4. m1 implies ν1 = 1/4 = 0.25, m2 implies ν2 = 10/41 =
0.268293, and m3 implies ν3 = 1/5 = 0.2. The correspond-
ing eigenvalues in the three considered cases are obtained,
for example, with {q1,q2,q3}1 = {64,80,84}; {q1,q2,q3}2 =
{68921,87412,92373}; {q1,q2,q3}3 = {125,150,155} with the
corresponding appropriate choice of �E. As was pointed out,
the phase observable does not depend on �E but only on the
triplet {q1,q2,q3}, in fact on the ratio ν = (q3 − q2)/(q2 − q1).

In Figs. 3(a) and 3(b) we plot the phase expectation in
the state |ψ〉 = (|0〉 + |1〉 + |2〉 + |3〉)/√4 for (a) ν1 = 1/4
and ν2 = 11/41 and in (b) for ν1 = 1/4 and ν3 = 1/5. The
expectation of the phase for ν2 = 11/41 gives numbers of
the order 10−5 which cannot be distinguished from zero
on the scale of Fig. 3(a). Figures 3(a) and 3(b) convinc-
ingly demonstrate that although |m2 − m1| < |m3 − m1| and

FIG. 3. Function m(θ ) ≡ 〈ψ |M̂q1,q2
θ (θ )|ψ〉 − θ/2π for the Morse

oscillator is illustrated in the state |ψ〉 = (|E0〉 + |E1〉 + |E2〉 +
|E3〉) for (a) ν = ν1 = 1/4; ν = ν2 = 11/41 (dotted); (b) ν = ν1 =
1/4, ν = ν3 = 1/5 (dotted); (c) ν = ν1 = 3/5; ν = ν2 = 31/51
(dotted); (d) ν = ν1 = 3/5, ν = ν3 = 2/3 (dotted).

|ν2 − ν1| < |ν1 − ν3| the phase expectations satisfy |〈M1〉 −
〈M3〉| � |〈M1〉 − 〈M2〉| since 1/5 and 1/4 are Farey neighbor
appearing at the successive levels of the Farey tree, while
11/41 appears at the level distant from the level of 1/4.
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The same conclusion is illustrated in Figs. 3(c) and
3(d) corresponding to m1 = 4.47623; m2 = 4.53611; m3 =
5.09296 with kmax = 5 and ν1 = 3/5; ν2 = 31/51; ν3 = 2/3.
The phase expectation for ν2 = 31/51 given in Fig. 3(c) cannot
be distinguished from zero on the scale of the figure.

The previous examples show that, although the parameter
values m1 and m2, and the corresponding energy eigenvalues
are relatively good approximations of each other, much better
approximation of the phase observable M̂1 is obtained with
M̂3 chosen such that the characteristic frequencies are close in
the Farey tree.

B. Coupled spins: The case of a degenerate spectrum

In the case of a degenerate spectrum there are two
qualitatively different reasons for nonuniqueness of the phase
POVM.

As was pointed out, different energy eigen-bases and
different legitimate partitions give different phase POVMs. We
illustrate this facts using examples of two spins in a magnetic
field coupled in such a way that the system is symmetric with
respect to rotations around the field axes, implying degenerate
spectrum.

The Hamiltonian is

H = ω
(
σ 1

z + σ 2
z

) + μσ 1
z σ 2

z , (15)

where ω and μ are parameters and σ 1,2
z are Pauli σz matrices

of the first and the second spin.
For ω = 2 and μ = 1 the Hamiltonian has eigenval-

ues −3,−1,−1,5. Vectors |1,1〉 ≡ |1〉 ⊗ |1〉 and |−1,−1〉 ≡
|−1〉 ⊗ |−1〉, where (|1〉,|−1〉 denote the two eigenvectors of
σz, are the eigenvectors corresponding to the nondegenerate
5 and −3 eigenvalues, respectively. Preferred choice of two
orthogonal eigenvectors in the degenerate eigenspace E−1 is
suggested by the symmetry of (15). Minimal complete set
of compatible observables (MCSCO) for the system (15) is,
for example, (Ĥ ,σ̂ 1

