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Interference effects in Bethe-Heitler pair creation in a bichromatic laser field
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We study the creation of electron-positron pairs in the superposition of a nuclear Coulomb field and a two-color
laser field of high intensity. Our focus lies on quantum interference effects, which may arise if the two laser
frequencies are commensurable. We show that the interference manifests in the angular distributions of the created
particles, which are discussed in the nuclear rest frame and the laboratory frame. Additionally, we demonstrate
that the total pair-production rates can be affected by interference and identify the relative phase between the two
laser modes, which optimizes the pair-production yield.
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I. INTRODUCTION

Creation of electron-positron (e−e+) pairs by a highly
energetic photon in the presence of a nuclear Coulomb
field is referred to as the Bethe-Heitler process [1]. Its first
observations in a laboratory relied on γ rays from nuclear
decays or bremsstrahlung [2]. Currently, the process serves
for applications such as the generation of polarized positron
beams [3], which are of relevance for experimental particle
physics.

When a nucleus is subject to the intense photon field of
a high-power laser beam, a multiphoton generalization of the
usual Bethe-Heitler process may occur, often referred to as
the nonlinear Bethe-Heitler process. Here, n laser photons
are absorbed simultaneously from the laser field in order to
overcome the pair production threshold:

Z + nω → Z + e− + e+. (1)

Theoretical investigations of this and similar matter from
laser light reactions [4–6] are almost as old as the demon-
stration of the first laser itself [7]. The interest has been
strongly revived in recent years [8,9]. This development
is stimulated by the large and still ongoing progress in
high-intensity laser technology. Apart from that, a pioneering
experiment at the Stanford Linear Accelerator Center (SLAC)
demonstrated that e−e+ pair production by multiphoton
absorption is feasible in collisions of a highly energetic
electron beam with an intense laser pulse [10]. In a similar
manner, the nonlinear Bethe-Heitler reaction is accessible by
modern experimental techniques, e.g., by using the highly
relativistic nuclear beam from the Large Hadron Collider
(LHC) at CERN in conjunction with a counterpropagating
high-intensity laser beam. In the nuclear rest frame, the
laser frequency and intensity are largely amplified by a
relativistic Doppler shift, reaching the levels required for pair
production.

The prospect of an experimental test naturally fuels further
theoretical investigations. Thus, a substantial amount of work
dedicated to the nonlinear Bethe-Heitler effect has been done.
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Production rates and particle spectra in various field parameter
regimes have been calculated (e.g., [11–16]), and more refined
properties were examined, such as nuclear recoil [17,18]
and electron-spin effects [19]. It should be noted that in
these studies the laser field was always assumed to be a
monochromatic plane wave.

In the interaction of a single photon with a structured
target Bethe-Heitler pair creation may exhibit signatures of
quantum interference. In particular, coherently enhanced pair
creation by a photon propagating through a crystal has been
studied in detail [20]. Similar interference effects occur in
pair production on molecules [21,22]. In both cases, the pairs
can be produced at two or more Coulombic centers, with the
corresponding S-matrix amplitudes adding up coherently and
leading to interference.

In the multiphoton case of the Bethe-Heitler process, a
different kind of quantum interference can occur when the
laser field is composed of two frequency modes:

Z + n1ω1 + n2ω2 → Z + e− + e+. (2)

If both modes propagate in the same direction and have
commensurable frequencies, i.e., frequencies with a rational
ratio, it may happen that the total four-momentum of n1

photons from the first mode equals that of n2 photons
from the second mode. With this condition fulfilled, it is
indistinguishable whether a pair was produced through photon
absorption from the first or the second mode. Thus, these
two quantum paths can interfere. A similar kind of two-color
quantum interference is well known for photoinduced atomic
processes [23] and chemical reactions [24], where it can be
exploited for coherent control schemes.

Recently, the nonlinear Bethe-Heitler process has been
investigated in a bichromatic laser field of commensurable
frequencies, with both modes being linearly polarized along
the same direction [25,26]. In addition, both modes were
assumed to have the same value for the intensity parameter
[defined in Eq. (9)]. There, the relative phase between the
modes was shown to exhibit a distinct influence on the
angular distributions of the created particles. The nonlinear
Bethe-Heitler process was also considered for a bichromatic
laser field of commensurable frequencies and circularly
polarized modes [27] and for the case of largely differing,
noncommensurable frequencies [28]. A related study revealed
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interference effects in e−e+ pair creation by a highly energetic
nonlaser photon in the presence of a bichromatic laser field
of commensurable frequencies [29]. Finally, it is worth men-
tioning that other types of interference effects in field-induced
pair production have been subject to theoretical investigation
recently as well [30–32].

In the present paper, we study the nonlinear Bethe-Heitler
effect in a bichromatic laser field of commensurable
frequencies. Both field modes are assumed to be linearly
polarized with mutually orthogonal polarization vectors. Our
theory relies on an S-matrix formalism in the Furry picture
using Volkov solutions to the Dirac equation as basis states.
The nuclear Coulomb field is treated in the lowest order of
perturbation theory.

Our focus lies on signatures of two-color quantum in-
terference in the pair production process. To this end, the
intensity ratio of the frequency modes will be chosen in a
way to maximize the interfering contributions in the square
of the S matrix. We will show that the two-color interference
modifies the angular distribution of the created particles. In
particular, shifts of the angular peak positions are found.
Under certain conditions, the interference may also lead to
an increase (or a decrease) of the total pair-production rate.
These changes are shown to depend on the relative phase
between the two field modes. Thus, the latter can be chosen to
maximize the yield of produced pairs. The results are discussed
in the nuclear rest frame and the laboratory frame. Finally, an
intuitive explanation for the phase dependence of the total pair
production rate is developed.

