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class of dynamical critical phenomena

Manas Kulkarni1,2,* and Austen Lamacraft2,†
1Department of Physics, University of Toronto, Ontario, Canada M5S 1A7

2Department of Physics, University of Virginia, Charlottesville, Virginia 22904-4714, USA
(Received 26 March 2012; published 8 August 2013)

We study the finite-temperature dynamical structure factor S(k,ω) of a one-dimensional Bose gas using
numerical simulations of the Gross-Pitaevskii equation appropriate to a weakly interacting system. The line
shape of the phonon peaks in S(k,ω) has a width ∝|k|3/2 at low wave vectors. This anomalous width arises from
resonant three-phonon interactions, and reveals a remarkable connection to the Kardar-Parisi-Zhang universality
class of dynamical critical phenomena.
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The statistical mechanics of low-dimensional fluids, both
quantum and classical, has long been a source of theoretical
surprises. To give just two examples: (1) The long-time
tail ∝t−d/2 in the velocity autocorrelation function of a
d-dimensional classical fluid invalidates hydrodynamics for
d � 2 [1–3]. (2) The Luttinger liquid description [4] provides a
universal language for one-dimensional (1D) quantum liquids,
with a panoply of phases arising upon perturbation [5].

Despite these achievements recent developments in the
theory of 1D quantum liquids away from the low-energy limit
make it clear that our understanding of these systems is still
rather limited (for a review, see Ref. [6]). To take a simple
example, consider the dynamical structure factor S(k,ω) that
gives the cross section for inelastic scattering from the liquid
as a function of momentum h̄k and energy h̄ω transferred. The
Luttinger liquid theory predicts that S(k,ω) consists only of a
pair of delta function peaks ω = ±c|k|, with c the velocity of
sound, corresponding to an undamped phonon oscillation. At
finite k, however, one expects this delta function to broaden due
to interactions between phonons. Attempts to find the resulting
line shape using perturbation theory within the Luttinger
framework are plagued by divergences [7], whose origin we
will describe below. As a result, the possibility of capturing
the relevant physics within the Luttinger or hydrodynamic
formalism is now viewed with a degree of pessimism [8].

Almost all of the developments reviewed in Ref. [6]
pertain to zero temperature. In this Rapid Communication
we study the dynamical structure factor of a 1D Bose gas
at finite temperature in a classical description, based upon
the Gross-Pitaevskii equation (GPE). This is appropriate for
sufficiently weak interactions (we give the precise criterion
later) and those long-wavelength modes with energy Ek much
less than the thermal energy kBT . These modes have large
occupancy, and a classical wave description is appropriate.
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Aside from being of paramount importance in real systems,
we will show that finite temperature brings qualitatively
different features that cannot be interpreted simply as a
smearing of the zero-temperature line shape. Using numerical
simulations of the GPE, we find that the line shape of the
phonon peak in S(k,ω) has a width �k ∝ |k|3/2 at low k

(see Fig. 1). As well as dominating any zero-temperature
structure (generally ∝k2) at low wave vectors, the 3/2 power
is anomalous relative to the k2 scaling that follows from
linearized hydrodynamics [9].

This unusual scaling points to a very rich phenomenol-
ogy. According to a remarkable recent conjecture [10], the
long-wavelength dynamics of a classical 1D fluid at finite
temperature is in the Kardar-Parisi-Zhang (KPZ) universality
class describing interface growth [11–13]. Specifically, the
phonon (Brillouin) peaks in S(k,ω) have the scaling form at
low wave number,

S
(±)
phonon(k,ω) ∝ 1

�k

fPS

(
ω ± c|k|

�k

)
, (1)

where fPS(x) is given in Eq. (5.7) of Ref. [14]. The meaning
of Eq. (1) is that in a frame moving at the speed of sound
the density fluctuations moving in the same direction behave
exactly as the fluctuations of the interface slope in the KPZ
problem.

