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Frustration, entanglement, and correlations in quantum many-body systems
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We derive an exact lower bound to a universal measure of frustration in degenerate ground states of quantum
many-body systems. The bound results in the sum of two contributions: entanglement and classical correlations
arising from local measurements. We show that average frustration properties are completely determined by the
behavior of the maximally mixed ground state. We identify sufficient conditions for a quantum spin system to
saturate the bound, and for models with twofold degeneracy we prove that average and local frustration coincide.
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Many-body systems are typically modeled by Hamiltonians
that are sums of local terms. Each local term operates only on
a part of the entire system and acts to minimize the corre-
sponding energy. If different subsystems overlap, the com-
petition among the different local terms can preclude the
existence of configurations satisfying all such minimizations
simultaneously, a phenomenon known as frustration [1–3].
For classical Hamiltonian systems, frustration is associated
to some nontrivial geometric property of the system itself
[3]. On the other hand, due to quantum noncommutativity
and entanglement [4,5], classically unfrustrated systems may
admit frustrated quantum counterparts [4,6–9]. The existence
at a qualitative relation between frustration, noncommutativity,
and entanglement has motivated recent efforts aiming at
qualifying and quantifying frustration in the quantum domain.
Frustration criteria, reducing to the Toulouse conditions in the
classical case [1], have been introduced recently for systems
with nondegenerate ground states [10], and a quantitative
relation between a universal measure of frustration and ground-
state bipartite entanglement has been established in the form of
an exact inequality. However, this specialized result can not be
extended straightforwardly to the general case of degenerate
ground states due to the fact that different elements of the
ground space may exhibit different entanglement properties,
and because the ensuing existence of mixed ground states in-
troduces a further ingredient, classical statistical correlations,
that may affect frustration at the quantum level.

This work introduces a theory of frustration for quantum
systems with arbitrarily degenerate ground states. While
including the one discussed in Ref. [10] as a special case, it
provides a general picture according to which the interplay
between degeneracy and superselection rules results in a
highly nontrivial relation between frustration and different
types of correlations, classical and quantum. It provides a
unified treatment and a rigorous quantification of frustration,
expressed in terms of a universal inequality. The latter assesses
the relative weights of geometry, bipartite entanglement, and
shared classical correlations, identified as the three fundamen-
tal sources of frustration in quantum and classical systems.
The unified approach is based on the concept of maximally
mixed ground state (MMGS), that is the statistical mixture with
equal a priori weights of all possible pure, degenerate ground

states. This state always satisfies all the symmetries of the
corresponding quantum Hamiltonian and therefore stands as
the natural candidate to provide the relevant information on the
global characteristics of a quantum system. Thus, the concept
of MMGS allows us to introduce a complete classification of
many-body quantum Hamiltonians, well beyond the limiting
cases discussed in Ref. [10]. Finally, we determine sufficient
conditions for the saturation of the inequality that constitute
a further quantum generalization of the classical Toulouse
criteria.

Let us consider a many-body Hamiltonian HT = ∑
S hS

sum of local Hamiltonians hS defined on a finite-dimension
subsystem S. Frustration is the impossibility for the ground
state ρG of the total Hamiltonian HT to be entirely projected
in the ground space of every local Hamiltonian hS , that is
the local ground space. Define then ρS = trR(ρG), the reduced
ground-state density matrix of S, obtained by tracing out all
the degrees of freedom of the rest of the system R in ρG. A
natural way to quantify frustration is to consider the deficiency
of the overlap between ρG and the projector onto the ground
space of the local interactions �S [10]:

fS = 1 − tr(ρG�S ⊗ 11R) = 1 − trS(ρS�S). (1)

