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Bell tests with random measurements require very high detection efficiencies
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The observation that violating Bell inequalities with high probability is possible even when the local
measurements are randomly chosen, as occurs when local measurements cannot be suitably calibrated or the
parties do not share a common reference frame, has recently attracted much theoretical and experimental effort.
Here we show that this observation is only valid when the overall detection efficiency is very high (η � 0.90),
otherwise, even when using the highest detection efficiency of recent photonic Bell tests, the probability of
demonstrating nonlocality is negligible (e.g., it is smaller than 0.02% for η = 0.785). Our results show that
detection efficiency is a much more critical resource for real-world applications than it was previously thought.

DOI: 10.1103/PhysRevA.88.022102 PACS number(s): 03.65.Ud, 42.50.Xa

I. INTRODUCTION

Bell inequalities define constraints on the probabilities
of events in experiments involving local measurements on
composite systems. These constraints are satisfied by local
hidden variable (LHV) theories and, under the appropriate
conditions, are violated by quantum mechanics [1]. Exper-
imental violations of Bell inequalities (i.e., Bell tests) are
fundamental for revealing quantum nonlocality [1], certifying
secure communications [2], better-than-classical distributed
computation [3], randomness [4], and entanglement [5].

The realization of a loophole-free Bell test (i.e., a Bell
test without requiring extra assumptions) is probably the
most important experimental problem in fundamental quantum
mechanics. Despite enormous progress in recent years [6–11],
such a test is still missing. The reason is that there are
many challenges associated with loophole-free violations of
Bell inequalities. First, one observer’s local measurement
result must be outside the light cone of the other observer’s
measurement choice. The idea is to prevent influences at
the speed of light between these events. Thus, they must be
spatially separated. In this case, the experiment is said to be
free of the locality loophole [12,13]. A second requirement
is that, in a Bell test, it is essential to guarantee that the
overall detection efficiency η (defined as the ratio between
the detected and emitted particles) is above a threshold value,
hard to achieve experimentally with photons. Otherwise, one
can explain with LHV theories why the detected subensemble
(apparently) violates the Bell inequality [14].

Another experimental challenge is that Bell tests require
that the local observers implement well-calibrated measure-
ments and share a common reference frame; otherwise, the
violation decreases and may eventually vanish. The obser-
vation that calibrated local devices and a common reference
frame count as resources stimulated the research on quantum
nonlocality free of a common reference frame [15–21]. The
most recent approach to the problem is based on a simple
observation: When one considers a standard Bell test but uses
randomly chosen local measurements, then the probability
Pviol that the correlations between the results violate a Bell

inequality can be very high [17]. Due to the fundamental
importance of Bell tests and their applications, this observation
has motivated new types of Bell experiments [20,22].

However, so far, this approach has not taken into account the
problem of the detection efficiency. The question is whether
the conclusions of these theoretical and experimental works
hold when realistic detection efficiencies are considered. Here
we study how the detection efficiency affects the conclusions
reached for the Bell tests of the Clauser-Horne-Shimony-Holt
(CHSH) inequality [23,24] with random local measurements
[17–22]. We focus on this Bell inequality because it is
the simplest one, the most frequently used for real-world
applications, and its violation requires detection efficiencies
smaller than almost any other bipartite Bell inequality [25–28].

We study three different types of Bell tests with random
measurements. First, the two types defined in [17]. In the first
scenario, one considers random isotropic measurements (RIM)
in which each party chooses both measurement directions
randomly, independently, and uniformly distributed over the
Bloch sphere. In the second scenario, one considers random
orthogonal measurements (ROM) in which one of the mea-
surement directions of each party is randomly, independently,
and uniformly distributed over the Bloch sphere, while the
second measurement is also random but orthogonal to the first
one. The interest in the ROM scenario is that it allows for a
higher probability of violating the CHSH inequality. Notice
that in both scenarios the parties do not share a reference
frame. However, the ROM scenario assumes that devices are
perfectly calibrated. For the CHSH inequality, and assuming
perfect detection efficiency (i.e., η = 1), Pviol = 0.28 for the
RIM and Pviol = 0.41 for the ROM scenario of random Bell
tests [17].