Verification of this remarkable conjecture requires
a detailed numerical investigation of a specific model
Hamiltonian, and this was the primary motivation for
the present work. Additionally, since there are very few
experiments confirming KPZ scaling to date [15–17], our
hope is that the results of this Rapid Communication will
lead to its observation in new systems. For example, the
structure factor of 1D Bose gases of 87Rb was recently
measured using Bragg spectroscopy [18], while in Ref. [19]
the hydrodynamics of superfluid helium in a single nanohole
was investigated. In the latter case the sound absorption
coefficient is presumably more accessible than the structure
factor, and being ∝�k displays the same anomalous scaling.

Hydrodynamic description. Our starting point is the classi-
cal Hamiltonian describing a 1D gas of bosons of mass m and
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FIG. 1. (Color online) Dynamical structure factor S(k,ω) of a
1D Bose gas described by the Gross-Pitaevskii equation for wave
vectors k = 2πp/L, p = 64,32,16 (right to left). L = 5 × 213, and
temperature T = 0.005, with length being measured in units of the
healing length, and energy in units of the chemical potential. Inset:
Scaling collapse of the phonon peaks using the ansatz Eq. (1).

interaction parameter g,

H =
∫

dx

[ |∂x�|2
2m

+ g

2
|�|4

]
, (2)

where the complex field �(x) obeys the Poisson bracket
{�†(x),�(y)} = iδ(x − y), and we have set h̄ = 1. The
dynamics of �(x,t) is described by the familiar
Gross-Pitaevskii equation. The mean-field description embod-
ied by the GPE is appropriate when the number of particles
in a healing length ξ ≡ (gρ0m)−1/2 is large, where ρ0 denotes
the mean density. This corresponds to “Luttinger parameter”
K ≡ πρ0

mc
� 1, with c = √

gρ0/m the speed of sound in the
uniform state.

After writing the condensate order parameter as �(x) =√
ρ(x)eiθ(x) in terms of the canonically conjugate density ρ(x)

and phase θ (x), the Hamiltonian takes the form

H =
∫

dx

[
ρ(∂xθ )2

2m
+ (∂x

√
ρ)2

2m
+ g

2
ρ2

]
. (3)

Dynamics near a state of uniform density with ρ(x,t) = ρ0,
θ (x,t) = 0 can be described in the first approximation by
writing ρ = ρ0 + �, retaining only terms quadratic in � and θ

from Eq. (3),

H2 =
∫

dx

[
ρ0(∂xθ )2

2m
+ (∂x�)2

8mρ0
+ g

2
�2

]
. (4)

H2 is solved by introducing the mode expansions for �(x) and
θ (x) for a system of length L,

�(x) =
√

ρ0

2L

∑
k �=0

e−κk (bke
ikx + c.c.),

(5)

θ (x) = i√
2ρ0L

∑
k �=0

eκk (bke
ikx − c.c.).

After substitution in Eq. (4), eκk is chosen to diagonalize
H2 = ∑

k Ek|bk|2 with Ek = [ k2

2m
( k2

2m
+ 2gρ0)]1/2 the Bogoli-

ubov dispersion relation. At low k, Ek → c|k| + O(k3). The
deviation from the linear dispersion is due to the second term
of Eqs. (3) and (4), sometimes called the “quantum pressure.”

Interactions between the modes are described by the
anharmonic parts of Eq. (3). The most important interaction
arises from the first term, and has the form

H3 =
∫

dx
�(∂xθ )2

=
∑

k1+k2+k3=0

√
c|k1k2k3|
32Lρ0m

(
bk1

bk2
bk3

−bk1
b
†
−k2

b
†
−k3

− b
†
k1

b−k2
b−k3

)
, (6)

where for simplicity we have assumed the low k limit for eκk .
The difficulty associated with a perturbative treatment of this
interaction is now apparent. Substituting the time dependence
bk → bke

−iEk t associated with H2, we see that the second
and third terms of Eq. (6) are resonant for purely linear
dispersion when all three modes move in the same direction
(in quantum-mechanical language energy and momentum
conservation are simultaneously satisfied). One may object
that the O(k3) deviation from linearity at low k due to the
quantum pressure term removes this difficulty, but the |k|3/2

broadening that we find dominates this effect at low k. The
other nonlinearities arising from Eq. (3) are likewise irrelevant
in this limit.