This quantity measures how much the global ground state
fails to accommodate for the ground states of the local
interactions. Here, we should notice, as a side remark, that
the fact that fS depends on the dimension of the ground space
appears to agree with the qualitative picture suggested in early
attempts to quantify frustration, such as in Ref. [11], where
it was noted that, while the presence of geometric frustration
strongly affects the energy of a two-dimensional Ising system,
its effect is strongly reduced if Ising interactions are replaced
by Heisenberg ones. Let us define d as the rank of �S ,
namely, the degeneracy of the local ground space associated to
subsystem S. The Cauchy interlacing theorem [12] yields that
the universal measure of frustration fS is bounded from below
by the first d largest eigenvalues of ρS , arranged in descending
order {λ↓

i (ρS)}i [10]:

fS � ε
(d)
S , ε

(d)
S = 1 −

d∑

i=1

λ
↓
i (ρS). (2)
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For pure ground states ρG = |�G〉〈�G|, the quantity ε
(d)
S

coincides with the distance of ρG from the set of states
with Schmidt rank DSchmidt less or equal than d [13]. Such
distance is an entanglement monotone [13], i.e., a function
that vanishes for all separable states and is nonincreasing
under local operations and classical communication (LOCC)
[14,15]. However, ε

(d)
S vanishes also for all entangled states

with Schmidt rank DSchmidt � d and becomes a faithful
entanglement monotone only for d = 1 because any entangled
pure state has DSchmidt � 2. Indeed, ε

(1)
S coincides with the

ground-state bipartite geometric entanglement, defined as the
distance of ρG from the set of biseparable pure states |φS〉 ⊗
|χR〉 [16]. On the other hand, the fact that ε(d)

S is not necessarily
a full entanglement monotone when d > 1 reveals the subtlety
of the relation between entanglement and frustration. States
in a degenerate global ground space can be entangled just
because of the linearity of quantum mechanics, and yet this
a priori entanglement need not be a source of frustration. An
exquisite example is the ferromagnetic spin- 1

2 Ising model on a
triangle. This simple model is obviously frustration free, either
classically or quantum mechanically (all local interactions
commute). Nevertheless, in the quantum regime, we have that
any state of the form |ψ〉 = α|↑↑↑〉 + β|↓↓↓〉 is an acceptable
ground state that exhibits a nonvanishing entanglement for
every possible bipartition as long as α,β �= 0. The global
ground space is thus doubly degenerate. On the other hand,
being the local ground space twofold degenerate as well, for
the global ground state it will always be DSchmidt � d = 2.
Regardless of the values of the superposition coefficients, this
implies ε

(2)
S = 0 and therefore the absence of entanglement-

induced frustration.
According to Eq. (2), the ground state can belong to three

different classes [10]. It will be a frustration-free (FF) state if
fS = ε

(d)
S = 0 ∀ S. It will be an inequality-saturating (INES)

state if fS = ε
(d)
S ∀ S; therefore, an FF state is a particular case

of an INES state. Finally, it will be a non-inequality-saturating
state (non-INES) in all the other situations. As long as the sys-
tems being considered admit only one nondegenerate ground
state, the same classification applies unambiguously also to
the corresponding models. New issues arise if we consider
systems possessing different degenerate ground states. In this
case, the quantification of frustration provided by Eq. (1) will
yield in general state-dependent results within the same class of
models and symmetries. For each model, frustration becomes a
local, state-dependent concept, according to the value taken by
Eq. (1) on each different degenerate ground state. On one side,
this feature confirms that entanglement is a necessary but not
sufficient ingredient to characterize and quantify frustration
globally in the quantum domain. On the other hand, it implies
that the measure defined in Eq. (1) should not be applied
separately to each degenerate pure ground state. Rather, it
should be evaluated on an appropriate, average ground state
so defined that it contains all the possible information about
the global ground space of the system. In this way, it will be
possible to quantify the global frustration properties of the
entire model rather than just the ones of a single element of
the ground space.

In the following, we will show that identifying the ele-
ments, beyond entanglement, that are needed to characterize

the global aspects of frustration in the quantum domain
also determines the requirements for a state-independent,
global quantification of frustration. To this end, the crucial
observation is that statistical mixtures of degenerate ground
states are themselves legitimate ground states. Moreover,
when symmetries are conserved, all the different degenerate
ground states have the same statistical possibility to be
realized. Therefore, one can introduce as the appropriate
global average ground state the maximally mixed ground state
(MMGS), that is the convex combination with equal a priori
weights of all the possible degenerate ground states. This
principle of a priori equiprobability guarantees the correct
quantification of the global frustration properties of quantum
Hamiltonians. The MMGS is the projector on the global
ground space (eigenspace of lowest eigenvalue) divided by
the degeneracy of this space and, at variance with single pure
ground states, it satisfies all symmetries of the Hamiltonian
model being considered. We can thus classify the different
models and their global frustration properties with respect
to the properties of the MMGS: a model is frustration free
on average if its MMGS is frustration free; it is INES on
average if its MMGS is INES; and it is otherwise non-INES on
average if its MMGS is non-INES. If a system admits a unique,
nondegenerate ground state, then the local and on-average
classifications coincide. In all other cases, if a model is locally
FF (INES), then it is also FF (INES) on average, while in
general the inverse does not necessarily hold.