Regarding the chosen geometry of the bichromatic laser
field, we note that the orthogonality of the field modes
offers two advantages. On the one hand, it simplifies the
mathematical treatment of the process due to the vanishing
of certain cross terms. For the same reason it guarantees
that, on the other hand, the laser intensity remains unchanged
under variation of the relative phase between the modes. Both
features facilitate gaining intuitive insights, such as the one
mentioned above, into the rather complex nature of two-color
quantum interferences in the nonlinear Bethe-Heitler effect.
Furthermore, in this context it is interesting to note that
orthogonally polarized two-color laser fields have proven
to be beneficial in atomic physics in order to control the
laser-driven recollision dynamics of field-ionized electrons
[33,34].

This paper is organized as follows. First, we will outline
our calculational approach in Sec. II. The Volkov solutions of
the Dirac equation in a bichromatic laser field with linearly
polarized modes of orthogonal field vectors will be given. Af-
terwards, the S matrix describing the nonlinear Bethe-Heitler
process in such a laser field is evaluated, and an expression
for the total pair-production rate is derived. The latter contains
a sixfold integral over the momenta of the created particles
and a fourfold sum over photon numbers, which both can
effectively be reduced by one due to energy constraints. The
remaining integrations are performed numerically, leading
to the results presented in Sec. III, where we show pair
production rates differential in the polar emission angle for
various frequency ratios and (total) photon energies. The con-
clusions that can be drawn from our study are summarized in
Sec. IV.

II. THEORETICAL FRAMEWORK

A. Volkov solutions and field geometry

For an electron moving in the field of an electromagnetic
plane wave in vacuum the Dirac equation can be solved exactly,
leading to the so-called Volkov solutions, which were first
derived in 1935 [35]. A brief overview of this derivation, with
special emphasis on the case of a bichromatic laser wave, is
given in the following.

The Dirac equation [36](
ih̄/∂ + e

c
/A − mc

)
� = 0, (3)

with the positive elementary charge e, applying Feynman
slash notation /A = γμAμ and defining the four-gradient ∂ =
( 1
c

∂
∂t

,−∇), can be solved analytically for a vector potential
A(η) depending only on a phase variable

η = kμxμ = ωt − k · r, (4)

and given in Lorenz gauge ∂μAμ = 0, which corresponds to
A being transversal: kμAμ = 0. Here the wave vector k =
(ω

c
,k) and the four-dimensional space-time coordinate x =

(ct,r) are used. This leads to the Volkov solutions for electrons
and positrons, as denoted by the superscripts (−) and (+),
respectively:

�(±)
p,s = N

(
1 ± e/k /A

2ckμpμ

)
exp

(
i

h̄
S(±)

)
u(±)

p,s . (5)

Here N is a normalizer, u is a free Dirac spinor with the
respective particle’s momentum p and spin s, and S is the
action as given by

S(±) = ±pμxμ + e

cpμkμ

∫ η
[
pμAμ(η̃) ∓ e

2c
A2(η̃)

]
dη̃. (6)

Using these wave functions, the interaction between electrons
or positrons and the laser field can be treated exactly.

In the present study, the laser field A is defined as
superposition of two laser waves: A = A1 + A2. For each of
the two laser modes, we assume a general plane wave field:

Ai = ai cos(ηi + ϕi) (i = 1,2), (7)

with perpendicular field vectors ai , relative phases ϕi , and
phase coordinates ηi = (ωi

c
) κμxμ, where both ki = (ωi

c
)κ

share the same direction of propagation κ = (1,0,0,1), as
depicted in Fig. 1. The field vectors ai are given by

a1 = (0,1,0,0)|a1|, a2 = (0,0,1,0)|a2|. (8)

The dimensionless intensity parameters

ξi = e

mc2

|ai |√
2

(9)

can be used to measure their absolute amplitudes.
In the superposition of these two fields, we can make use

of the fact that despite the squared laser amplitude in Eq. (6),
functions of the two phase coordinates are separable:

S(±) = ±pμxμ +
2∑

i=1

S
(±)
i , (10)

S
(±)
i = e

cpμk
μ

i

∫ ηi
[
pμA

μ

i (η̃i) ∓ e

2c
A2

i (η̃i)

]
dη̃i . (11)
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FIG. 1. (Color online) The applied pair creation scheme: two
linearly polarized plane waves with perpendicular field vectors shined
along the z axis onto a counterpropagating nucleus, creating an
electron-positron pair.

It follows that this separability, which represents a special
feature of the considered field geometry, also carries over to
Eq. (5). Upon insertion of Eq. (7) the integral in Eq. (11) can
be calculated, yielding

S
(±)
i = e

cpμk
μ

i

[
pμa

μ

i sin(η′
i) ∓ e

4c
a2

i

(
sin(2η′

i)

2
+ η′

i

)]
,

(12)

where we have abbreviated η′
i = ηi + ϕi . At this point it is

useful to define the effective momentum

q = p + e2A2

2c2pμκμ
κ, (13)

with the averaged squared laser amplitude

A2 = 1

2
(|a1|2 + |a2|2) = m2c4

e2

(
ξ 2

1 + ξ 2
2

)
. (14)

The effective momentum characterizes the electronic motion
in the laser field and contains the linear term in ηi from
Eq. (12), while the linear term in ϕi will eventually cancel in the
following steps and is thus not further discussed. Additionally,
we can conclude that due to the orthogonal field vectors the
mean intensity of the bichromatic laser field is independent of
the relative phases ϕi .