We also study a third type of random Bell test proposed
in [19,20], which is a variation of the ROM scenario where
instead of performing two orthogonal measurements, the
parties use a random orthogonal triad measurement (ROTM).
In this scenario Alice and Bob can perform three orthogonal
measurements. For the CHSH inequality only two measure-
ment settings are required, but due to the extra number
of measurements, there are more equivalent forms for the
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inequality. This increases the probability of violating the
inequality and the interesting point of the ROTM scenario
is that it allows Pviol = 1 when η = 1.

II. METHOD

To test the CHSH inequality, each party (Alice and Bob)
performs two-outcome measurements and chooses between
two different settings for their measurements. The test is
performed by considering many copies of a bipartite entangled
state. The CHSH inequality can be written as

ICHSH = p(00|00) + p(00|01) + p(00|10) − p(00|11)

−pA(0|0) − pB(0|0)
LHV
� 0, (1)

where p(ab|xy) is the probability that Alice (Bob) obtains
the result a (b) when performing the measurement x (y).
pA(a|x) and pB(b|y) are the marginal probabilities at Alice and
Bob sites, respectively. In quantum mechanics, p(ab|xy) =
tr(ρMx

a ⊗ M
y

b ), where ρ is a bipartite entangled state, and
Mx

a and M
y

b are the measurement operators of Alice and
Bob, respectively. The quantum maximum of Eq. (1) is

1√
2

− 1
2 ≈ 0.207 [29].

A fundamental point is that inequality (1) is only valid when
the Bell test is performed with perfect detection efficiency,
i.e., with η = 1. If all the detectors have the same detection
efficiency η, then the corresponding Bell inequality is [30]

ICHSH(η) = η2I
(2)
CHSH + η(1 − η)

(
I

(1A)
CHSH + I

(1B)
CHSH

)

+ (1 − η)2I
(0)
CHSH

LHV
� 0, (2)

where I
(2)
CHSH, I

(1A)
CHSH, I

(1B)
CHSH, and I

(0)
CHSH are, respectively, the

values of ICHSH, defined in (1), when two particles, only Alice’s
particle, only Bob’s particle, and no particles are detected.
From Eq. (2) one can see that the violation of the CHSH
inequality cannot be explained in terms of LHV theories only
when the overall detection efficiency is above a certain value,
η � ηreq, where

ηreq ≡ pA(0|0) + pB(0|0)

p(00|00) + p(00|01) + p(00|10) − p(00|11)
, (3)

which depends on the local measurements chosen. The
minimum value of ηreq is usually denoted by ηcrit, and it
can only be attained with specific measurement settings that
require the share of a common reference frame. For any pure
bipartite quantum state, there are measurement settings that
allow simultaneously for the maximum violation of the CHSH
inequality while requiring a detection efficiency η = ηcrit [31].

The detection efficiency can be very high in real-world
photonic Bell tests, but it is never 1 (e.g., the highest value
reported so far is η ≈ 0.785 [11]). Then, the problem is
which is the probability of violating the CHSH inequality with
random measurements for a given η.

For solving this problem, we simulate numerically a suffi-
ciently large number of Bell tests with random measurements
(4 × 106 Bell tests) in each of the three scenarios defined
above. Our aim is to obtain numerically with very high
precision the probability of violating the CHSH inequality Pviol

as a function of η. Similarly to what has been done previously
for calculating probabilities of violations with η = 1 [17], our

program takes into consideration all equivalent forms of the
inequality (1), i.e., all the different forms one can get for it by
relabeling the parties and/or the outcomes and/or the settings.
For each interaction, the program generates the random
measurements using pseudorandom number subroutines, as
in the experiment of Ref. [21], and records the highest value
for ICHSH obtained considering all equivalent inequalities.
For the set of measurement bases chosen in each run and
the inequality with the highest value, the program calculates
the required efficiency whenever there is a violation of the
CHSH inequality. Each run of the program is independent
of the previous interaction. After many runs of the program
one obtains a histogram which gives the values of ηreq and
the corresponding number of experiments that required such
efficiency. Then, from this histogram it is possible to calculate
the curve for the Pviol versus η.