The need for a nonperturbative approach was recognized
long ago in Ref. [20], where a self-consistent mode-coupling
(SCMC) treatment of the cubic interaction was given, ig-
noring vertex corrections, and yielded �k ∝

√
T |k|3, where

T is the temperature (see also Ref. [21]). The same result
was independently rederived much later [22]. In contrast,
a renormalization group (RG) argument based on Galilean
invariance (first appearing in the related context of the noisy
Burgers equation [23]) predicts a dynamical critical exponent
z = 1 + d/2 for d < 2 [24]. This suggests that Galilean
invariance lies behind the success of the SCMC approach,
an idea that finds support in the analysis of vertex corrections
for the case of Burgers equation [25].

We wish to emphasize that the SCMC theory of Refs. [20–
22] is an uncontrolled approximation, while the RG analysis
of Ref. [24] was based on the equations of viscous 1D
hydrodynamics with thermal fluctuations appearing as noise
sources. Its applicability to the present problem hinges upon an
untested assumption of universality. It is therefore desirable to
study the purely Hamiltonian dynamics described by Eq. (2).

Equations of motion. To gain some intuition regarding the
connection of the GPE to the noisy Burgers equation and
thence to the KPZ universality class, we discuss the equations
of motion of the Hamiltonian Eq. (3). Ignoring the quantum
pressure term, these are

∂tρ + ∂x(vρ) = 0,
(7)

∂tv + v∂xv + (g/m)∂xρ = 0,

where v = ∂xθ/m is the superfluid velocity. These are the
continuity and Euler equations for the 1D Bose gas, and may
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FIG. 2. (Color online) The characteristic curve X+(t) giving the
path of a right-moving phonon wave packet is not straight due to the
influence of the counterpropagating waves.

be put in the Riemann form [26],

∂t (v ± 2cρ) + v±∂x(v ± 2cρ) = 0, (8)

where v± = v ± cρ , and cρ = c
√

ρ/ρ0 is the speed of sound in
a frame in which the fluid is locally at rest. Equation (8) tells us
that v ± 2cρ are constant along their respective characteristic
curves X±(t) defined by Ẋ±(t) = v±[X±(t),t]. Alternatively,
we may write Eq. (8) as

∂tv± + v±∂xv± = 1
3 (∂t + v±∂x)v∓. (9)

The interpretation of Eq. (9) is as follows. Right- and
left-moving sound waves propagate through the fluid at the
velocities v±, but their motion is perturbed by the variation in
the comoving frame of the velocity of the counterpropagating
wave. As a result, the characteristic curves are not straight lines
(see Fig. 2). We can think of Eq. (9) as a pair of driven Burgers
equations, in which the left-moving waves act as a noise term
on the propagation of the right-moving waves, and vice versa.
The viscous ν∂2

x v± term is absent for this Hamiltonian system
but will be generated upon coarse graining.

It is natural to ask how this situation changes for a Fermi
gas, which has the hydrodynamic description

HFermi =
∫

dx

[
ρ(∂xθ )2

2m
+ π2ρ3

6m

]
, (10)

with the second term representing the Fermi pressure. The
same analysis now yields the uncoupled Burgers equations

∂tv± + v±∂xv± = 0, (11)

where v± = v ± πρ/m are the right- and left-moving Fermi
velocities. The characteristics X±(t) are now straight lines,
and the free Fermi gas therefore represents an exceptional
fluid in which we expect no anomalous broadening of the type
discussed here.