The definition of the effective momentum also allows us to
give an expression for the normalizer in Eq. (5):

N =
√

mc

q0
. (15)

In addition, the Lorentz-invariant square of the effective
momentum

q2 = p2 + e2

c2
A2 (16)

may be used to define the effective electron mass

m∗ = m

√
1 + ξ 2

1 + ξ 2
2 . (17)

B. Transition amplitude

We model pair production as a transition from a negative
continuum Volkov state �(+) to one of the positive continuum
�(−), induced by a nuclear Coulomb potential with a vanishing
vectorial part AN = 0 and a scalar part A0

N = Ze
|r| . We write the

nuclear four-potential accordingly as

AN = Ze

|r| ε, (18)

using ε = (1,0,0,0), leading to the pair-creation amplitude

S = ie

h̄c

∫
�̄(−)

p−,s−
/AN�(+)

p+,s+ d4x. (19)

From here on we shall distinguish between the electron and
the positron by the subscripts − and +, respectively, for the
(effective) momentum, the spin, and the normalizer. Upon
insertion of the Volkov wave functions from Eq. (5) we obtain

S = N−N+
iZe2

h̄c

∫
d4x

|r| G exp

[
i

h̄
(−S(−) + S(+))

]
, (20)

where we have introduced the abbreviation

G = ū(−)
p−,s−

(
1 − e /A/κ

2cκμp
μ
−

)
/ε

(
1 + e/κ /A

2cκμp
μ
+

)
u(+)

p+,s+ , (21)

containing all γ matrices. Here we insert the action from
Eq. (10) and the laser fields from Eq. (7). With the definitions

αi = e

h̄ωi

(
aiμp

μ
−

κμp
μ
−

− aiμp
μ
+

κμp
μ
+

)
, (22)

βi = e2a2
i

8ch̄ωi

(
1

κμp
μ
−

+ 1

κμp
μ
+

)
, (23)

we find a set of three periodic functions fj (ηi) for each laser
mode:

f1(ηi) = e−iαi sin(ηi )−iβi sin(2ηi ),

f2(ηi) = f1(ηi) cos(ηi), (24)

f3(ηi) = f1(ηi) cos2(ηi) (i = 1,2).

These can be expanded into Fourier series according to

fj (ηi) =
∑
ni

C(j )
ni

e−iniηi (j ∈ {1,2,3}), (25)

where C
(j )
ni

represents the six coefficients, herein built from
generalized Bessel functions J̃n(α,β) [37], as defined via the
ordinary Bessel function Jn(x) by

J̃n(α,β) =
∞∑

l=−∞
Jn−2l(α) Jl(β). (26)

This yields the respective Fourier coefficient for each function
in Eq. (24):

C(1)
ni

= J̃ni
(αi,βi),

C(2)
ni

= 1
2

[
J̃ni−1(αi,βi) + J̃ni+1(αi,βi)

]
, (27)

C(3)
ni

= 1
4

[
J̃ni−2(αi,βi) + 2J̃ni

(αi,βi) + J̃ni+2(αi,βi)
]
.

Thus we can write the amplitude as a summation over two
indices, which can be interpreted as counts for the number of
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photons taken from each of the two modes:

S = iZe2mc

h̄c

√
q0−q0+

∑
n1,n2

M (n1,n2)
p−p+

∫
d4x

|r| exp

(
i

h̄
xμQ

μ

(n1,n2)

)
.

(28)

Here we have inserted the normalizers from Eq. (15), as well
as introduced the momentum transfer to the nucleus

Q(n1,n2) = q+ + q− − n1h̄k1 − n2h̄k2 (29)

and the matrix element M (n1,n2)
p−p+ , which consists of all slashed

quantities and the six Fourier coefficients from Eq. (27).
The four-dimensional integral in Eq. (28) can be solved by

using the Fourier transform of the Coulomb potential and a
representation of the δ function for the integral in space and
time (x0 = ct), respectively [38]:

∫
d3r

1

|r| e− i
h̄

Q·r = 4πh̄2

|Q|2 , (30)
∫

dx0 e
i
h̄
Q0 x0 = 2πh̄ δ(Q0). (31)

Note that by definition of Q0
(n1,n2) this δ function ensures energy

conservation.
Squaring the amplitude leads to a sum over four indices,

|S |2 =
∑
n′

1,n
′
2

n1,n2

P(n1,n2,n
′
1,n

′
2), (32)

with the addends being the thereby defined partial contribu-
tions,

P(n1,n2,n
′
1,n

′
2) = CM̄ (n1,n2)

p−p+ M
(n′

1,n
′
2)

p−p+
cT

Q4
(n1n2)

δ
(
Q0

(n1,n2)

)
,

(33)

C = Z2e4m2

h̄2q0+q0−
32π3h̄5.

Here we have used

n1k1 + n2k2 = n′
1k1 + n′

2k2, (34)

Q(n1,n2) = Q(n′
1,n

′
2), (35)

as enforced by the δ function, and introduced the time T from
the squared δ function [38]:

[
2πh̄ δ

(
Q0

(n1,n2)

)]2 = 2πh̄ δ
(
Q0

(n1,n2)

)
cT . (36)

The product of the two matrix elements M̄ (n1,n2)
p−p+ and M

(n′
1,n

′
2)

p−p+
is a rather cumbersome summation of products of Dirac
γ matrices and thus shall not be shown here. The general
structure should be discussed nevertheless: The result can be
divided into three parts. Two parts depend on the parameters
of the individual laser modes separately and can each be
identified with the result found for a single monochromatic
laser wave [13]. In contrast, the third part depends on mixtures
of the parameters of the two laser modes and thus consists of
the additional terms occurring due to their superposition.

