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Violation of Heisenberg’s error-disturbance uncertainty relation in neutron-spin measurements
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In its original formulation, Heisenberg’s uncertainty principle dealt with the relationship between the error of
a quantum measurement and the thereby induced disturbance on the measured object. Meanwhile, Heisenberg’s
heuristic arguments have turned out to be correct only for special cases. An alternative universally valid
relation was derived by Ozawa in 2003. Here, we demonstrate that Ozawa’s predictions hold for projective
neutron-spin measurements. The experimental inaccessibility of error and disturbance claimed elsewhere has
been overcome using a tomographic method. By a systematic variation of experimental parameters in the
entire configuration space, the physical behavior of error and disturbance for projective spin- 1

2 measurements is
illustrated comprehensively. The violation of Heisenberg’s original relation, as well as the validity of Ozawa’s
relation become manifest. In addition, our results conclude that the widespread assumption of a reciprocal relation
between error and disturbance is not valid in general.
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I. INTRODUCTION

The uncertainty principle, proposed by Heisenberg [1] in
1927, ranks without doubt among the most famous statements
of modern physics. The content of the principle is often
explained by simply saying “The more precisely the position
is determined, the less precisely the momentum is known, and
conversely [1].” It is usually understood that this leads to the
impossibility of simultaneous measurements of the position
and momentum of a particle and consequently to the rejection
of determinism of the Newtonian mechanics in determining
the future motion from the past state. However, the quantitative
formulation of the uncertainty principle has been a target of
debate for a long time ( [2–10], and references therein).

Heisenberg’s original formulation [1,11] can be read as the
relation

ε(Q)η(P ) � h̄

2
(1)

for the root-mean-square error ε(Q) of a measurement of the
position observable Q and the root-mean-square disturbance
η(P ) of the momentum observable P induced by the position
measurement. However, modern textbooks usually explain the
“uncertainty principle” as the relation

σ (Q)σ (P ) � h̄

2
, (2)

originally proved by Kennard [12] in 1927, for the standard
deviations σ (Q) and σ (P ) of the position observable Q and
the momentum observable P in an arbitrary state ψ where
the standard deviation is defined by σ (A)2 = 〈ψ |A2|ψ〉 −
〈ψ |A|ψ〉2 for an observable A and a state ψ . Experimental
investigations of the above relation can be found in [13–16].

Heisenberg actually derived Kennard’s relation, Eq. (2), for
Gaussian wave functions ψ , applied this relation to the state
just after the Q measurement with error ε(Q) and disturbance
η(P ), and concluded relation, Eq. (1), from the additional, im-
plicit assumptions ε(Q) � σ (Q) and η(P ) � σ (P ). However,
his assumption ε(Q) � σ (Q) holds only for a restricted class
of measurements [17]. The assumption η(P ) � σ (P ) holds if
the initial state is the momentum eigenstate state [18], but it

does not hold generally. Thus, his argument did not establish
the universal validity of Eq. (1).

In 1929, Robertson [19] extended Kennard’s relation,
Eq. (2), to an arbitrary pair of observables A and B as

σ (A)σ (B) � 1
2 |〈ψ |[A,B]|ψ〉|. (3)

The generalized form of Heisenberg’s original relation,
Eq. (1), would read

ε(A)η(B) � 1
2 |〈ψ |[A,B]|ψ〉|. (4)

The validity of this relation is known to be limited to specific
circumstances [2,20–22]. In 2003, Ozawa [17,23–25], one of
the authors of the present paper, thus proposed a new error-
disturbance uncertainty relation

ε(A)η(B) + ε(A)σ (B) + σ (A)η(B) � 1
2 |〈ψ |[A,B]|ψ〉|

(5)

and proved the universal validity in the general theory of
quantum measurements, where ε(A) is the root-mean-square
error of an arbitrary measurement for an observable A, η(B)
is the root-mean-square disturbance on another observable B

induced by the measurement, and σ (A) and σ (B) stand for the
standard deviations of A and B in the state ψ just before the
measurement.

Questions appeared on the accessibility of errors and distur-
bances in practical experiments, e.g., [26,27]. This difficulty
has been overcome in two ways: the “three-state method” and
the weak-measurement method. The tomographic three-state
method is based on a formula to statistically determine error
and disturbance, respectively, in a given initial state from the
experimentally accessible data from three different auxiliary
input states generated from the initial state [24]. The three-state
method has already been successfully implemented in our
previous publication [28]. The weak-measurement method is
proposed [29] to quantify the error and disturbance exploiting
the weak-measurement technique [30] based on the relation
between mean-square differences and weak joint distributions
[31]; an optical experiment was carried out recently [32].
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In this paper, we report a general test of the validity of
Ozawa’s formulation in the framework of projective spin- 1

2
measurements. Polarized neutrons experience successive spin
measurements A and B, where the former measurement is
detuned on purpose thus causing the measurement error of the
A measurement. Likewise, the disturbance on the observable B

also changes when the A measurement is detuned. In [28], we
focused solely on a small subset of the possible configurations
in parameter space where Heisenberg’s original relation,
Eq. (4), is always violated and the typical reciprocal trade-off
between the error and the disturbance is maintained. Here, we
give a more complete view on how systematic variations of the
observables, the settings of the measurement apparatus, and
the premeasurement system state influence error, disturbance,
and premeasurement standard deviations. By studying the
whole configuration space the physical meaning of error
and disturbance for projective spin- 1

2 measurements can be
illustrated quite comprehensively. Parameter regions where
Heisenberg’s original formulation is violated as well as
the behavior of Ozawa’s relation become manifest: Not only
the validity but also the analytic dependence of two notions of
inequalities, Eqs. (4) and (5), on the experimental parameters
is clearly seen. In addition, investigating error and disturbance
in the whole configuration space shows the restricted validity
of a reciprocal relation between these quantities in the spin- 1

2
system.

II. THEORY

In order to derive the universally valid error-disturbance
uncertainty relation it is convenient to discuss general models
of measuring processes described in the quantum-mechanical
framework. For a detailed account, we refer the reader to
[17,23–25]. Here, we will sketch the main results necessary
for later discussions on our experimental work.

A. Indirect measurement models

In this paper, we consider only finite-type quantum mea-
surements such that the measured system is described by
a finite dimensional Hilbert space and that the apparatus
has a finite number of possible outcomes. We assume that
every measuring apparatus has its own output variable x. The
apparatus A(x) having the output variable x is assumed to
determine the probability distribution Pr{x = m‖ρ} of x on
every input state ρ, and to determine the output state ρ{x=m}
for every input state ρ conditional upon each possible output
x = m.