We also study the simultaneous behavior of the probability
of violation in the three scenarios with η and the degree of
entanglement of the initial state. For this purpose, we consider
two-qubit pure states given by |�〉 = α|01〉 + β|10〉, where α

and β are real and positive. |0〉 and |1〉 are the logical states.
Therefore, the state with α/β = 1 corresponds to a maximally
entangled state (MES). Those states with values 0 < α/β < 1
are partially entangled states. This parameter is related to the
concurrence C of the state through α

β
= C

2β2 [32].

III. PROBABILITY OF A BELL VIOLATION
WITH RIM, ROM, AND ROTM

To generate the random measurements corresponding to
the RIM case, we use the measurement operators Mx

a and
M

y

b as projectors defined according to |ψ〉 = sin φ|0〉 +
eivφ cos φ|1〉. Therefore, to have them uniformly distributed
over the Bloch sphere, the following condition must hold [18]:

RIM

{
φ = 1

2 arccos(2v − 1)
vφ = 2πu

, (4)

where u,v ∈ {0,1}. For one interaction of the program, the
values of u and v are randomly chosen for each measurement
operator involved in the CHSH test, and the value of ηreq

calculated, as mentioned above.
Agreement with previous results has been checked. Specif-

ically, we have checked that our results coincide with those
reported in [17] in the case of η = 1. In addition, we observed
that the expected values of the violations of the CHSH
inequality is high enough, such that the violation is robust
against noise at the expense of lowering the probability of
violation as discussed in [20].

Figure 1 summarizes the relevant results for the RIM
scenario. In Fig. 1(a) we show the histogram of ηreq obtained in
the simulations for a MES. Figure 1(b) gives the probability for
loophole-free violations of the CHSH inequality as a function
of the efficiency for three states with different degrees of
entanglement. It shows that having a very high detection
efficiency is a required resource for Bell tests in which other
resources (namely, device calibration and a common reference
frame) are absent, as is the case of the RIM scenario of random
Bell tests.

This figure also shows that if we consider the case in
which the random Bell test is performed with the best
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FIG. 1. (Color online) (a) Histogram of the required efficiencies
(considering the runs with a violation of the CHSH inequality) in
the RIM scenario for a MES. The colors in the histograms are
related to the numbers of experiments for a certain value of η. (b)
Probability of a loophole-free violation of any of the possible CHSH
inequalities as a function of the detection efficiency η and for states
with different degree of entanglement (α/β) in Bell tests with RIM.
The three states represented illustrate the general behavior of Pviol

vs η while increasing or decreasing the entanglement of the initial
two-qubit state.

detection efficiency reported so far in a photonic Bell test,
i.e., η ≈ 0.785, then there is only a negligible probability of
observing a violation that genuinely certifies nonlocality. More
specifically, this probability is only 0.005% in the best case,
which corresponds to the state with less entanglement defined
by α/β = 0.5. Another example is the following: If we assume
a detection efficiency equal to the value of ηcrit required for a
conclusive Bell test with MESs, calibrated local measurements
and a common reference frame, namely, η = 0.828, then the
maximum probability of observing a loophole-free violation
in the RIM scenario is only 0.06% [see the box in Fig. 1(b)].

From Fig. 1, one reaches the conclusion that if Bell
tests of the CHSH inequality are performed without a shared
reference frame and without calibrated devices, for really
certifying nonlocality (and hence secure communications,
better-than-classical distributed computation, randomness, or
entanglement) is necessary to increase substantially the ex-
perimental overall detection efficiency (and also the degree of
entanglement of the state, with respect to the one which allows
for a conclusive Bell test with the lowest detection efficiency
ηcrit = 2

3 [30]). Specifically, in the RIM case, for having a
probability of violation higher than 5% we need a detection
efficiency of at least η = 0.90 for the MES.

Now let us consider the results obtained within the
ROM scenario. In Fig. 2(a) we show the histogram of ηreq

obtained in the simulations for a MES. This histogram
has a different behavior than that of the RIM scenario
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FIG. 2. (Color online) (a) Histogram of the required efficiencies
(considering the runs with a violation of the CHSH inequality) in the
ROM scenario for a MES. The colors in the histograms are related to
the numbers of experiments for a certain value of η. (b) Probability
of a loophole-free violation of any of the possible CHSH inequalities
as a function of the detection efficiency η and for states with different
degrees of entanglement (α/β) in Bell tests with ROM. The three
states represented illustrate the general behavior of Pviol vs η while in-
creasing or decreasing the entanglement of the initial two-qubit state.