When addressing mixed states, the entanglement-to-
frustration relation undergoes essential modifications and
generalizations. The quantity ε

(d)
S ceases in general to be a

bipartite entanglement monotone when computed directly on
mixed states [17] and must be replaced by its convex roof

E
(d)
S|R = inf

{pk,|ψk〉}

∑

k

pkε
(d)
S (trR|ψk〉〈ψk|). (3)

In Eq. (3), the infimum is taken over all the possible convex
decompositions into pure states |ψk〉〈ψk| of the total system’s
ground state: ρG = ∑

k pk|ψk〉〈ψk|. The quantities E
(d)
S|R and

ε
(d)
S always coincide for pure states, and in general differ

for mixed states. Physically, this difference comes about
because the noise present in the reduced density matrix of
a globally mixed state is associated not only to the presence
of entanglement, as for pure states, but also to the presence
of classical statistical correlations that emerge after local
generalized measurements on one subsystem [18–20].

Total correlations (quantum plus classical) in mixed states
are usually quantified in terms of the von Neumann entropy;
however, the relation holds in general: to every entanglement
monotone there corresponds a type of classical or quantum
correlation emerging when a local generalized measurement
is implemented [21]. For our purposes, we need to evaluate
the classical correlations between two subsystems, say a and
b, in terms of ε(d)

a . Although the function ε(d)
a is not a full

monotone, it is anyway a proper quantifier of local mixedness,
and as such detects correlations between subsystems. Consider
then a composite system (made of the subsystems a and b) in
a mixed state ρ, and its reduced state ρa = trbρ. A generalized
measurement on b is defined by a set of positive operators
{Mb(x)}, such that

∑
x Mb(x) = 1 [22,23]. The measurement
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detects the result x with probability p(x) = tr(1a ⊗ Mb(x)[ρ]),
leaving the system in the state ρ(x) = 1

p(x)1a ⊗ Mb(x)[ρ].

Replacing the von Neumann entropy with ε(d)
α in the general

expression for classical correlations [18,19], one has

C
(d)
a|b = ε(d)

a − min
{Mb(x)}

∑

x

p(x)ε(d)
a [trbρ(x)]. (4)

The classical correlations C
(d)
a|b are expressed as the difference

between the total correlations ε(d)
a , evaluated on the reduced

state ρa , and the smallest convex combination of total
correlations, obtained as the minimum over all possible local
generalized measurements {Mb(x)} on subsystem b. On the
other hand, it is well known that any n-partite mixed quantum
state ρ can be obtained from an (n + 1)-partite pure state by
tracing out the degrees of freedom of an ancillary party A. This
fact allows us to generalize to the case of the geometric quantity
ε

(d)
S the results originally obtained for the von Neumann

entropy [21], according to the following.
Theorem 1. Purification, entanglement, and classical corre-

lations. Given a pure tripartite state |ψSRA〉 ∈ HS ⊗ HR ⊗ HA

and its reduced density matrices ρSR = trA|ψSRA〉〈ψSRA|,
ρSA = trR|ψSRA〉〈ψSRA|, and ρS = trRA|ψSRA〉〈ψSRA|, then

ε
(d)
S = E

(d)
S|R + C

(d)
S|A, (5)

that is, the total correlations expressed by the geometric
quantity ε

(d)
S are the sum of the bipartite entanglement (convex

roof) between S and R and the classical correlations between
S and A. The proof of the theorem is provided in the
Supplemental Material [24]. We will apply Theorem 1 to
the purification of the MMGS with the ancilla A, where the
presence of classical correlations detected by local generalized
measurements on A is a consequence of the degeneracy of
the ground state. Conceptually, the ancillary party A can be
thought of as a suitable quantum reservoir entangled with the
bipartite system (S|R), yielding the MMGS as the on-average
reduced equilibrium state [25]. Equivalently, A can be seen as
a quantum reference system, such that if one traces over A,
every ground state of (S|R) is equiprobable, as identified by a
complete set of superselection rules [26].