An indirect measurement model of an apparatus A(x)
measuring a system S described by a Hilbert space H is
specified by a quadruple (K,|ξ 〉,U,M) consisting of a Hilbert
space K describing the probe system P, a state vector |ξ 〉 in
K describing the initial state of P, a unitary operator U on
H ⊗ K describing the time evolution of the composite system
S + P during the measuring interaction, and an observable M ,
called the meter observable, of P describing the meter of the
apparatus [33].

The class of indirect measurement models is a universal
class of models of quantum measurement [24,33] in the sense
that for any apparatus A(x) with the output variable x there is

an indirect measurement model (K,|ξ 〉,U,M) that determines
the statistical properties of A(x) by

Pr{x = m‖ρ}ρ{x=m}
= TrK{U †[1l ⊗ EM (m)]U (ρ ⊗ |ξ 〉〈ξ |)}, (6)

where TrK stands for the partial trace over K and EM (m) the
spectral projection of M corresponding to the real number m.
From Eq. (6) we have

Pr{x = m‖ρ} = Tr{U †[1l ⊗ EM (m)]U (ρ ⊗ |ξ 〉〈ξ |)}, (7)

ρ{x=m} = TrK{U †[1l ⊗ EM (m)]U (ρ ⊗ |ξ 〉〈ξ |)}
Tr{U †[1l ⊗ EM (m)]U (ρ ⊗ |ξ 〉〈ξ |)} . (8)

B. Measurement operators

In this paper, we treat only the case where the meter
observable M has nondegenerate eigenvalues. In this case,
M has a spectral decomposition M = ∑

m m|m〉〈m|, where m

varies over eigenvalues of M . Then, the apparatus A(x) has a
family {Mm} of operators, called the measurement operators,
defined by Mm = 〈m|U |ξ 〉. We have

U |ψ〉|ξ 〉 =
∑
m

Mm|ψ〉|m〉. (9)

This means that on an input vector state |ψ〉 the apparatus A(x)
outputs the outcome x = m with probability Pr{x = m‖|ψ〉} =
‖Mm|ψ〉‖2, where ‖ · · · ‖ denotes the Euclidean norm given by
‖|φ〉‖ = 〈φ|φ〉1/2, and leaves S in the vector state

|ψ〉{x=m} = Mm|ψ〉
‖Mm|ψ〉‖ . (10)

The probability operator-valued measure (POVM) of A(x)
is the family {	m} of operators defined by 	m = M

†
mMm.

Then, we have Pr{x = m‖|ψ〉} = ‖	1/2
m |ψ〉‖2 = 〈ψ |	m|ψ〉.

The nonselective operation of A(x) is a trace-preserving
completely positive map T defined by

Tρ =
∑
m

MmρM†
m (11)

for any state ρ; the state Tρ is the state just after the
measurement without postselection for the input state ρ.

C. Universal uncertainty principle

Let A,B be observables of S. We consider the measurement
of the observable A carried out by the apparatus A(x) and the
disturbance on B caused by this measurement. If the input state
of S is |ψ〉, the root-mean-square (rms) error ε(A) of A(x) for
measuring an observable A of S and the rms disturbance η(B)
of A(x) caused on an observable B of S are defined as

ε(A) = ‖[U †(1l ⊗ M)U − A ⊗ 1l]|ψ〉|ξ 〉‖, (12)

η(B) = ‖[U †(B ⊗ 1l)U − B ⊗ 1l]|ψ〉|ξ 〉‖, (13)

where 1l stands for the identity operator on the respective
space. The error ε(A) is the root mean square of the difference
between the meter observable M after the interaction and the
observable A before the interaction. The disturbance η(B)
is the root mean square of the change in the observable B
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during the measuring interaction. Then, it is mathematically
proved [23,24] that

ε(A)η(B) + ε(A)σ (B) + σ (A)η(B) � 1
2 |〈ψ |[A,B]|ψ〉|

(14)

holds for any state |ψ〉 of S and any indirect measurement
model (K,|ξ 〉,U,M).

We define the kth moment output operator by

O
(k)
A =

∑
m

mk	m =
∑
m

mkM†
mMm. (15)

Then the kth moment of the output variable x of A(x) on input
|ψ〉 is given by

Ex{xk‖|ψ〉} = 〈ψ |O(k)
A |ψ〉, (16)

where “Ex” abbreviates expectation value. We have [24]

ε(A)2 = 〈ψ |O(2)
A − O

(1)
A A − AO

(1)
A + A2|ψ〉. (17)

We define the postmeasurement kth moment operator of the
observable B by

O
(k)
B =

∑
m

M†
mBkMm. (18)

Then the kth moment of the observable B in the state on output
from the apparatus A(x) on input |ψ〉 is given by

Ex{Bk‖T (|ψ〉〈ψ |)} = 〈ψ |O(k)
B |ψ〉, (19)

where T is the nonselective operation of A(x) [see Eq. (11)].
Then, we have [24]

η(B)2 = 〈ψ |O(2)
B − O

(1)
B B − BO

(1)
B + B2|ψ〉. (20)

Therefore, both error ε(A) and disturbance η(B) are deter-
mined by the measurement operators of the apparatus A(x).

With the help of {Mm} we can rewrite error and disturbance
starting from their definitions, Eqs. (12) and (13), to

ε(A)2 =
∑
m

‖Mm(m − A)|ψ〉‖2, (21)

η(B)2 =
∑
m

‖[Mm,B]|ψ〉‖2. (22)

Details of the calculation can be found in Sec. 4.4 of [25]. If
the Mm are mutually orthogonal projection operators, using
the Pythagorean theorem, the sum in Eq. (21) can be replaced
by

ε(A)2 =
∥∥∥∥∥
∑
m

Mm(m − A)|ψ〉
∥∥∥∥∥

2

= ‖(OA − A)|ψ〉‖2, (23)

where we used
∑

m Mm = 1l and defined the output operator
OA = ∑

m mMm being just the first moment output operator
O

(1)
A in cases of projective measurements. In an analogous

manner, we will often abbreviate O
(1)
B as OB .

D. Three-state method for quantifying error and disturbance

The error ε(A) and the disturbance η(B) have been defined
through the noise operator N (A) = U †(1l ⊗ M)U − A ⊗ 1l
and the disturbance operator D(B) = U †(B ⊗ 1l)U − B ⊗ 1l,

respectively. However, given an apparatus A(x), those oper-
ators are usually unknown in practice. It is also impossible
to measure N (A) by measuring A ⊗ 1l and U †(1l ⊗ M)U
successively, since those two observables may not commute.
Similarly, it is also impossible to measure D(B) by successive
measurement. The three-state method for quantifying error
and disturbance is a method to measure ε(A) and η(B) using
the outcomes from the apparatus A(x) but without knowing ei-
ther the noise operator N (A) or the disturbance operator D(B).