[Fig. 1(a)]. For example, one can see that a higher number
of experiments demanded lower required efficiencies. The
resulting probability for loophole-free violations of the CHSH
inequality as a function of η and for states with different
degrees of entanglement is shown in Fig. 2(b). To obtain these
results we used the program described above, but now with
the constraint that the measurement directions associated with
the operators Mx=0

a=0 (My=0
b=0 ) and Mx=1

a=0 (My=1
b=0 ) are orthogonal.

This restriction is implemented by taking the first operator’s
eigenstate randomly and uniformly distributed over the Bloch
sphere and forcing the second operator’s eigenstate to lie in
an orthogonal plane. The second eigenstate direction is also
randomly taken in this orthogonal plane.

Figure 2(b) shows that, for a given η, the ROM scenario
allows for a higher probability of violating the CHSH inequal-
ity. The reason for this is that MESs are the most robust states
against randomization of the local measurements and that for
these states the maximal violation of the CHSH inequality
is obtained when orthogonal measurements are used. Notice,
however, that unlike the RIM scenario, the ROM scenario
requires the extra resource of using calibrated devices. Even
though the probability for a genuine CHSH violation is higher
in the ROM scenario than in the RIM case, it is still very low
even for very high values of η. For example, when η = 0.785
and η = 0.828, the highest probability is only 0.015% and
0.042%, respectively.

For the ROTM scenario we repeated our investigation and
the resulting histogram obtained for the required efficiencies
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FIG. 3. (Color online) (a) Histogram of the required efficiencies
in the ROTM scenario for a MES. The colors in the histograms
are related to the numbers of experiments for a certain value of η.
(b) Probability of a loophole-free violation of any of the possible
CHSH inequalities as a function of the detection efficiency η and for
states with different degrees of entanglement (α/β) in Bell tests with
ROTM. The three states represented illustrate the general behavior
of Pviol vs η while increasing or decreasing the entanglement of the
initial two-qubit state.

for the MES is given in Fig. 3(a). It has the shape of the
curve obtained in [20] while studying the CHSH-violation
values in this scenario for a MES. The curve of the probability
for a loophole-free CHSH violation as a function of η, and
for states with different degrees of entanglement is shown
in Fig. 3(b). One can see that the behavior is similar to that
of Figs. 1 and 2, showing that even though this scenario allows
for higher violating probabilities, it also demands the use of
higher detection efficiency. For example, for η = 0.828, the
probability of violating the inequality is only 1.8%.

IV. CONCLUSIONS

Progress in quantum information processing requires the
identification of which resources are actually critical for
real-world applications. Bell tests are powerful tools for
certifying nonlocality, communication security, better-than-
classical distributed computation, randomness, and entangle-
ment. Here we have shown that the conclusions reached in
recent investigations demonstrating that neither perfect device
calibration nor common reference frames are essential for
successful Bell tests have overlooked the role of the detection
efficiency.

For all previously introduced scenarios of random Bell tests
[17,19,20] we have obtained the dependence of the violating
probabilities of the CHSH inequality with the overall detection
efficiency, while considering states with different degrees of
entanglement. As a side project of our work, we observed
that only when the detection efficiencies are very high, the
violating probabilities become relevant (independently of the
scenario considered). This emphasizes the importance of frame
synchronization, since the required efficiencies of random Bell
tests are still out of what is experimentally possible even with
the state-of-the-art photodetectors.

While our investigation was focused on three types of
Bell tests with random measurements, our results can be
extrapolated to more common scenarios such as the one in
which there are random drifts on the measurement parameters
over the experimental process. For example, the RIM scenario
we discussed can be seen as an extreme case in which there are
always drifts on the measurement parameters. From the results
obtained, one may expect that, if the experiment is susceptible
to random drifts, then higher efficiencies will be required for
a loophole-free Bell violation.
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