Finally, the partial contributions P enter the differential
partial rates

d6R(n1,n2,n
′
1,n

′
2) = 1

T

∑
s+,s−

P(n1,n2,n
′
1,n

′
2)

d3q−
(2πh̄)3

d3q+
(2πh̄)3

, (37)

where we also summed over the final spin states and divided
by the time T introduced in Eq. (36). Using the δ function
in Eq. (33), we can perform one integration analytically.
The remaining integrals are calculated numerically to obtain
angular differential and fully integrated partial rates. Addi-
tionally, the summation over photon numbers from Eq. (32)
is performed to find differential and total rates. The results of
these computations are presented in the following section.

It should be noted that, in general, the partial rates from
Eq. (37) are not experimental observables. Particularly, they
are not necessarily positive quantities. Summed-up rates,
on the other hand, are always positive and measurable.
Negative partial rates in the four-index sum will lead to
a decreased summed-up rate. They may arise from certain
index combinations that will subsequently be interpreted as
destructive interference.

Concluding this section, we point out that for an appropriate
set of parameters, in particular by defining

a = |a1| = |a2|, ω = ω1 = ω2, ϕ1 = π

2
, ϕ2 = 0,

(38)

we are also able to reproduce previous calculations for a
circularly polarized laser wave [11].

III. RESULTS

A. Notation and general remarks

In order to help read the following results a short remark
on the applied notation should be made. We denote a pair of
laser waves by (ñ1,ñ2) when it is indistinguishable whether
ñ1 photons were absorbed from the first mode or ñ2 from
the second mode. Here ñi is the minimal number of photons
needed from mode i to create a pair, using no photon from the
other mode. We call ñ1h̄ω1 = ñ2h̄ω2 the total photon energy,
where the frequencies ω1 and ω2 are always assumed to be
commensurable.

Likewise, we denote combinations of indices in the sum
from Eq. (32) by [n1,n

′
1,n2,n

′
2] and distinguish direct, sym-

metrically mixed, and asymmetrically mixed terms, where the
latter stem from interference (see Table I for the exact condi-
tions and some examples). Direct terms are those originating
solely from one of the two laser modes and thus would also
be visible if the other mode was turned off. They can serve as
contribution strength references later on, as they could also be
used in an experimental comparison by recording the two laser
sources one at a time. The symmetrically mixed terms can be
understood as taking a certain number of photons from the
first mode and another number from the second. In these cases
no interference is involved. For the interference terms, on the
other hand, it is, by definition, not obvious how to interpret
their index combination as actual photon numbers from the
two modes.
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TABLE I. Types, conditions, and examples of the terms in the summation from Eq. (32).

Type of term Condition Example: (2,4)

Direct n1 = n′
1,n2 = n′

2 and only one is not zero [2,2,0,0] or [0,0,4,4]
Symmetrically mixed n1 = n′

1 	= 0 and n2 = n′
2 	= 0 [1,1,2,2]

Interference (asymmetrically mixed) n1 	= n′
1 and n2 	= n′

2 [0,2,4,0] or [2,0,0,4]

The interference terms are sensitive to the relative phases
ϕi from Eq. (7). Without loss of generality, we can simplify
our treatment by keeping only one relative phase ϕ = ϕ1 and
setting ϕ2 = 0 for all cases.

The intensities of the laser waves are always chosen such
that the partial rates of the two direct terms R1 and R2 are
practically equal. This setup is most favorable for studying
interference because otherwise its contribution strength would
be limited by the smaller of the direct terms. It can be achieved
by choosing a parameter ζ , so that the two laser intensity
parameters ξi [compare Eq. (7)] are connected to the other
wave’s minimal photon number ñi :

ξ1 ≈ ζ ñ2 , ξ2 ≈ ζ ñ1 . (39)

This leads to R1 ≈ R2 ≈ ζ 2ñ1ñ2 because for the field intensities
of interest here the direct rates depend on the respective
intensity parameter like

Ri ∼ ξ
2ñi

i , (40)

which can be understood from the fact that in leading order the
rate contains the square of a Bessel function with an argument
linear in the intensity parameter, corresponding to an nth-
power dependence on that argument. As Eq. (40) only gives the
correct scaling, but does not contain the proportionality factor,
which is indeed different for R1 and R2, small modifications
are still necessary to obtain equal direct contributions. The
final amplitudes can be found by starting from the above and
calculating the direct terms once. From the comparison of
their respective rates the according modification to the input
amplitudes can be inferred.

In the following sections we show plots of angular-
differential (partial) rates for various combinations of laser
waves that feature prominent contributions from interference
terms or, to contrast this, the lack thereof. We investigate how
the variation of the total photon energy and the relative phase
between the two laser modes influences the interference terms
and discuss these effects in nuclear rest frame and laboratory
frame, the first to describe them in general and the latter for
potential experimental application.

It should be noted that for the sake of clarity in the following
figures, we do not depict those index combinations that would
be allowed by energy conservation [described by the δ function
in Eq. (33)] but are several orders of magnitude smaller than
the direct terms, as they represent higher orders in ζ . Also, for
symmetry reasons there are always two interference terms in
each plot contributing equally and thus overlaying each other.
In all figures those two will be depicted by a single line, which
has to be counted twice when summing up the terms.

Finally, it should be noted that for the results shown in
the following sections we use Z = 1, assuming a proton
beam target. For higher nuclear charges the rates would be

modified by an overall scaling factor of Z2, as long as Coulomb
corrections to our first-order treatment of the nuclear field are
negligible (cf. Sec. III C). In this case our predictions of the
influence of quantum interference can thus be inferred directly
from the results for Z = 1.