From Eq. (17) the error ε(A) can be written as [24]

ε(A)2 = 〈ψ |A2|ψ〉 + 〈ψ |O(2)
A |ψ〉 + 〈ψ |O(1)

A |ψ〉
+〈Aψ |O(1)

A |Aψ〉 − 〈(A + 1l)ψ |O(1)
A |(A + 1l)ψ〉,

(24)

where we use such abbreviations as |Aψ〉 ≡ A|ψ〉, etc. Thus,
ε(A) can be statistically estimated from the measurement
outcomes from the apparatus A(x) in the three states |ψ〉,
A|ψ〉/‖A|ψ〉‖, and (A + 1l)|ψ〉/‖(A + 1l)|ψ〉‖ on input. Sim-
ilarly, from Eq. (20) the disturbance η(B) can be written as

η(B)2 = 〈ψ |B2|ψ〉 + 〈ψ |O(2)
B |ψ〉 + 〈ψ |O(1)

B |ψ〉
+ 〈Bψ |O(1)

B |Bψ〉 − 〈(B + 1l)ψ |O(1)
B |(B + 1l)ψ〉.

(25)

Thus, η(B) can be statistically estimated from the measure-
ment outcomes of the B measurement in the state just after
passing through the the apparatus A(x) in the three states |ψ〉,
B|ψ〉/‖B|ψ〉‖, and (B + 1l)|ψ〉/‖(B + 1l)|ψ〉‖ on the input
of A(x). According to the theory of operations [34], for a
general observable X the state X|ψ〉 can be prepared from
the state |ψ〉 with success probability ‖X|ψ〉‖2/‖X‖2 even
without knowing the state |ψ〉. In fact, an apparatus A(x)
with measurement operators {M0,M1} with M0 = X/‖X‖ and
M1 =

√
1l − |M0|2 produces the state X|ψ〉/‖X|ψ〉‖ on input

state |ψ〉 with probability Pr{x = 0‖|ψ〉} = ‖X|ψ〉‖2/‖X‖2.

III. THEORY FOR SPIN MEASUREMENTS

We will now apply the general results of the previous section
to projective spin- 1

2 measurements. The observables under
consideration are spins along two different directions �a and
�b, that is,

A = �a · �σ , B = �b · �σ , (26)

where �σ = (σx,σy,σz)T denotes the vector of the Pauli matri-
ces. The apparatus is supposed to carry out a projective spin
measurement along a distinct axis �oa . The output operator
OA(=O

(1)
A ) and the family of measurement operators {Mm}

are then given explicitly by

OA = �oa · �σ = M+1 − M−1, M±1 = 1
2 (1l ± �oa · �σ ).

(27)

Inserting these expressions into Eqs. (21) and (22) we get for
error and disturbance

ε(A) =
√

2 − 2 �a · �oa = 2

∣∣∣∣ sin
α

2

∣∣∣∣, (28)

η(B) =
√

2 − 2(�b · �oa)2 =
√

2 | sin β|, (29)
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FIG. 1. (Color online) Error ε(A) of the A measurement: The
direction �a of A (A represents the observable to be measured) is fixed
to be (1,0,0)T and the points on the Bloch sphere indicate the direction
of OA (that is the observable actually measured by the apparatus).
The value of corresponding error for this combination of vectors �a
and �oa is color encoded resulting in concentric circles around the axis
defined by �a.

where α denotes the angle between �a and �oa , β the angle
between �b and �oa , and | · · · | the modulus. Both error and
disturbance are thus independent of the initial system state;
they are solely determined by the angle between the direction
of the observable and the direction of the output operator,
that is, the apparatus’ measurement axis. The error vanishes
if OA = A and reaches its maximal value (ε = 2) if A and
OA point in opposite directions. The whole expression can be
illustrated on the Bloch sphere (see Fig. 1).

The disturbance induced on B by the prior measurement of
OA is zero if B and OA point in the same direction, but also if
OA points exactly in the opposite direction, that is, if �oa = −�b.
In both cases OA and B have an identical set of eigenvectors
leading to a vanishing disturbance [see Eq. (22)]. That is a
notable difference between the physical concepts of error and
disturbance. If the two end points of �b and −�b define the poles
on the Bloch sphere, the disturbance reaches its maximal value
(η = √

2) if OA lies on the corresponding equator (illustrated
in Fig. 2 for B = σy).

Since error and disturbance are both independent from the
initial system state their product ε(A)η(B) also depends only
on the relative orientation of �a, �b, and �oa and can be depicted
on the Bloch sphere for fixed �a and �b (see Fig. 3). In order
to test if a generalized Heisenberg-like relation [Eq. (4)] is
obeyed we also have to evaluate the state-dependent limit. By

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x

x

y

y

z z

FIG. 2. (Color online) Disturbance η(B) on observable B = �b ·
�σ = σy after the projective measurement of OA. Every point on the
Bloch sphere corresponds to a possible direction of OA. The color of
this point on the Bloch sphere indicates the value of the disturbance.
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FIG. 3. (Color online) The product of error and disturbance for
A = σx and B = σy . Every point on the Bloch sphere corresponds
to a possible direction of OA and its color encodes the value of
ε(A)η(B). The black line represents the maximal lower bound given
by the commutator 1

2 |〈ψ |[A,B]|ψ〉| = 1 for |ψ〉 = |+ z〉. Only if the
apparatus is so strongly detuned that it measures OA along a direction
outside of the region enclosed by this contour line is Heisenberg’s
error-disturbance relation, Eq. (4), fulfilled.

assigning the vector �r to the initial spin state using the Bloch
representation of its corresponding density matrix |ψ〉〈ψ | =
1
2 (1l + �r · �σ ) we get

1
2 |〈ψ |[A,B]|ψ〉| = |�r · (�a × �b)|. (30)

The limit is thus given by the volume of the parallelepiped
spanned by the three vectors �a, �b, and �r and ranges from 0 to
1. Therefore, except for the special cases where it vanishes,
we can always find regions where the product of error and
disturbance is below the limit. This is an example for a general
result (Chap. 6 in [25]) stating that projective measurements
of A violate a Heisenberg-like error-disturbance uncertainty
relation provided that B is bounded and 〈ψ |[A,B]|ψ〉 	= 0.

For a complete investigation of Ozawa’s error-disturbance
uncertainty relation [Eq. (5)] we additionally need the standard
deviations of A and B for an arbitrary initial state |ψ〉 given
by

σ (A) =
√

1 − (�a · �r)2, σ (B) =
√

1 − (�b · �r)2. (31)

For a graphical representation of the left-hand side of the
Ozawa relation, Eq. (5), we have to fix the observables A and
B and the state |ψ〉 and can then vary OA over the Bloch sphere
and indicate the resulting values of the sum by different colors.
While the Heisenberg term ε(A)η(B) is independent from the
initial state, the sum in Eq. (5) changes because of the standard
deviations and always lies above the lower bound given by the
commutator (see Fig. 4).