Numerical simulations. The GPE is solved using the
splitting method, whereby �(x,t) is evolved for a time step
τ alternately by the kinetic T = 1

2

∫
dx|∂x�|2 and potential

V = 1
2

∫
dx|�|4 terms of the Hamiltonian [27]

Tτ : �̃(k,t) → e−ik2τ/2�̃(k,t),
(12)

Vτ : �(x,t) → e−iτ |�(x,t)|2�(x,t),

where �̃(k,t) denotes the Fourier transform of �(x,t), and
we now switch to measuring distance in units of the healing
length ξ , time in units of (inverse) chemical potential μ ≡ gρ0,
and � in units of

√
ρ0. Algorithms of this type are symplectic.

FIG. 3. (Color online) Dependence of linewidth on wave vector,
for system sizes N = 213 (red dots) and N = 214 (blue crosses),
with T = 0.005. The data are almost perfectly coincident. The blue
line is a fit for wave vectors 2πp/L, p = 2,4, . . . 64 giving z =
1.510 ± 0.018. Higher wave vectors show a marked deviation from
3/2 scaling, and k = 2π/L is omitted because the linewidth lies
below resolution. The green dashed line shows a comparison with the
result of Ref. [20].

This means that the method exactly simulates a Hamiltonian
Hτ with Hτ − H a power series in τ . The lowest power of
τ in the series determines the order of the method. Two
benefits of symplectic integrators for statistical mechanical
simulations are (i) exact conservation of phase-space volume
(i.e., Liouville’s theorem is satisfied) and (ii) no drift in the
energy due to exact conservation of Hτ .

We use the method Vτ/2 · Tτ · Vτ/2—often called
“leapfrog”—which is second order with [27]

Hτ − H = τ 2

24
(2{T ,{V,T }} + {V,{T ,V }}) + O(τ 4)

= τ 2

24

∫
dx

[
ρ2(∂xθ∂3

x θ − (
∂2
x θ

)2) − ρ(∂xρ)2
]

+ O(τ 4)

We display the explicit form of the first correction term in Hτ to
demonstrate that the additional terms generated by discretizing
time are higher order in spatial gradients than Eq. (6), and are
therefore not expected to change the low k behavior.

The harmonic modes are initially populated according to
equipartition, so that the bk are taken as complex Gaussian
random variables with 〈|bk|2〉 = T

Ek
for temperature T . This

assumes sufficiently weak nonlinearity, which is confirmed
by the absence of transient behavior for the parameter ranges
explored, indicating that the initial state is close to thermal.

We choose a spatial discretization scale a = 5 to ensure all
wave vectors are in the regime of linear dispersion k � ξ−1.
The time step of τ = 2 is then at the limit of stability of the
algorithm. Most simulations use systems of length L = 213a,
but we check that the results are not significantly altered for
L = 214a (see Fig. 3). Periodic boundary conditions are used
throughout.
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At each time step we compute the Fourier components of
the density ρ(x,t),

ρk(t) =
N−1∑
n=0

|�(na,t)|2e−2πikna, k = 0,
2π

L
, . . . ,

π

a
. (13)

The resulting time series is then Fourier transformed to give
the dynamical structure factor

S(k,ω) = 〈|ρk,ω|2〉, ω = 0, ± 2π

Nbinτ
, . . . , (14)

where Nbin is the bin size used for the computation of the
power spectra (at least 220), and the angular brackets denote
an average over ∼128 runs of length Nstepsτ with different
random initial conditions. Thus for Nbin = 220, Nsteps = 221

corresponds to an effective average over ∼256 runs, assuming
no correlation between the two halves of a given run.

We gather data for wave vectors k = 2πp

L
, with p =

1,2,4, . . . ,4096. Typical results, displaying good data collapse
(assuming a width scaling as |k|3/2), are shown in Fig. 1. For
an unbiased test, power spectra are folded assuming symmetry
between positive and negative frequencies, and the phonon
peaks fitted to a Lorentzian to extract the amplitude, peak
frequency, and width. Data are shown in Fig. 3. A good fit
to the scaling form �k ∝ |k|z is obtained over 1.5 decades
and yields z = 1.510 ± 0.018. Significant deviations from
scaling are obtained at higher wave vectors. Figure 3 also

includes a comparison with the result of Ref. [20], obtained
within the self-consistent approach. While this evidently
reproduces the correct scaling, the prefactor in Andreev’s
result is too small by a factor ∼5. We emphasize that such
a discrepancy is unsurprising given the uncontrolled nature of
his approximation.