z ⊗ 1) or (Ĥ ,1 ⊗ σ̂ 2
z ), and either choice of

MCSCO selects the same two orthogonal vectors |1,−1〉 ≡
|1〉 ⊗ |−1〉 and |−1,1〉 ≡ |−1〉 ⊗ |1〉. Thus, the nonunique-
ness of the phase POVM due to the arbitrary choice of the
bases in the degenerate eigenspace is removed by selecting the
common eigenbases of the MCSCO. It is natural to apply the
same recept for the choice of the preferred bases in the general
case.

Let us now turn onto the dependence of the phase POVM
on the choice of a legitimate partition for the bases fixed as
above. Here we propose to consider only those legitimate
partitions such that the vectors belonging to the same cell
correspond to the same eigenvalues of the operators in the
MCSCO additional to the Hamiltonian. Vectors from different
cells must correspond to different additional eigenvalues. Such
restriction on the legitimate partitions is dictated by the reason
of simplicity, and is suggested by the analyses of the phase
POVM already obtained in simple cases like free 1D particle
or 2D particle. For example, in the 1D case, each energy
eigenvalue p2/2m is doubly degenerate. Construction of the
standard phase POVM [16] proceeds by using the partition
with only two cells {Q+,Q−} such that the cell Q± contains
only the P̂ generalized eigenvectors with positive or negative P

FIG. 4. Figures illustrate nonuniqueness of the phase POVM, due
to the possibility of different legitimate partitions. m(θ ) for the system
(15) is calculated with partition �1 (a) and �2 (b) in the state ψ =
(1/2,1/

√
2,0,1/2).

eigenvalues. This prescription uniquely fixes the phase POVM
in the case of 1D free particle.

In the example (15), with already fixed bases
|1,1〉,|1,−1〉,|−1,1〉,|−1,−1〉 there are two partitions that
satisfy the above criterion. If MCSCO is chosen as
{Ĥ ,σ̂ 1

z ⊗ 1} then the corresponding partitions are �1 =
{{|1,1〉,|1,−1〉},{|−1,−1〉,|−1,1〉}}. On the other hand, if
MCSCO is chosen as {Ĥ ,1̂ ⊗ σ 2

z } then the corresponding
partitions are �2 = {{|−1,1〉,|1,1〉},{|−1,−1〉,|1,−1〉}}.

In Figs. 4(a) and 4(b) we illustrate the expectation values
of the phase POVM (6) for the state ψ = (1/2,1/

√
2,0,1/2)

obtained with the bases |1,1〉,|1,−1〉,|−1,1〉,|−1,−1〉 and
with the two partitions �1 [Fig. 4(a)] and �2 [Fig. 4(b)].
The two natural legitimate partitions generate different phase
POVM. We do not see any additional physically justified
criterion that can be used to single out any of these two phase
POVMs as more natural.

IV. TRAPPED BEC AND PHASE MEASUREMENT

In order to measure the phase of a state vector motion one
must be able to observe experimentally the evolution in time of
the full state vector at least at some sufficiently representative
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set of time instants. An example of physical systems where
this can be done is provided by Bose-Einstein condensate
(BEC) trapped in some potential. Absorption experiments
performed successively at times ti with such systems provide
information abut the distribution of density of atoms at those
time, or in other words provide the functions |ψ(x,ti)|2, where
x are the spacial coordinates. Such measurements of |ψ(x,ti)|2
and other derived quantities for a BEC in a double well,
which is relevant for the model treated in what follows, have
been reported, for example, in Ref. [32]. Since the number
of atoms in the BEC is constant during its evolution the
state space of the system is finite dimensional, and therefore
the function |ψ(x,t)|2 at any fixed t uniquely determines
the expansion coefficients ci(t) of the state vector ψ(x,t) at
those t . The coefficients ci(t) are periodic functions of t and
such oscillatory motion is characterized by the corresponding
phases, one for each periodic function ci(t). The corresponding
master phase represents the phase of the state vector evolution.
Thus, image processing of the measured |ψ(x,t)|2 provides
ci(t) and therefore the evolution of the phase of the state
vector motion. Such experimentally measured phase of the
state motion, renormalized onto the period of the particular
state vector evolution, is mathematically represented by the
expectation value of the phase operator θ̂ introduced here.