IV. MEASUREMENT CONCEPT

The expressions (21) and (22) are very convenient to
calculate the explicit formulas for error and disturbance in
spin measurements [Eqs. (28) and (29)], but they are not
suitable for designing an experiment. The output operator
OA and the observable A cannot be measured simultaneously
and therefore their difference is no detectable quantity. The
same is true for the change of the observable B during the
measurement. That is why error and disturbance have been
claimed to be experimentally inaccessible [26,27]. But, this
obstacle can be overcome by using the expressions (24)
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FIG. 4. (Color online) ε(A)η(B) + ε(A)σ (B) + σ (A)η(B) for
|ψ〉 = |+z〉, A = σx , and B = σy . Every point on the Bloch sphere
corresponds to a possible direction of OA and its color encodes
the value of the sum of the three terms lying everywhere above
1
2 |〈ψ |[A,B]|ψ〉| = 1.

and (25) which read in our case of a projective spin- 1
2

measurement,

ε(A)2 = 2 + 〈ψ |OA|ψ〉 + 〈Aψ |OA|Aψ〉
− 〈(A + 1l)ψ |OA|(A + 1l)ψ〉 (32)

and

η(B)2 = 2 + 〈ψ |OB |ψ〉 + 〈Bψ |OB |Bψ〉
− 〈(B + 1l)ψ |OB |(B + 1l)ψ〉 (33)

since A2 = O
(2)
A = B2 = O

(2)
B = 1l. Now, error and distur-

bance are solely determined by expectation values of experi-
mentally accessible operators for various input states.

The expression for the error only contains the output
operator OA, which is the observable that is actually measured
by the apparatus. The desired observable A occurs solely in two
of the necessary three input states |ψ〉,|Aψ〉, and |(A + 1l)ψ〉.
If we succeed in preparing all these known input states the
error ε(A) of the A measurement can be determined from the
expectation values of OA.

For determining the disturbance we need the input states
|ψ〉,|Bψ〉, and |(B + 1l)ψ〉 and the expectation values of OB ,
which is just a shorthand notation for O

(1)
B . From Eq. (18)

it is given by
∑

m M
†
mBMm, where Mm are the projection

operators of the output operator OA. Thus, if we measure B

immediately after the measurement of OA we actually perform
the measurement of OB .

After all, our experiment needs three connected compo-
nents: a preparation stage for generating the input states |ψ〉,
|Aψ〉, |(A + 1l)ψ〉, |Bψ〉, and |(B + 1l)ψ〉; a measurement
apparatus A1 carrying out the OA measurement; and a second
apparatus A2 performing the B measurement (see Fig. 5).

As indicated in the measurement scheme (Fig. 5) the two
projective measurements of OA and B result in four possible
outcomes since every spin operator can be decomposed into
two projectors belonging to the eigenvalues ±1. Explicitly,
these projectors are given by 1

2 (1l ± �oa · �σ ) for OA and by
1
2 (1l ± �b · �σ ) for B. Equivalently, we can write the projector as
ket-bra of the eigenvectors which we denote by |+�oa〉 and
|−�oa〉 for the operator OA and by |+�b〉 and |−�b〉 for the
operator B, respectively. We will use this kind of notation
throughout the paper for all spin states. The vector inside
the ket indicates the reference axis and the sign denotes the

>>−

PREPARATION

 B
A A

O 

(+)

(-)

(++)

(+ -)

(- +)

 (-  -)

ψ

A1                    A2

A

FIG. 5. (Color online) Experimental concept for the verification
of the error-disturbance relation: In the first measurement, the
apparatus A1 is detuned in a way that it projectively measures
the observable OA instead of A thus causing an error ε in the A

measurement. The subsequent measurement of observable B in the
eigenstate of OA, performed by apparatus A2, virtually modifies B

to be OB from whose expectation values the disturbance η on B can
be determined.

positive or negative spin component. For directions along the
Cartesian axes we omit the arrow (for example, |−x〉 stands
for the negative spin component along the x axis).

From the spectral theorem, the operators OA and B can be
decomposed into their projection operators via

OA = �oa · �σ = |+�oa〉〈+�oa| − |−�oa〉〈−�oa|, (34)

B = �b · �σ = |+�b〉〈+�b| − |−�b〉〈−�b|. (35)

The indices (++), (+−), (−+), and (−−) of the output ports
in Fig. 5 indicate which projections have been carried out.
From the intensities at the four possible output ports, denoted
by I++, I+−, I−+, and I−−, the expectation value of OA in a
state |ψ〉 is obtained from

〈ψ |OA|ψ〉 = (I++ + I+−) − (I−+ + I−−)

I++ + I+− + I−+ + I−−
. (36)

As already mentioned, the prior measurement of OA modifies
the measurement operator of A2 from B to OB . The expec-
tation values of OB necessary for the determination of the
disturbance are obtained from

〈ψ |OB |ψ〉 = (I++ + I−+) − (I+− + I−−)

I++ + I+− + I−+ + I−−
. (37)

All expectation values necessary for the determination of
error ε and disturbance η can thus be derived from the
output intensities when the input states |ψ〉, |Aψ〉, |(A + 1l)ψ〉,
|Bψ〉, and |(B + 1l)ψ〉 are applied to the joint measurement
apparatuses A1 and A2.

Ozawa’s relation [Eq. (5)] additionally contains the stan-
dard deviations of A and B in the state |ψ〉. For our
measurement observables, the standard deviations reduce to

σ (A)2 = 〈ψ |A2|ψ〉 − 〈ψ |A|ψ〉2 = 1 − 〈ψ |A|ψ〉2 (38)

and the corresponding expression for σ (B). The expectation
value of A can be obtained from our experimental setup by
adjusting OA to be equal to A and then using Eq. (36). For the
expectation value of B, we have to turn off the measurement
apparatus A1 and apply |ψ〉 to A2 which then projectively
measures B (and not OB). If we then denote the intensities
of A2’s two output ports by I+ and I− the expectation value
of B is, according to Eq. (35), given by (I+ − I−)/(I+ + I−).
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Obviously, for the expectation value of A we can also turn
off A2 and only use the two output ports of A1 in the same
manner. For the actual experiment we favor this method
since increasing the number of involved components usually
increases the experimental error.

A final remark concerns the principle aim of our experi-
ment. We do not seek to minimize the measurement error ε(A)
as one may assume at first sight. By the way, measuring the spin
of a spin- 1

2 particle along any direction is easily achievable with
a high degree of precision. We are interested in a controlled
variation of OA and a systematic investigation of the resulting
measurement error ε(A) and disturbance η(B), which are given
by Eqs. (32) and (33), in order to demonstrate the behavior
of Heisenberg’s relation [Eq. (4)] in comparison to Ozawa’s
relation [Eq. (5)].