Comparing Eqs. (5) and (2), we obtain a unified lower
bound to frustration encompassing both the nondegenerate
and degenerate cases:

fS � E
(d)
S|R + C

(d)
S|A. (6)

The above exact inequality yields that, in the quantum domain,
frustration is not only due to the underlying geometry, as
for the classical case, and/or to entanglement, as for systems
with nondegenerate ground states. In general, it depends on
the interplay of these two elements with a third source,
namely, statistical correlations established outside of the d-
fold-degenerate local ground space due to the degeneracy
encoded in the MMGS. When the ground state is pure and
nondegenerate, the general bound Eq. (6) evaluated on the
MMGS reduces to Eq. (2), as the classical correlations C

(d)
S|A

vanish and the convex roof E
(d)
S|R coincides with ε

(d)
S .

Let us illustrate with a simple but nontrivial example the
difference between the local and on-average characteriza-
tions of frustration provided, respectively, by Eqs. (2) and

(6). Consider a ring of five spins with periodic boundary
conditions described by a ferromagnetic Ising Hamiltonian
H = −∑5

i=1 Sx
i Sx

i+1 (Sα
6 ≡ Sα

1 ∀ α = x,y,z). All local terms
in the Hamiltonian commute: in this sense, the model is
classical. The global and local ground states are both twofold
degenerate (spin-flip symmetry). Since every element of the
global ground space is FF, the model is locally always FF,
i.e., FF on each of the different degenerate global ground
states, and hence FF on average, that is FF on the MMGS.
Next, let us modify the Hamiltonian from classical Ising to
quantum XY : H = −∑5

i=1(Sx
i Sx

i+1 + �S
y

i S
y

i+1), while the
geometry of the system remains unchanged. One would now
expect that frustration in the system should arise from the
noncommutativity of the local terms in the XY Hamiltonian
(now the local ground-space degeneracy d = 1). Accordingly,
one verifies that the model is INES on average, i.e., the
inequality (6) is saturated by the MMGS, with the actual values
of the frustration measure fS and of the total correlations ε

(1)
S

depending on the anisotropy �. For instance, for � = 0.1,
one has fS ≡ ε

(1)
S � 0.476 for each of the five different spin

pair-interaction terms. However, regardless of the value of
�, such a model is never locally INES. Indeed, given the
doubly degenerate global ground space, let us pick, e.g., the
ground state that is an eigenstate of the parity operator along
the x direction with eigenvalue +1. For this pure ground
state, the measure of frustrations fS takes always the same
values as for the MMGS (this is actually an interesting
general property for all twofold-degenerate ground states
[24]). However, the bipartite geometric entanglement E

(1)
S|R is

always well below the total correlations ε
(1)
S . For instance,

with � = 0.1, one has E
(1)
S|R � 0.001 � ε

(1)
S � 0.476. The

impossibility to saturate inequality (2) is related to the fact
that the selected pure ground state breaks the symmetry of
the model Hamiltonian. Modifying the geometry, e.g., by
adding a direct antiferromagnetic interaction between the
first and the third spins: H ′ = Sx

1 Sx
3 + �S

y

1 S
y

3 introduces a
further, geometric source of frustration. In this case, the
MMGS no longer saturates inequality (6) and the system
ceases to be INES, thus signaling the presence of geometric
frustration.

From the above discussions it follows that it would be
desirable to identify a set of conditions to detect a priori
the frustration properties of the global ground space of a
given model or class of models. These conditions should
include as a particular case the ones previously determined
for nondegenerate ground states [10]. Extending the Toulouse
criteria [1] to the quantum domain, we need to identify a
prototype model that is INES on average and then define a
group of local operations under which the property of being
INES on average is preserved. We define the prototype model
as follows.

Prototype model. A quantum spin Hamiltonian of the type

H =
∑

ij

hij = −
∑

ij,μ

J
μ

ij S
μ

i S
μ

j (7)

is a prototype model if there exists at least one local ground
space common to all pair local interactions hij and every local
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coupling vector �Jij has non-negative components. Having
defined the prototype model, we state the following:

Conjecture 1. INES property and prototype models. All
prototype models are INES on average.