B. Variation of the minimal photon number
in the nuclear rest frame

First, we shall present results for different laser pairs (ñ1,ñ2)
to find those candidates of laser wave combinations where the
contributions originating from interference are most distinct.
Here we examine total photon energies of ñ1h̄ω1 = ñ2h̄ω2 =
1.1 MeV in the nuclear rest frame, with vanishing relative
phase ϕ. Photon energies of that magnitude would result, for
instance, from colliding a nuclear beam with a Lorentz factor
of γ ≈ 3000, as the LHC provides in its current state, and a
XUV laser beam of ω ∼ 100 eV. Alternatively, a much lower
γ of about 50 could be used in conjunction with an x-ray laser
beam of ω � 10 keV. As this consideration is confined to the
nuclear rest frame, the γ of the nucleus is only used to reach
the given total photon energy by a Lorentz boost of the laser
frequencies. Its further influence will be discussed in Sec. III E,
where the laboratory frame is studied.

Figure 2(a) shows the angular-differential partial rates
for laser pair (1,2). The emission angle θ is measured with
respect to the laser propagation direction. The positions of
the emission peaks are generally at angles below 90◦ due to
the momentum in forward direction imparted by the absorbed
photons. The solid red line shows the contribution of the
direct term stemming solely from the second mode, using
two photons to create the pair. Likewise, the long-dashed blue
line is the contribution solely from the first mode, using one
photon for pair creation. Here the two terms stemming from
interference (dotted violet lines) do not contribute significantly
to the summed-up rate. The same is true for laser pair (1,3)
shown in Fig. 2(b), where the above description applies
accordingly. Besides the two direct terms using the minimum
number of photons, another direct term (dash-dotted magenta
line) is visible in the plots, representing the next-higher order
in ζ for the second mode. Two additional channels, one
direct (dash–double-dotted cyan line) and one symmetrically
mixed (double-dashed orange line), show a very small, but
non-negligible, contribution due to their even higher order in
ζ .

In addition, in both Figs. 2(a) and 2(b) the short-dashed
green line depicts the symmetrically mixed channel [1,1,1,1],
using one photon from each mode. The most evident difference
between (1,2) and (1,3) is the strength of this term, which
is dominant in the first example and less pronounced, but
not vanishing, in the latter. In both cases it is expected to
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FIG. 2. (Color online) Angular-differential partial rates for laser
pairs (1,2) and (1,3) with total photon energy 1.1 MeV in the nuclear
rest frame: (a) laser pair (1,2) with ξ1 = 1.06 × 10−2 and ξ2 = 0.1
and (b) laser pair (1,3) with ξ1 = 3.59 × 10−4 and ξ2 = 0.1. The
frequencies are chosen such that the total photon energy is reached
for ñ1 photons from the first mode and ñ2 photons from the second
mode. The emission angle θ is measured with respect to the laser
propagation direction. The relative phase is ϕ = 0. Neither laser pair
shows significant contribution from an interference term.

be suppressed because it is a higher order in ζ compared to
the direct term [1,1,0,0]. However, the strength of this term
can be explained by the rather low total photon energy of
1.1 MeV, just above the pair-creation threshold, as it is known
that the pair-creation rate vanishes at the threshold [39]. For
total photon energies of the leading-order terms just above
the threshold a term of higher order in ζ , such as [1,1,1,1]
here, has access to a substantially larger phase space for
the emitted electron-positron pair, which can compensate its
aforementioned suppression. This effect vanishes for smaller
intensities as the suppression for increased orders in ζ gets
stronger as ζ becomes smaller.

Contrasting these first two examples, the two laser pairs
(2,4) and (2,6), as depicted in Fig. 3, indeed show significant
contribution from interference terms. For the chosen relative
phase ϕ = 0 this contribution is destructive, i.e., leads to a

FIG. 3. (Color online) Angular-differential partial rates for
(a) laser pair (2,4) with ξ1 = 4.62 × 10−5 and ξ2 = 0.01 and
(b) laser pair (2,6) with ξ1 = 2.48 × 10−7 and ξ2 = 0.01. These two
laser pairs show a large contribution from interference terms. For the
relative phase ϕ set to zero, interference is destructive for (2,4) and
constructive for (2,6).

decreased summed-up rate, or constructive, i.e., leads to an
increased summed-up rate, for laser pairs (2,4) and (2,6),
respectively. In these two cases, the symmetrically mixed terms
expectedly show contributions approximately as strong as the
direct terms because their order in ζ is equal. Instead of taking
all energy from a single mode, half is taken from the first
mode, and the other half is from the second mode. Note that
here intensities smaller than in the examples before are used;
thus no contributions of higher orders in ζ are visible.

Qualitatively, the angular dependence of the interference
terms may be understood as follows. The interference terms
are sensitive to the relative phase between both laser modes.
Variation of this phase implies that the total field vector of
the laser changes (cf. Sec. III D). This leads to a redistribution
of the emission angles, into which the created particles are
ejected. Some angular regions might become more probable,
whereas others become less probable. This redistribution
is reflected, accordingly, by the angular dependence of the
interference terms. Similar conclusions have been drawn
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regarding other strong-field processes, such as the two-color
multiphoton ionization of atoms [40–42].