V. NEUTRON SPIN MEASUREMENT SETUP

In the previous section, we have outlined the idea behind
the experiment. We now want to turn to the actually performed
measurements on neutron spins. The experiment was carried
out at the tangential beam port of the research reactor facility
TRIGA Mark II of the Vienna University of Technology. The
whole setup is depicted in Fig. 6.

A monochromatic, thermal neutron beam with a mean
wavelength of 1,96 Å and a cross section of about

10 (vertical) × 5 (horizontal) mm2 propagates in the y

direction. In the so-called preparation stage, it first crosses
a bent Co-Ti supermirror resulting in an approximately 99%
polarization in the +z direction. For the further manipulation
of the spin state we use magnetic fields which interact with
the neutron via the Zeeman Hamiltonian μ�σ �B. For thermal
neutrons the effect of the magnetic fields on the spatial part
of the wave function can be neglected [35] and the action of a
static magnetic field pointing in direction �nB on the spin state
is described by a unitary transformation UR:

UR = eiα�nB ·�σ , α = μ|B|T/h̄, (39)

where μ denotes the magnetic moment of the neutron, |B|
the modulus of the magnetic field strength, and T the time of
flight through the field region. The magnetic field thus induces
a rotation of the neutron polarization around the axis �nB with
an angle α, commonly referred to as Larmor precession. In
order to obtain any arbitrary spin state we combine the action
of a 10 G guide field pointing in the z direction and so-called
spin flippers. The spin flipper produces a field in the negative
z direction which compensates the guide field, and a second
field Bx that points in the x direction. When the z-polarized
neutrons propagate through the spin flipper their polarization
obtains a polar angle depending on the strength of Bx . In the
guide field, Larmor precession around the z axis is induced.
Since the strength of the guide field is fixed, the azimuthal

>

>
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y

z

B0
.

<

z
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PREPARATION

APPARATUS A1:
FROM

MONOCHROMATOR

 DC-1          D
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 B x. 

<
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<  B x. 
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Ο  Ο  Α

Ο  Ο   Α

FIG. 6. (Color online) Illustration of the experimental apparatus. The setup is designed for the demonstration of error and disturbance in
neutron spin measurements. The neutron optical setup consists of three stages: preparation (blue region), apparatus A1 measuring OA (pink
region), and apparatus A2 measuring B (green region). A monochromatic neutron beam is polarized in the +z direction by passing through
a supermirror spin polarizer. By combining the action of four spin-flipper coils, the magnetic guide field, and the analyzing supermirrors, the
successive measurements of OA and B are made for the required input states.
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angle of the polarization is varied by changing the time of
flight through the guide field. Thus, in order to get a certain
azimuthal angle at the end of the preparation stage, we have
to position the first spin flipper DC-1 properly between the
polarizer and the end point of the preparation stage.

Carrying out the projective measurement of OA consists of
two steps. At first, we have to project the initially prepared state
onto the eigenstates of OA. To complete the measurement we
then have to prepare the neutron spin in the eigenstates of OA.
For the projection, spin flipper DC-2 has to be positioned in the
guide field such that the spin component along the axis to be
measured is rotated into the +z direction. For the eigenstate
belonging to eigenvalue +1, we need the component along
�oa; for the eigenstate belonging to −1, we rotate the −�oa

component in the +z direction. The supermirror (analyzer)
then selects only the |+z〉 part of the wave function. The
projective measurement is completed by the preparation of
the measured spin component with spin flipper DC-3. In an
analogous manner to the preparation of the initial state, this is
accomplished by properly positioning spin flipper DC-3 in the
guide field, so that the desired state is generated at the exit of
apparatus A1.

Note that the magnetic guide field strength and the
dimensions of our experiment are chosen such that any desired
direction for the output operator OA and any initial state can
be realized.

On the state after the OA measurement, the B measurement
is performed using the last spin flipper (DC-4) and the analyzer.
A subsequent preparation of the eigenstates of B is not
necessary since the counting detector is insensitive to the spin
state.

In contrast to an ideal measurement, in our setup the four
possible outcomes of the two projective spin measurements
along �oa and �b are not measured at the same time, but one
after the other. At first, we adjust the apparatus to measure the
projection onto the positive eigenstates |+oa〉 and |+b〉 of OA

and B. The resulting intensity derived from the counts/600 s
is consequently denoted by I++. Afterwards, we change
apparatus A2 to constitute the projection operator |−b〉〈−b|
yielding I+−. Then we change apparatus A1 to measure
|−oa〉〈−oa| and repeat the procedure for both eigenstates of B

to get I−+ and I−−. From the four output intensities, we obtain
the expectation values of OA and OB as given by Eqs. (36)
and (37). The measured expectation values are normalized
taking the limiting efficiency of the entire apparatus (∼96%)
into account, so that expectation values are bounded between
±1. In order to get results for error ε and disturbance η the
expectation values have to be recorded for the different states
|ψ〉, A|ψ〉, (A + 1l)|ψ〉, B|ψ〉, and (B + 1l)|ψ〉. In Fig. 7, we
show an explicit example of related intensity sets.

For special configurations of A, B, and |ψ〉 some of these
necessary states are equivalent since overall phase factors are
irrelevant. For example, if A = σx , B = σy , and |ψ〉 = |+z〉
we have |Aψ〉 = |−z〉 and |Bψ〉 = i|−z〉.

For the measurement of the standard deviation σ (A), we
chose OA to be A and then project the initial state |ψ〉 onto the
eigenstates of A. A subsequent preparation of the eigenstates
and the B measurement are not necessary, which means the
spin flippers DC-3 and DC-4 can be turned off. For the standard
deviation σ (B), we virtually remove apparatus A1 by turning
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FIG. 7. (Color online) Normalized intensity of the successive
measurements carried out by apparatuses A1 and A2. The combined
projective measurements of OA and B have four outcomes, denoted
as (+ +), (+ −), (− +), and (− −) and have to be recorded for each
initial state, i.e., |ψ〉, |Aψ〉, |Bψ〉, |(A + 1l)ψ〉, and |(B + 1l)ψ〉. Here
A = σx , B = σy and |ψ〉 = |θψ = π/4,φψ = π/12〉. OA is varied
within the xy plane with azimuthal angle given by φOA = 0, π/4, and
π/2. Error bars represent ± one standard deviation of the normalized
intensities. Some error bars are at the size of the markers.

off the spin-flipper coils DC-1 and DC-2 and then use DC-3
(in combination with the guide field) to prepare the state |ψ〉
that is then applied to apparatus A2 that projectively measures
the expectation value of B.

With known error ε(A), disturbance η(B), and standard
deviations σ (A) and σ (B) we can examine the behavior of
Heisenberg’s [Eq. (4)] and Ozawa’s [Eq. (5)] relations for
varying OA.