Dynamics of the density profiles in different models of
BEC have been numerically treated in many references, for
example, in Refs. [33–35]. Main points of the computations
are here illustrated using a particularly simple model of
the BEC in a double-well potential. The two-mode Bose-
Hubbard (2mBH) system is given, up to c-number terms, by
the following Hamiltonian (see, for example, [36] and the
references therein):

Ĥ = ε1â
†
1â1 + ε2â

†
2â2 − δ(â†

1â2 + â
†
2â1)

+ c

2

(
(â†

1)2â2
1 + (â†

2)2â2
2

)
, (16)

where the operators â
†
1, â1 and â

†
2, â2 are the bosonic creation

and annihilation operators for the two degrees of freedom.
The Hamiltonian (16) approximates the physical situation
created experimentally by confining an atomic Bose-Einstein
condensate in a double-well trap [37,38]. In this case operators
a
†
1 and a

†
2 are interpreted as creating atoms in the condensate

confined in the potential wells 1 and 2, respectively. The term
proportional to δ describes the tunneling of atoms between
the two wells and the term proportional to c describes the
nonharmonicity of the potential wells. The operator N̂ =
N̂1 + N̂2 = â

†
1â1 + â

†
2â2 commutes with the Hamiltonian (16)

and represents the conserved total number of atoms in the
trapped condensate.

Introducing operators,

Ĵx = (â†
1â2 + â

†
2â1)/2, (17a)

Ĵy = i(â†
1â2 − â

†
2â1)/2, (17b)

Ĵz = (â†
2â2 − â

†
1â1)/2, (17c)

that satisfy the standard SU(2) commutation relations the
Hamiltonian (16) becomes, up to a constant term,

Ĥ = (ε2 − ε1)Ĵz − 2δĴx + cĴ 2
z . (18)

The quantity Jz gives the population imbalance between the
two modes,

The invariant subspaces of the total Hilbert space are the
spaces of irreducible SU(2) representations. The total number
operator N̂ is related to the Casimir operator of the SU(2) by
the relation Ĵ 2 = N̂/2(N̂/2 + 1). Interpretation of the relevant
quantities is best described using SU(2) coherent states. These
are parametrized by the canonical coordinates q,p related
to the SU(2) coherent state expectations of Ĵx,Ĵy,Ĵz by the
formulas,

〈Ĵx〉(p,q) = q

2
(4j − q2 − p2)1/2, (19)

〈Ĵy〉(p,q) = −p

2
(4j − q2 − p2)1/2, (20)

〈Ĵz〉(p,q) = 1

2
(q2 + p2 − 2j ). (21)

The canonical coordinate q represent the relative phase q = φ

between the two modes in Eq. (16) and the canonical momenta
p = cos2(θ/2) gives the population of the second mode. Here
the angles θ,φ provide an alternative parametrization of S2,
i.e., of the SU(2) coherent states. The polar angle coordinate
of the SU(2) coherent state is the phase difference of the two
modes in Eq. (16).

Consider 2mBH with a fixed total number N of atoms. N

determines the representation of the SU(2). The Hamiltonian
matrix (18) is diagonalized to obtain the spectrum in terms of
the parameters δ,ε = ε2 − ε1,c and then the integers q1,q2, . . .

corresponding to some fixed values of the parameters are deter-
mined. Obviously the spectrum must be computed numerically
for BEC with large numbers of atoms. The numbers q1,q2, . . .

determine the frequencies of the oscillations of the system’s
state vector |ψ(t)〉 and are used to construct the phase POVM
by the formulas (5) and (6). The expectation of the relative
phase of the state vector at the time t is given by the expectation
of θ̂ in the state vector |ψ(t)〉. The latter can be reconstructed
from the measured densities.