Comparing our results to previous work on pair creation
by a highly energetic photon [29], where interference effects
were found to be strongest for a frequency ratio of 3, we
note that in the present situation the laser pair with the
smallest photon number for this ratio (1,3) does not show
a contribution from interference terms. However, we do see a
strong contribution for the combination (2,6). Furthermore,
we do find laser pair (2,4) to show the highest absolute
contribution from an interference term. Again, we do not find
any contribution for combination (1,2), which has a lower
photon number and identical frequency ratio. The differences
to the aforementioned study [29] may be attributable to the
differing laser geometries investigated, as there parallel field
vectors were considered. In conclusion, we note that in our
results interference seems to arise only when both minimal
photon numbers ñi are even.

As (2,4) shows the most prominent contribution from
interference of all examined laser pairs, we shall use it as
our main example for all studies in the following sections.

C. Variation of the total photon energy in the nuclear rest frame

For a given laser pair, here (2,4), a variation of the total
photon energy in the nuclear rest frame shows different
modifications for the different terms in the sum in Eq. (32).
This is depicted in Fig. 4, where the angular-differential
partial rates are shown for total photon energies of 1.25 and
1.35 MeV.

While all terms tend to be narrowed to the lower part of the
angular spectrum for higher energies, the interference terms
(violet dotted line) additionally show clear changes in their
shape. Particularly, the zero crossing for 1.35 MeV [Fig. 4(b)]
is an interesting feature.

Furthermore, the relative contribution of the symmetrically
mixed term (green short-dashed line) grows with increasing
total photon energy, making it dominant for the highest
depicted energy. It should also be noted that for even higher
total photon energies, i.e., those larger than 1.363 MeV, a
new direct reaction channel, [0,0,3,3], opens and dominates
the rate from 1.375 MeV onwards. As this is not relevant for
our investigation, we do not give figures for energies higher
than 1.35 MeV. We can conclude that the interference is more
pronounced close to the pair-creation threshold, while the
change in their curve shape for higher energies might lead
to interesting effects.

Since interference is most visible for total photon energies
that are rather close to the threshold, the question arises
whether Coulomb corrections to the outgoing particles are
relevant. However, even for the lowest considered total photon
energy of 1.1 MeV, the created particles are fast enough
to leave the vicinity of the nucleus without being deflected
substantially. This corresponds to their Sommerfeld parameter
[43] being small:

Zα

β±
 1.

Here Z is the nuclear charge, α ≈ 1
137 is the fine structure con-

stant, and β± = v±
c

is the respective created particle’s velocity

FIG. 4. (Color online) Variation of the total photon energy of
the angular-differential partial rates for laser pair (2,4): (a) total
photon energy of 1.25 MeV, ξ1 = 5.07 × 10−5, and ξ2 = 0.01 and
(b) total photon energy of 1.35 MeV, ξ1 = 5.38 × 10−5, and ξ2 =
0.01. As the total photon energy increases, the relative contribution
from interference decreases. Additionally, the shape of the inter-
ference terms changes, leading to a zero crossing in Fig. 4(b).
The intensity parameter ξ1 has been adjusted to maintain equally
contributing direct terms.

in units of the speed of light. This quantity is indeed very small
for typical kinetic energies of about 40 keV, corresponding to
velocities of β± ≈ 0.4, and small Z. Particularly, for Z = 1,
as we consider here, we obtain Zα

β±
≈ 0.02. Consequently,

Coulomb corrections are of minor importance for the total
photon energies under consideration here.

D. Variation of the relative phase in the nuclear rest frame

To study the influence of the relative phase ϕ (we recall
that ϕ = ϕ1 and ϕ2 = 0) between the two laser modes of laser
pair (2,4), it is helpful to first consider a few subsums of the
sum in Eq. (32). This is shown in Fig. 5 for two total photon
energies in the nuclear rest frame. Figure 5(a) treats an energy
of 1.1 MeV, just above the threshold of 2m∗c2. Figure 5(b)
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FIG. 5. (Color online) Individual terms and several subsums of
the angular-differential partial rates of laser pair (2,4) for two photon
energies: (a) 1.1 MeV and (b) 1.35 MeV. Here

∑
all is the sum over

all individual terms,
∑

direct is the sum of the two terms stemming
solely from the first or the second laser mode,

∑
phase independent

is the latter plus the symmetrically mixed term, and
∑

interference
is the sum of the two interference terms. The relative phase is ϕ = π

2 .
Otherwise, the parameters are the same as in Figs. 3(a) and 4(b).

treats 1.35 MeV, just below the energy at which the additional
reaction channel opens, as discussed in the section before.

In these Figs. 5(a) and 5(b) the individual terms of the
angular-differential rate are depicted as before in Fig. 3(a),
retaining all parameters except the relative phase ϕ, which is
set to π

2 instead. As we see, the interference term has changed
sign and thus has become constructive.

The individual terms are compared with the sum of all
terms (dash-dotted magenta line), the sum of the direct terms
[0,0,4,4] and [2,2,0,0] (dash–double-dotted cyan line), the
sum of the phase-independent contributions (double-dashed
orange line), which are the latter two and the symmetrically
mixed term [1,1,2,2], and the sum of the two interference
terms, [0,2,4,0] and [2,0,0,4] (double-dash–dotted yellow
line).

The comparison shows that for the lower total photon
energy the sum of the direct terms amounts to about 50%

FIG. 6. (Color online) Phase variation in the sums of all terms
(top panels) and the interference contributions (bottom panels) of the
angular-differential partial rates of laser pair (2,4) for two energies:
(a) 1.1 MeV and (b) 1.35 MeV. The sum of the direct terms as in Fig. 5
is given for reference. For laser pair (2,4) the interference contribution
is maximal (maximally constructive) for the relative phase ϕ = π

2 , is
minimal (maximally destructive) for ϕ = 0, and vanishes for ϕ =
π

4 . The other parameters are the same as in Figs. 3(a) and 4(b),
respectively.

of the summed-up rate, the symmetrically mixed term adds
up to about 10%, and the sum of the interference terms
contributes about 40%. For the higher energy the interference
terms are less pronounced, yielding only about 10%, with the
phase-independent terms giving the other 90% (which consists
of three similar shares stemming from the two direct terms and
the symmetrically mixed term).