VI. EXPERIMENTAL RESULTS

A. Standard configuration

In the first experiment, we investigate the uncertainty
relations in the so-called standard configuration where the
Bloch vectors of the observables and the initial state (�a, �b,
and �r) are orthogonal to each other:

A = σx, B = σy, |ψ〉 = |+z〉. (40)

Note that since all results only depend on the relative orienta-
tion of the involved quantities we can always fix one direction.
Therefore, we will chose A to be σx in all experiments. For
the standard configuration, the standard deviations and the
expectation value of commutator between A and B become
maximal [see Eqs. (30) and (31)]:

σ (A) = 1, σ (B) = 1, 1
2 〈ψ |[A,B]|ψ〉 = 1. (41)

In Sec. III, we have depicted ε(A) (Fig. 1), η(B) (Fig. 2),
their product ε(A)η(B) (Fig. 3), and the sum ε(A)η(B) +
ε(A)σ (B) + σ (A)η(B) (Fig. 4) for A = σx and B = σy for
all possible directions of OA on the Bloch sphere. In our first
experimental run, we vary OA along the equator. OA is thus
parametrized by its azimuthal angle φOA yielding the direction
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FIG. 8. (Color online) Experimentally determined values of error
ε(A), disturbance η(B), σ (A), and σ (B) plotted as ε(A)σ (B),
σ (A)η(B), and ε(A)η(B) [this term corresponds to the left-hand side
of the Heisenberg relation (Eq. (4)] and as the sum ε(A)σ (B) +
σ (A)η(B) + ε(A)η(B) (corresponds to the left-hand side of the
Ozawa’s relation [Eq. (5)]) against the azimuthal angle of OA. The
observables A and B and the initial state |ψ〉 are depicted on the Bloch
sphere, as well as the path along which OA is varied. The respective
theory curves are given by Eqs. (41) and (42).

�oa = (cos φOA, sin φOA,0). The theory curves for ε(A) and
η(B) are then given by

ε(A) = 2 sin
φOA

2
, η(B) =

√
2| cos φOA|, (42)

which follows from Eqs. (28) and (29).
In the standard configuration, we have to prepare |+z〉,

|−z〉, |+x〉, and |+y〉 as input states in order to obtain the
necessary expectation values that determine error, disturbance,
and standard deviations. The errors of the measured values for
ε(A) and η(B) are calculated using error propagation from
the standard deviation of the count rates and considering
inaccuracies of the Larmor precession angles (∼1.5◦). The
latter result mainly from inhomogeneity of the guide field
along the beam.

In Fig. 8, we show the experimental outcomes for the
three terms occurring in Ozawa’s relation plotted against the
azimuthal angle of OA, which we call detuning angle since it
also indicates the amount of deviation between A and OA. The
standard deviations are independent of OA and their measured
values are practically equal to σ (A) = σ (B) = 1, which is
why we can also investigate the behavior of ε(A) from the
ε(A)σ (B) curve and likewise the behavior of η(B) from the
σ (A)η(B) curve.

Initially, for φOA = 0, which is OA = A, the measurement
error ε(A) vanishes. When we move along the equator it

increases and reaches its maximal value for OA = −A(φOA =
π ). Then, OA approaches A again and ε(A) decreases.

The disturbance is maximal for φOA = 0 and vanishes
when OA = B (φOA = π/2). It has a second maximum for
OA = −A because a (−A) measurement disturbs B as much as
an A measurement. A and −A have the same set of eigenstates
and therefore the same set of projectors, which for the general
formula Eq. (22), already leads to an equal expression for
the disturbance. We can also verify that the disturbance
vanishes again for OA = −B (φOA = 3π/2), which follows
from similar arguments for B and −B.

The famous trade-off relation stating that when one observ-
able is measured more precisely, the other is more disturbed
has to be treated with care. This reciprocity between error and
disturbance only holds for −π/2 � φOA � π/2. When we
move away from φOA = π/2 where η(B) = 0 to increasing
φOA we again disturb the B measurement, but at the same time
the error of the A measurement increases as well since we tend
towards −A. Then, for π � φOA � 3π/2 both decrease.

The product of error and disturbance ε(A)η(B) lies below
the limit given by the commutator for the majority of φOA

values revealing the violation of the generalized Heisenberg
relation [Eq. (4)]. The strongest violation occurs around the
regions of error-free (φOA = 0) or disturbance-free (φOA =
π/2,3π/2) measurements.

Contrary to that, the sum ε(A)η(B) + ε(A)σ (B) +
σ (A)η(B) is always above the expectation value of the
commutator showing the validity of the Ozawa’s relation
[Eq. (5)].

B. Arbitrary direction of OA

Though moving OA along the equator of the Bloch sphere
already reveals a lot of remarkable features about error, distur-
bance, and the related inequalities a systematic investigation
requires arbitrary variations of OA. The direction of OA is in
general given by an azimuthal angle φOA and a polar angle θOA,
so that �oa = (cos φOA sin θOA, sin φOA sin θOA, sin θOA)T

which yields for error and disturbance if still A = σx and
B = σy ,

ε(A) =
√

2 − 2 cos φOA sin θOA, (43)

η(B) =
√

2 − 2 sin2 φOA sin2 θOA. (44)

For the following experiments, we will fix the polar angle θOA

and then vary the azimuthal angle φOA thereby realizing an
evolution of OA along circles of latitude on the Bloch sphere
(see Fig. 9).

Neither error nor disturbance can then vanish completely
since OA never coincides with A, B, or −B along these paths.
The ε and η curves are as a whole shrunken from below. Note
that we can deduce the behavior of ε(A) and η(B) from Fig. 9
since σ (A) and σ (B) are still 1. The shrinking effect increases
the more θOA differs from π/2 ending up in straight lines for
the degenerate case θOA = 0.

The trade-off effect between error and disturbance is
weakened, but still valid for −π/2 � φOA � π/2 if we move
along the circles of latitude. If we move along meridians no
trade-off exists at all since error and disturbance both increase.
Thus, at least for spin measurements, the trade-off is not only
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FIG. 9. (Color online) Standard configuration results for OA outside the xy plane. The observables A and B, the initial state |ψ〉, and the
chosen path for the output operator OA are depicted on the Bloch sphere. The theoretically predicted values for σ (A), σ (B), and the lower limit
are given by Eq. (41) and the theory curves for ε(A) and η(B) by Eqs. (43) and (44), respectively.

restricted to certain regions but also to certain directions in the
parameter space.

Since both error and disturbance increase their product in-
creases as well and lies above the limit in larger and larger inter-
vals. For θOA � arcsin(0.75) ≈ 48.6◦ the Heisenberg relation
is always fulfilled (see, for example, top right panel of Fig. 9).