As was pointed out, the dependence of the phase on the
eigenfrequencies is discontinuous and complicated. In typical
systems this means that the dependence of the phase on the
parameters in the model is discontinuous. One should not
expect that the full complexity of the phase dependence on the
parameters can be experimentally demonstrated in a systematic
way, because of the impossibility of controlling the parameters
with sufficient precision. Nevertheless, comparison of the
experimentally determined phase of the state evolution with
the theoretical prediction is possible, although more involved
than in the case of quantities with smooth dependence on the
parameters. Similar problems occur often in controlling the
dynamics and testing theories of classically chaotic systems
with fractal dependence on the parameters and/or initial
conditions [39]. Consider an experiment aimed at monitoring
the evolution of the state vector. Parameters of the experiment
are fixed to be in some small interval �p = (p − �,p + �).
The evolution of the phase of the state is obtained from the data
collected by monitoring the state evolution, and represent the
experimental data to be compared with theoretical computation
of the phase expectation. Computations are done using a
set of parameter values from the above interval �p, first to
compute the energy eigenvalues and then the corresponding
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DUŠAN ARSENOVIĆ et al. PHYSICAL REVIEW A 88, 022117 (2013)

phase. The computed phase expectations will be either quite
similar to those reconstructed from the experimental data or
quite different. In the latter case, the computations should
be repeated with another set of parameter values from �p.
The shape of experimentally obtained phase distribution
suggests the choice of parameter values from �p. Namely,
if the experimental data suggest that the phase distribution
displays large oscillations then the parameter values from
�p that are used for computations should be such that the
eigenfrequencies are given by rational numbers with small
denominators.

V. DISCUSSION

This section is devoted to a discussion of possible critical
comments that might be raised concerning the definition of
the normalized phase presented here, its physical meaning
and properties. The discussion is to a large extent inspired by
the comments [28] on our paper [27], which contains brief
exposition of the basic concept treated here.

The physical meaning of the normalized phase studied here
should be perhaps stressed again. It is an analogous quantity
to the normalized phase of a state point on an orbit of a
classical (integrable) system, and represents the relative part
of the period undergone by a state vector while it is moving
on the orbit in the Hilbert space. Of course, particular more
tangible physical meaning of such quantity depends on the
concrete physical model, as has been illustrated in the example
of 2mBH.

The main difference between the object treated in our paper
and that in the remark by Hall and Pegg (HP) [28] is that we
study and compare the normalized phases (or normalized age
or angle) and HP analyze an absolute age. Consider a periodic
system with the period T . Our normalized phase measures
the relative part of the total period T undergone by the system
during an interval (0,t). In this way the normalized ages of two
systems with different periods can be meaningfully compared.
There are processes performed by (or with) quantum systems
(for example: STIRAP [40], quantum circuits [41] etc...) such
that the part of the process undergone by the system, as
measured by the normalized phase, and not the actual duration
(as measured by the absolute phase), is the only relevant
information. Such a process might take quite different time
intervals to perform by different systems, but nevertheless
one would consider two systems to be in the same phase
of the process if the the normalized phases are equal. On
the other hand, periodic systems with different frequencies
can be used as clocks to measure the same absolute time.
In this case the notion of an absolute phase, as a system’s
observable that measures the absolute time is appropriate. So,
both normalized and absolute phase can be defined and have
meaningful interpretation.