For the same two energies Fig. 6 shows a comparison of
several relative phases for the sum of all terms (top panels) and
for the sum of just the two interference terms (bottom panels).
In the top panels the sum of the direct terms is given as a height
reference.

We find the interference terms of laser pair (2,4) to have
a sinusoidal behavior in the relative phase ϕ; particularly,
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they show a periodicity of 2π
ñ1

= π . As mentioned earlier, for
vanishing ϕ the interference terms contribute destructively to
the rate of this laser pair. By tuning the relative phase to π

2
this contribution becomes maximally constructive. Any phase
in between will lead to a decrease in the absolute interference
contribution, with a phase of π

4 removing it completely.
In the two top panels in Fig. 6 the influence of phase

variation on the angular-differential rate is shown. Besides
the obvious increase or decrease in height (for constructive
and destructive interferences, respectively), angular shifts of
the peak position can be observed. This means phase variation
between the two laser waves could have a use not only in
maximizing the pair-production rates but also in steering the
direction of the peak emission.

The height change is prominently illustrated by Fig. 6(a)
for 1.1 MeV, where a factor of approximatively 5 can be seen
between the summed-up rate for ϕ = 0 and π

2 . While the shift
in the peak position is also visible for the lower energy, it can be
seen clearly in Fig. 6(b) for 1.35 MeV, where it is pronounced
due to the aforementioned zero crossing of the interference
terms. This means that for the lower energy the phase variation
moves the summed-up rate from below to above the sum of
the direct terms and that for the higher energy the summed-up
rate always stays above the sum of the direct terms but moves
from larger to smaller angles.

It should be stressed again that we arbitrarily decided to
vary ϕ = ϕ1. Had we used ϕ2 instead, we would have seen a
periodicity of 2π

ñ2
, as it depends on the laser wave frequency

and thus on the respective minimal number of photons ñi . An
intuitive explanation for the found periodicity of 2π

ñi
in the

relative phases ϕi can be gained by studying the electric fields
associated with the laser waves Ai given in Eq. (7):

Ei = −1

c

∂Ai

∂t
= aiωi

c
sin(ηi + ϕi) (i = 1,2) . (41)

Due to the perpendicular laser wave-field vectors ai , the square
of the total electric field E = E1 + E2 has the form

E2(ct − z) =
2∑

i=1

E2
i =

2∑
i=1

a2
i ω

2
i

c2
sin2(ηi + ϕi), (42)

which can be used to calculate a measure for the phase
dependence. Recall that ηi

ωi
= t − z

c
. Instead of using E2

i

directly, we normalize the amplitudes

F 2(ct − z) =
2∑

i=1

c2

a2
i ω

2
i

E2
i =

2∑
i=1

sin2(ηi + ϕi), (43)

and take the modulus of the thus defined F . Its maximum
absolute value max(|F |) is given in Fig. 7 as function of
the relative phase ϕ = ϕ1 (bottom panel), showing the same
periodicity as the total pair-creation rate (top panel). Thus we
can conclude that the phase dependence of the total rate is
directly retained from the electric fields of the input laser
waves. In contrast, interference patterns in the spectra of
created particles are connected to the phase dependence of the
vector potential, as has been shown in an earlier study [26].

FIG. 7. (Color online) Comparison of (top) the scaled phase
variation in the total pair-production rates and (bottom) the measure
defined by the absolute maximum of the sum of the normalized
electric fields from Eq. (43) for several laser pair combinations. Line
types and colors are identical for both panels. As before ϕ = ϕ1

and ϕ2 = 0. To achieve better comparability the total rates have been
scaled by a factor of 1.45 × 109 for laser pair (2,6) and by 1.35 × 1018

for (2,8).

E. Variation of the relative phase in the laboratory frame

Up until now we have presented results found in the
nuclear rest frame; now we shall transform these findings to
the laboratory frame to provide a comparison for potential
experimental results.

As before, the laser wave combination (2,4) shall be consid-
ered, again with total photon energies of 1.1 and 1.35 MeV in
the nuclear rest frame. As mentioned earlier, the Lorentz factor
γ used to reach these photon energies is irrelevant as long as
the calculation takes place in the nuclear rest frame only. This
is obviously not true for calculations in the laboratory frame,
as γ influences the transformation from the nuclear rest frame
to laboratory. Particularly, the photon energy sees a boost by

a factor of (1 + β)γ , with β =
√

1 − 1
γ 2 . For the following

results in the laboratory frame we consider γ = 50, and thus,
for instance, for the total photon energies of 1.1 MeV

ω1 = 5.50 keV, ω2 = 2.75 keV. (44)

Figures 8 and 9 show Lorentz-transformed versions of
Figs. 5 and 6, respectively. Here the positions of the emission
peaks are at angles just below 180◦, as the Lorentz boost
leads to the nuclear propagation direction being preferential
for the created particles. Comparing the shape of the individual
graphs, one can observe that the direct terms are much less
differentiated for both energies, while for the higher energy
the interference terms show a more balanced ratio of negative
and positive amplitude.