Conjecture 2. INES property and local transformations.
Every model obtained from a prototype model by local unitary
operations on each spin and partial transposition on any
arbitrary set of sites {K} is still INES on average.

It is evidently quite hard to prove these two conjectures in all
generality. In the Supplemental Material [24], we provide an
analytical proof for the one-dimensional quantum XY model
in the thermodynamic limit, and strong numerical evidence
obtained for more than 2 × 105 randomly generated models
with exchange interactions on arbitrary random graphs with a
total number of sites N � 9. Preservation of the INES property
on average under partial transposition is to be expected because
this property is directly related to the absence of geometric
frustration in the model. Nevertheless, the preservation of the
INES property on average is far from trivial. Indeed, contrary
to what happens under local unitary transformations, the
properties of degenerate ground states of a given Hamiltonian
before and after partial transposition need not be related.
As a straightforward example, let us consider a spin- 1

2
Heisenberg chain (open boundary conditions) of N = 4 spins
with homogeneous nearest-neighbor ferromagnetic couplings.
The global ground state is fivefold degenerate while the local
ground space is threefold degenerate, and for any couple of
interacting spins we have fS = ε

(3)
S = 0. Performing partial

transposition on spins 2 and 4 (or, equivalently, on spins 1 and
3) the original model maps in an antiferromagnetic Heisenberg
chain possessing both a nondegenerate global and local ground
state with fS = ε

(1)
S � 0.067 for both the pairs of spins (1,2)

and (3,4), while fS = ε
(1)
S = 1

2 for the pair of central spins
(2,3). The transformed model has very different ground-state
properties compared to the initial one, and yet it remains INES.

In conclusion, we have derived an exact lower bound on
a universal measure of frustration in the general case of
degenerate ground states. The bound is expressed as the sum
of two contributions, one due to bipartite ground-state entan-
glement and one due to bipartite classical correlations that are
established after local generalized measurements on a quantum
reservoir or a quantum reference frame. This further source
of frustration adds to geometry and entanglement, yielding
a rather complex structure that involves several fundamental
concepts of quantum physics: entanglement of mixed ground
states, classical correlations arising from quantum degeneracy,

and the purification of ground states via quantum reservoirs or
quantum reference frames.

We have showed that the frustration properties of quantum
many-body Hamiltonians are encoded in the maximally mixed
ground state (MMGS), that is the convex combination with
equal coefficients of all the degenerate pure ground states.
Given such on-average, global classification, we have deter-
mined the sufficient conditions for a quantum spin system
to achieve the bound, generalizing the results obtained in
the case of models with nondegenerate ground states [10].
For systems with doubly degenerate ground states we have
proved rigorously that local and average frustration coincide:
all degenerate ground states, and therefore also the MMGS,
exhibit the same frustration properties [24].

The fact that the residual classical correlations after local
generalized measurements are identified as a novel source of
frustration in quantum many-body systems may open interest-
ing research insights concerning competitions among quantal
and nonquantal aspects in Hamiltonian spin dynamics, as in the
case of the anisotropic Heisenberg models in an external field,
or competition between quantal dynamics and thermal fluctu-
ations. Future investigations should address the role that the
presence or absence of the INES property on average actually
plays in computational [27], information-theoretic [28–31],
and thermodynamic characterizations [32,33] of many-body
quantum systems. Experimental consequences might soon be
derived and tested, as the controlled quantum simulation of
spin systems, classical and quantum, is rapidly progressing,
from the first demonstration of antiferromagnetic spin chains
with optical lattices [34] and of classically frustrated Ising
spins with trapped ions [35] and with optical lattices [36]
to the very recent comprehensive proposals for the quantum
simulation of large classes of frustrated quantum spin models
with ion crystals [37] and color centers in diamond [38],
which should open the way in the near future to the precise
verification of long-standing predictions on exotic phases of
matter. In this respect, the use of conceptual and technical
tools inspired by quantum information and entanglement
theory can yield broader and deeper understanding [39]
of collective and complex quantum phenomena beyond the
traditional Landau-Ginzburg framework of quantum phase
transitions based on symmetry breaking and local order
parameters.
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FP7 STREP Project iQIT, Grant Agreement No. 270843.
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