Ozawa’s inequality is again always fulfilled; the sum
ε(A)η(B) + ε(A)σ (B) + σ (A)η(B) gets shifted far above the
limit when OA approaches the poles.

C. Varying the azimuthal angle of B

In the next step we quit the standard configuration and
change the relative orientation of A and B by moving B along

the equator (see Fig. 10).

A = σx, B = σx cos φB + σy sin φB, |ψ〉 = |+z〉, (45)

which leads to

σ (A) = 1, σ (B) = 1, 1
2 〈ψ |[A,B]|ψ〉 = |sin φB |. (46)

If we also vary OA along the equator the error remains un-
altered compared to the standard configuration but we expect
the disturbance curve to be shifted an amount φB − π/2,

ε(A) = 2 sin
φOA

2
, η(B) =

√
2|sin(φOA − φB)|. (47)

Note that in the standard configuration φB = π/2, which turns
the sine dependence into a cosine.
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FIG. 10. (Color online) Variations of the azimuthal angle φB of the observable B. The observables A and B, the initial state |ψ〉, and the
chosen path for the output operator OA are depicted on the Bloch sphere. The theoretically calculated values for σ (A), σ (B), and the lower
limit are given by Eq. (46) and the theory curves for ε(A) and η(B) by Eq. (47).

The error still vanishes for OA = A and has its maximum
at OA = −A; the disturbance vanishes for OA = B and OA =
−B and has maxima in the middle between the two minima,
which do not correspond to the direction of A or −A now.

Due to the loss of symmetry, the product ε(A)η(B) changes
considerably. Since the commutator between A and B addi-
tionally decreases, compared to the standard configuration,
the regions where the Heisenberg error-disturbance relation is
violated become smaller.

The expression ε(A)η(B) + ε(A)σ (B) + σ (A)η(B) is al-
ways above the limit again demonstrating the validity of
Ozawa’s relation. However, in the standard configuration
the sum never touched the limit, whereas for shifted B it

approaches the lower bound. Points associated with
disturbance-free measurement come closest to the limit and
finally touch it for the degenerate cases B = A and B = −A.

In this context we want to mention an interesting aspect
concerning the lower bound. For the premeasurement standard
deviations in the state |ψ〉, the lower bound derived by
Robertson [19] and given by Eq. (3) was soon refined by
Schrödinger [36] to be

σ (A)2σ (B)2 �
〈

1

2
{A − 〈A〉,B − 〈B〉}

〉2

+
〈

1

2i
[A,B]

〉2

,

(48)
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A, B, |ψ〉, and OA determine the results, the experiments involving
the polar angle θB can be equivalently seen as configurations with a
changed initial state and an evolution of OA along an inclined plane.

where 〈· · · 〉 abbreviates 〈ψ | · · · |ψ〉 and {X,Y } = XY + YX

stands for the anticommutator. For our observables A = �a · �σ ,
B = �b · �σ , and the initial state |ψ〉〈ψ | = 1

2 (1l + �r · �σ ) the
additional term explicitly reads

1
2 〈{A − 〈A〉,B − 〈B〉}〉 = �a · �b − (�a · �r)(�b · �r). (49)

It vanishes for the standard configuration, but for nonorthogo-
nal A and B it contributes. The measured standard deviations
in Fig. 10 of course obey the improved relation, Eq. (48). But
for the error-disturbance relations, the anticommutator term
cannot be added to the lower bound. This shows explicitly that
the three terms of Ozawa’s relation are not bounded from below
by the product of the premeasurement standard deviations as
one could naively conclude from the results of the standard
configuration. Meanwhile, improvements to the tightness of
the error-disturbance relation have been achieved in [37].

When moving OA along the equator we find out that the
trade-off relation between error and disturbance is valid in

unconnected intervals for φOA whose positions depend on the
orientation of B.

D. Varying the polar angle of B

Now, we also introduce a polar angle for B while leaving
its azimuthal angle to be π

2 . The observable and the initial state
are then given by

A = σx, B = σy sin θB + σz cos θB, |ψ〉 = |+z〉, (50)

which leads to

σ (A) = 1, σ (B) = sin θB, 1
2 〈ψ |[A,B]|ψ〉 = sin θB.

(51)

We vary OA along the equator and along a circle of latitude
determined by θOA = π

3 . The error ε(A) remains the same as
in Eq. (43), whereas the expression for the disturbance written
in spherical coordinates becomes rather lengthy and we refer
to the general expression, Eq. (29).

Note that we can obviously perform a coordinate trans-
formation so that A and B lie in the xy plane again (see
Fig. 11). Then, the state |ψ〉 gets a polar angle and the path
of OA inclines likewise and consequently its parametrization
becomes more elaborate. Nevertheless, one can also see the
above experiments as a realization of this particular evolution
of OA for A = σx , B = σy , and a declined initial state.

For the OA variation along the equator, the error curve does
not change compared to the standard configuration; the term
ε(A)σ (B) in Fig. 12 becomes smaller due to smaller σ (B). The
disturbance never vanishes totally since OA never coincides
with B or −B. The curve is still symmetric because the
enclosed angles between OA and B for 0 � φOA < π are the
same as the angles between OA and −B for π � φOA < 2π .
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When OA varies along the circle of latitude given by
θOA = θB the situation changes. The error cannot become zero
since OA 	= A holds everywhere. The disturbance vanishes for
φOA = π

2 where OA = B but the symmetry is lost. OA does not
approach −B in the same manner as B and so the disturbance
is hardly reduced for π � φOA < 2π .

E. Varying the initial state

Until now, we have varied OA along different paths and
changed the direction of B. The next thing to investigate is
alterations of the initial state |ψ〉 for an already examined
choice of A and B which should not, according to the
theoretical predictions, affect error and disturbance. The
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parameters are given by

A = σx, B = σy, |ψ〉 = cos
θψ

2
|+z〉 + eiφψ sin

θψ

2
|−z〉,

(52)

leading to

σ (A) =
√

1 − cos2 φψ sin2 θψ, (53)

σ (B) =
√

1 − sin2 φψ sin2 θψ, (54)

1
2 〈ψ |[A,B]|ψ〉 = |cos θψ |. (55)

Since OA is varied along the equator no change for error
and disturbance in comparison to the standard configuration
is expected and their theory curves are thus given by Eq. (42).
After dividing with the corresponding standard deviations this
can be verified from the ε(A)σ (B) and σ (A)η(B) curves in
Fig. 13.

The plots show that the product of error and disturbance
is indeed independent from the initial state. However, the
lower limit changes and the regions where Heisenberg’s
error-disturbance relation is fulfilled become larger when |ψ〉
approaches the xy plane.