In the nuclear rest frame (Fig. 5) the direct term [0,0,4,4] is
larger than the direct term [2,2,0,0] for θ � 1 and vice versa
for θ � 1. This difference vanishes almost completely in the
laboratory frame (Fig. 8), where these two terms practically
overlap each other. For the total photon energy 1.35 MeV in
the nuclear rest frame [Fig. 5(b)] the interference terms show
a much stronger absolute contribution for emission angles

022109-9
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FIG. 8. (Color online) Individual terms and several subsums of
the angular-differential partial rates of laser pair (2,4) for two photon
energies transformed with a Lorentz factor γ of 50 to the laboratory
frame: (a) total photon energy (in the nuclear rest frame) of 1.1 MeV
and (b) total photon energy (in the nuclear rest frame) of 1.35 MeV.
The notation, legend, and parameters are identical to those in Fig. 5.

θ � 0.66 than for larger angles. This is again different in the
laboratory frame [Fig. 8(b)], where the contribution from the
left and the right of the zero crossing at θ ≈ 3.12 is of similar
absolute peak height.

In the phase variation shown in Fig. 9 a modification of both
peak position and height is again clearly visible, although here
the latter is over a much smaller angular range, as the whole
spectrum is contracted to a narrower angular distribution.
Another notable difference between the two reference frames
is the direction of the aforementioned peak position shift.
While in the nuclear rest frame the shift is towards smaller
emission angles for a growing relative phase ϕ, the direction is
reversed in the laboratory frame. This behavior is mirrored by
the change of sign of the interference terms for the higher total
photon energy [cf. the lower panels of Figs. 6(b) and 9(b)].
The effect can be attributed to the nature of the Lorentz
transformation, which maps small angles in the nuclear rest
frame to large ones in the laboratory frame and vice versa.

FIG. 9. (Color online) Phase variation in the sums of all terms
(top panels) and the interference contributions (bottom panels) of the
angular-differential partial rates of laser pair (2,4) for two energies
transformed to the laboratory frame (γ = 50): (a) total photon energy
(in the nuclear rest frame) of 1.1 MeVand (b) total photon energy (in
the nuclear rest frame) of 1.35 MeV. The sum of the direct terms as
in Fig. 8 is shown for reference. The notation, legend, and parameters
are identical to those in Fig. 6.

Note that we do not give a figure for the variation of the
nuclear Lorentz factor γ . The main influence of a different γ ,
given that the photon energies for the two modes are adjusted so
that the total photon energy stays the same, would be a different
emission angle range. The higher γ is, the more narrowed to
the right of the spectrum the kinematically allowed values of
θ would be. In general, for an appropriately high γ , which
means larger than about 5, the width of the allowed θ range
is proportional to 1

γ
. The form of the angular distribution, on

the other hand, is practically unchanged from a γ as small as
about 2 onwards.

IV. SUMMARY AND CONCLUSION

In our study on how interference between two laser modes,
with both intensity parameters ξi  1, affects the rates of
electron-positron pair creation, we investigated how the rates
change under variation of various parameters. We began with a
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variation of the energy of a single photon and thus the number
of photons needed to provide the energy to overcome the pair-
creation threshold. Then a variation of the total photon energy
for a fixed number of photons was considered, effectively
changing the excess energy available as kinetic energy for the
created particles. Finally, we discussed the variation of the rel-
ative phase between the two laser modes, i.e., the lateral offset
between the peaks of the two laser wave amplitudes. This was
investigated for differential partial rates, discussing individual
terms in a four-index sum introduced by Fourier expansion of
all periodic functions in the squared pair-creation amplitude,
and for differential rates, where the first was given for better
illustration and the latter as an actual physical observable.
Additionally, the effects on total rates were discussed.

We found only laser pairs with even minimal photon
numbers for both modes to show contributions from inter-
ference terms. Of those, laser pair (2,4) yields the strongest
interference contribution and was thus used as the prime
example for the subsequent studies. From the variation of
the total photon energy for this laser pair, we found that
for higher energies the interference contribution decreases,
although a change in the shape of the angular distribution leads
to a more pronounced peak position shift along the emission
angle axis once phase variation is considered. For the lower
energies phase variation mainly manifests in a raised (lowered)

summed-up differential rate and thus eventually in an increase
(decrease) of the total rate. The latter effect can be closely
related to the phase dependence of the peak electric field.

Finally, the results were transferred to the laboratory frame,
where both effects (peak height and position change) can be
found as well, even though the peak emission angle shift is
over a much narrower region, as the whole angular spectrum
is Lorentz contracted.

Considering a potential experimental realization, the neces-
sary photon energies in the x-ray regime are accessible today
with free-electron lasers, such as the Linac Coherent Light
Source (LCLS) at SLAC, where, recently, a study on the pro-
duction of bichromatic laser fields has been performed [44] and
new techniques such as self-seeding allow strongly increased
intensities for a given photon energy [45]. In combination with
a powerful ion accelerator, these developments may lead to an
experimental test of our results.
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(2011).
[19] T.-O. Müller and C. Müller, Phys. Rev. A 86, 022109 (2012).
[20] G. D. Palazzi, Rev. Mod. Phys. 40, 611 (1968); U. I. Uggerhøj,

ibid. 77, 1131 (2005).
[21] J. Proriol and G. Roche, Lett. Nuovo Cimento 3, 642 (1972).
[22] A. B. Voitkiv and B. Najjari, Phys. Rev. A 84, 042708

(2011).
[23] F. Ehlotzky, Phys. Rep. 345, 175 (2001).
[24] M. Shapiro and P. Brumer, Adv. Atom. Mol. Opt. Phys. 42, 287

(2000).
[25] K. Krajewska and J. Z. Kamiński, Phys. Rev. A 85, 043404
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