Incommensurate eigenmodes imply in general quasiperi-
odic motion whose period can be formally considered as
T = ∞. Such a system is equally old or young in any particular
moment in time. In this sense our result for the normalized
phase of a quasiperiodic system is as it should be. Periodic and
quasiperiodic motions with different frequencies, but always
with bounded orbits, are usually compared by rescaling the
motion on a unit circle. Therefore, we computed explicitly

the normalized phase observable for periodic motion for all
periods, which can and must be rescaled on the unit circle. Then
we defined the normalized phase of the quasiperiodic motion
as a limit of the corresponding sequence of such normalized
phases for periodic motions. The probability distribution over
the unit circle that is obtained in the limit is uniform and does
not depend on the irrational eigenfrequencies of the limiting
quasiperiodic motion. Time, spent by a quasiperiodic system
in a subinterval (θ1,θ2) ∈ S1 of an orbit and normalized by
the infinite period is the measure of this interval given by
the normalized phase. This measure does not depend on the
angular velocity of motion on the orbit. On the other hand,
the expression (21) in Ref. [15] is there considered as a
probability distribution on R+. In order that the expression
generates a well-defined functional on some type of function
on R+ one has to consider a special type of norm and
the appropriate set of functions, such as the almost-periodic
functions. In the case of periodic state motion and for the
nondegenerate energy, the two distributions, one on the unit
circle and given by our normalized phase and the other on
R+ given by the absolute time are indeed related by the
appropriate rescaling. However, in the case of quasiperiodic
state motion the expression (21) of Ref. [15] can be considered
as a probability functional on the space of almost periodic
functions and with the appropriate norm given by the time
average. In this sense, the expression (21) of Ref. [15] gives
well-defined time averages of almost-periodic functions, with
nontrivial and useful properties. In particular, appropriately
defined purity displays different properties from the purity of
a uniform distribution, as was studied in detail in Ref. [15].

The example provided by HP of a special initial condition
leading to a periodic motion in a system with typically
quasiperiodic orbits shows just the existence of such special
initial conditions. Of course, they are not typical for the
considered system with incommensurate eigenmodes neither
in the measure theoretic nor in the topological sense.

Discontinuous dependence of the relative phase on the
frequency is one of the two main topics of our communication.
In particular we show, in general and using the Morse system
as an example, how a small perturbation of the spectrum in
general implies discontinuous changes of the relative phase.
Our results, in fact show much more, i.e., we indicate special
sequences of frequencies, namely those corresponding to the
successive best rational approximations pn/qn of an irrational
ν, over which the relative phase varies continuously and
approaches the uniform distribution as pn/qn → ν.

Lack of details of the relative phase for a degenerate
spectrum in our brief communication [27] has also been
criticized by HP. The nonuniqueness of the phase in the
degenerate case is treated in detail, and to the best of our
knowledge for the first time, in this paper. In particular different
sources of nonuniqueness of the phase in the degenerate case
have been discussed. This is our second main contribution.

VI. SUMMARY

We have introduced a definition of phase POVM for a
system with quite general properties of its energy spectrum.
The definition provides objects which satisfy the covariance
relation, demanded of the phase observable, for systems with
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arbitrary Hilbert spaces, with rationally or irrationally related
characteristic frequencies and with possibly degenerate energy
spectra.

Dependence of the phase POVM on the characteristic
frequencies or the parameters in the Hamiltonian is discussed.
It is demonstrated that this dependence is discontinuous in the
sense that small variations in the energy eigenvalues leading
to small variations of the characteristic frequencies imply
large variations in the expectations of the corresponding phase
POVM. Due to this discontinuity a sequence of phase POVM
for spectra with rational characteristic frequencies all close to
an irrational one do not provide good approximations to each
other in general. However, if the spectra are characterized
by sets of rationals which are close in the Furrey tree of
all rationals then the corresponding phase POVMs are also
close. Such nontrivial dependence of the phase POVM on the
number-theoretic nature of the characteristic frequencies was
reported using three-dimensional examples for the first time

in Ref. [27], and is discussed and illustrated in more details in
the present paper.

Another issue discussed in detail in this paper is the
nonuniqueness of the phase POVM for systems with sym-
metries, i.e., with degenerate energy spectra. Following the
discussion of specific examples we proposed a natural proce-
dure that singles out a small number (in some cases just one)
of equivalent phase POVM.

Besides of its fundamental theoretical importance, the
presented general definition of phase POVM enables one
to compare the phases of evolution of different quantum
processes.
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