The left-hand side of Ozawa’s relation also contains the
standard deviations and therefore changes with the initial state
and still lies above the limit.

VII. DISCUSSION

In our previous letter [28], we reported an experiment
for the particular case where error and disturbance of a
neutron’s spin-component measurements obey Ozawa’s new
relation, Eq. (5), but violate the old one, Eq. (4), in the
whole range of the experimental parameter. The old relation
is extended from Heisenberg’s original relation, Eq. (1),
between the error of a position measurement and the induced
disturbance on the momentum. Although mainly motivated
by thought experiments and in its mathematical derivation
based on unjustified assumptions, Heisenberg’s old relation
for measurement error and disturbance prevailed and was
regarded as a peculiarity of quantum mechanics for a long
time. The important step for the test of error-disturbance
uncertainty relations is to give clear and consistent definitions
of error and disturbance for quantum measurements. This is
done by Eqs. (12) and (13). Here, we again investigate these
relations in the 1

2 -spin system, but enlarge our parameter range
in comparison to [28]. For projective spin- 1

2 measurements,
error and disturbance are determined by three (Bloch) vectors
�a, �b, and �oa , characterizing the spin observables A and B and
the actual measurement operator OA. In particular, the error
(disturbance) only depends on the deviation angle between
�a (�b) and �oa , which is described in Eq. (28) [Eq. (29)] and
depicted in Fig. 1 (Fig. 2). It is worth noting here that error
and disturbance are independent from the initial quantum state
which follows straightforward from the properties of the Pauli
matrices.

Our measurement strategy is based on the expansion
of error and disturbance in terms of expectation values of
outcomes in three different input states given by Eqs. (24)

and (25) reminiscent of a quantum process tomography
[38,39]. There is another experimental strategy based on weak
values [29,32,40]. They insist that “if the system is weakly
measured before the measurement apparatus the precision
(error) and disturbance can be directly observed in the resulting
weak values” [32] and claim our method to be indirect.
Although it is not clear in what sense the measurements are
direct and indirect, we consider here possible arguments: The
determination of error and disturbance is done (i) whether
by using a single incident state or a combination of some
states and/or (ii) whether for single events or for an ensemble.
For point (i), we point out the fact that the incident state
is affected by some operation before the measurements A
and B in both cases. In the weak-value strategy, weak
measurements actually demand interaction with the system,
which inevitably makes backreaction on the system (however
weak they may be), otherwise no information of the system
will be derived: After interactions through needed weak-value
measurements, the incident state is no longer the same as
it was. In contrast, the measurements of A and B are done
just after the incident state goes through the operation of
1l, A, B, A + 1l, or B + 1l in the tomographic strategy. The
only difference between them is that the operation is weak or
strong. For point (ii), as is stated in one of the above papers,
“Experimentally, the problem with weak values is that they
cannot be confirmed by precise measurements on individual
systems” [40]: Experimental determination of the error and
disturbance requires measurements on a set of an ensemble,
which is a common feature of both approaches. This is a
clear statement of abandonment of determining the error and
disturbance for single events by using neither strategy. Another
point to be mentioned is the following: In a comparison of the
two graphs in Fig. 5 of [28] (respectively, the corresponding
part of Fig. 8 in this work) and Fig. 4 of [32], the accuracy of
the former is clearly much higher than the latter.

Conscientious readers may presume without difficulty that
the new uncertainty relation could be reformulated as

[ε(A) + σ (A)] [η(B) + σ (B)] � |〈ψ |[A,B]|ψ〉| (56)

by just adding Robertson’s and Ozawa’s inequalities
[Eqs. (3) and (5)]. Although it seems appealing to consider the
left-hand side as the product of a newly defined “overall” error
and “overall” disturbance, given by the sum of measurement-
induced error for A (disturbance on B) and measurement-
independent intrinsic fluctuation (standard deviation) of A

(B), the “overall” lower bound is less tight than Eqs. (3)
and (5) considered separately. Recently, a tight error-
disturbance relation (for pure states) has been presented in [37].

Finally, we are aware that a completely different quan-
tification of uncertainty relations, viz., in terms of entropy,
has been developed. For instance, a relation for position and
momentum was derived first [41], followed by a generalization
for arbitrary pairs of observables [42]. An improved version
suggested in [5] and proven in [43] has the form

H (A)H (B) � − log 2 max
j,k

‖〈aj |bk〉‖, (57)

where H (A) [H (B)] denotes the Shannon entropy of the
probability distribution of the outcome and |aj 〉 () represent
nondegenerating eigenstates of A (B). Recently, a stronger
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entropic uncertainty relation for an entangled system was
presented [44] and studied in an optical setup [45]. The
entropic uncertainty relations describe informational contents
and do not refer to the interaction of quantum measurements.
They rather represent a generalization of Robertson’s relation
[Eq. (3)] for probability distributions for which the standard
deviation has little physical meaning. Though, it would be
interesting if the universally valid uncertainty relation of
Ozawa [Eq. (5)] also has an entropic counterpart.

VIII. CONCLUSION

In Heisenberg’s original formulation, the uncertainty prin-
ciple refers to a relation for the error in the measurement of
a certain observable and the thereby induced disturbance on
another observable. However, his famous relation has been
based on thought experiments or a rather heuristic argument
with unsupported assumptions. A recent development of
rigorous treatments of quantum measurement has enabled
us to reformulate the error-disturbance relation and lead to
a universally valid relation.

In the experiment presented here, we have investigated
this relation for projective neutron spin measurements. The
two noncommuting observables under consideration are spins
along different directions which are measured successively.
By using a tomographic procedure, based on applying three
different states generated from the initial system state on
the joint measurement apparatuses, the error of the first
measurement and the disturbance induced on the second
observable can be determined from the output intensities. By

detuning the measurement axis of the first apparatus we can
study the variation of error and disturbance. Together with the
Bloch vector of the initial system state, the directions of the
two spin observables and of the measurement axis constitute
the relevant parameters determining all quantities occurring in
the uncertainty relations.

In our neutron-optical experimental runs, we have at
first fixed the observables and the initial state, and then
varied the detuned measurement axis along equilatitude circles
on the Bloch sphere. For various representative configurations,
the measured values for error and disturbance are in excellent
agreement with the theory curves. They are independent of the
initial state and are solely determined by the enclosed angle
between the measurement axis and the first or second spin axis,
respectively. The results demonstrate that Heisenberg’s error-
disturbance relation can always be violated for a nonvanishing
lower limit. In contrast, Ozawa’s alternative inequality always
holds. Furthermore, we conclude that increasing error does
not always lead to decreasing disturbance and vice versa in
spin measurements. Such a reciprocal behavior occurs only in
certain areas and along certain directions. Thus, our results give
an experimental demonstration that the generalized form of
Heisenberg’s error-disturbance relation has to be abandoned.
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