Conclusion. We have provided physical arguments and
numerical evidence of the relationship between the finite-
temperature dynamics of the 1D Bose gas—described by
a classical Hamiltonian—and the KPZ universality class.
Galilean invariance is of paramount importance: Simula-
tions of wave equations with cubic nonlinearity but without
Galilean invariance show z ∼ 1 [28]. Numerous extensions
of the results of this work to multicomponent (or spinor)
quantum fluids, and to transient rather than equilibrium
dynamics, may be envisaged. In addition, the challenging
problem of describing—within a single framework—the
finite-temperature phenomena described here, and the zero-
temperature results reviewed in Ref. [6], remains to be solved.
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for helpful discussions, and to the University of Virginia
Alliance for Computational Science and Engineering, espe-
cially Katherine Holcomb, for their assistance. A.L. gratefully
acknowledges the support of the Research Corporation and
the NSF through Award No. DMR-0846788. M.K thanks Saul
Lapidus for useful discussions.

[1] B. Alder and T. Wainwright, Phys. Rev. A 1, 18 (1970).
[2] M. Ernst, E. Hauge, and J. Van Leeuwen, Phys. Rev. Lett. 25,

1254 (1970).
[3] J. Dorfman and E. Cohen, Phys. Rev. Lett. 25, 1257 (1970).
[4] F. Haldane, J. Phys. C 14, 2585 (1981).
[5] T. Giamarchi, Quantum Physics in One Dimension (Oxford

University Press, New York, 2004), Vol. 121.
[6] A. Imambekov, T. Schmidt, and L. Glazman, Rev. Mod. Phys.

84, 1253 (2012).
[7] D. N. Aristov, Phys. Rev. B 76, 085327 (2007).
[8] V. Cheianov, Science 323, 213 (2009).
[9] D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and

Correlation Functions (W. A. Benjamin, Reading, MA, 1975).
[10] H. van Beijeren, Phys. Rev. Lett. 108, 180601 (2012).
[11] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56, 889

(1986).
[12] T. Kriecherbauer and J. Krug, J. Phys. A: Math. Theor. 43,

403001 (2010).
[13] T. Sasamoto and H. Spohn, J. Stat. Mech.: Theory Exp. (2010)

P11013.
[14] M. Prähofer and H. Spohn, J. Stat. Phys. 115, 255 (2004).
[15] J. Wakita, H. Itoh, T. Matsuyama, and M. Matsushita, J. Phys.

Soc. Jpn. 66, 67 (1997).

[16] J. Maunuksela, M. Myllys, O.-P. Kähkönen, J. Timonen,
N. Provatas, M. J. Alava, and T. Ala-Nissila, Phys. Rev. Lett. 79,
1515 (1997).

[17] K. A. Takeuchi and M. Sano, Phys. Rev. Lett. 104, 230601
(2010).

[18] N. Fabbri, D. Clément, L. Fallani, C. Fort, and M. Inguscio,
Phys. Rev. A 83, 031604 (2011).

[19] M. Savard, G. Dauphinais, and G. Gervais, Phys. Rev. Lett. 107,
254501 (2011).

[20] A. Andreev, Zh. Eksp. Teor. Fiz. 78, 2064 (1980).
[21] K. Samokhin, J. Phys.: Condens. Matter 10, L533

(1998).
[22] L. Delfini, S. Lepri, R. Livi, and A. Politi, Phys. Rev. E 73,

060201 (2006).
[23] D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev. A 16,

732 (1977).
[24] O. Narayan and S. Ramaswamy, Phys. Rev. Lett. 89, 200601

(2002).
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