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Nonlocal cancellation of dispersion in Franson interferometry
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Dispersion and its cancellation in entanglement-based nonlocal quantum measurements are of fundamental
and practical interests. We report a demonstration of cancellation of femtosecond-level dispersion by inverting
the sign of the differential dispersion between the long and short paths in only one arm of a fiber-based
Franson interferometer. We restore the otherwise limited quantum visibility to an unprecedented 99.6%, and
put time-energy entanglement at the same level of quality as polarization entanglement for use in quantum
information processing applications.
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Nonlocality is the quintessential quantum property of
entanglement, in which a local action made in one subsystem
can influence the other subsystem at a remote location in a way
that cannot be explained by classical or local hidden-variable
theories. The most well known nonlocality test is the violation
of Bell’s inequality such as its Clauser-Horn-Shimony-Holt
(CHSH) form for polarization-entangled photons [1] or Fran-
son interferometry for two time-energy entangled photons [2].

In virtually all nonlocal experiments, photons could be
broadened traveling through dispersive media unless the
nonlocal measurements are immune to dispersion or com-
pensation is administered. Polarization measurements in the
CHSH form of Bell’s inequality violation are not sensitive to
temporal spread due to dispersion, and this is corroborated
by excellent nonlocal measurements of entanglement quality
made without any attention paid to dispersion, with two-photon
quantum-interference visibility of >99% [3,4]. On the other
hand, Franson interferometry is expected to be sensitive to
dispersion and the best measurement to date [5] without any
dispersion consideration does not quite measure up to that of
polarization entanglement. It is therefore of fundamental inter-
est to ponder the question of applying dispersion compensation
nonlocally and how that may affect nonlocal measurements of
entanglement quality. That is, can dispersion at one location
be compensated by action at a different location? In this Rapid
Communication, we investigate the effects of dispersion in
Franson interferometry and demonstrate complete nonlocal
cancellation of femtosecond-level dispersion in classicality-
violating nonlocal quantum measurements.

It is instructive to briefly examine some common dispersion
cancellation techniques and applications. It is well known
that Hong-Ou-Mandel (HOM) interferometry is immune to
even-order dispersion [6], and this immunity is exploited in
various applications such as high-precision clock synchroniza-
tion [7] and resolution-enhanced quantum optical coherence
tomography (OCT) [8]. However, HOM interferometry is a
local interference measurement of two incident photons that
do not need to be entangled. Indeed, classical interference
signature analogous to the HOM interference dip has been
observed in a quantum-mimetic experiment using oppositely
chirped laser pulses [9], and dispersion cancellation has
been demonstrated in phase-conjugate OCT using classical
phase-sensitive cross-correlated Gaussian light [10]. Franson
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proposed a truly nonlocal dispersion cancellation experiment
in which the joint temporal correlation between two time-
energy entangled photons would remain unchanged after they
have separately gone through media with opposite signs of
dispersion [11]. However, such dispersion cancellation on typ-
ically subpicosecond temporal correlation is difficult to verify
experimentally because it requires detection timing accuracy
at the femtosecond level. Two recent experiments hint at the
correctness of nonlocal dispersion cancellation. O’Donnell
recombined the two photons after dispersion and utilized time-
resolved upconversion to observe dispersion cancellation at the
femtosecond level [12]; however, the observation was based
on local measurements. Baek et al. used strong dispersion to
broaden the effective pulse duration of the entangled photons
and observed narrowing that was consistent with nonlocal
dispersion cancellation [13]. However, their experiment was
detector resolution limited and could not demonstrate narrow-
ing to the original subpicosecond temporal correlation.

In this work, we choose Franson interferometry to demon-
strate the essential physics of Franson’s nonlocal dispersion
cancellation scheme. The interferometric scheme allows us
to characterize dispersion at the femtosecond level without
detector resolution limitation, and to study the effect in a non-
local quantum measurement setting that requires entanglement
and violates classicality. We show that only the differential
dispersion within the unbalanced paths of each fiber-based
Mach-Zehnder interferometer (MZI) affects the Franson inter-
ference, which is not sensitive to the dispersion between the
source and the two MZIs. In addition, from a practical point
of view, dispersion compensation in Franson interferometric
measurements allows its quantum-interference visibility to
reach 99.6% that is on par with the best CHSH measurements
obtained with polarization-entangled photons, which bodes
well for applications that utilize time-energy entanglement.

Figure 1 shows a model of dispersive Franson interferome-
try. Continuous-wave (cw) spontaneous parametric downcon-
version (SPDC) generates time-energy entangled signal and
idler photons, which propagate independently to two separate
locations where a Franson interferometric measurement is
performed nonlocally. Each arm of the Franson interferometer
consists of an all-fiber unbalanced MZI using 50:50 fiber
beam splitters. We note that only two types of dispersion are
relevant to our setup. The first is the dispersion along the
path from the SPDC source to the MZIs, and the second is
the differential dispersion between the long and short paths
in each MZI. The former does not have any impact on
the Franson interference visibility, the reason of which will
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FIG. 1. (Color online) Model of fiber-based Franson interfero-
metric measurements including differential dispersion D1 and D2.

become clear later in the analysis. Therefore, in our model only
the differential dispersion is included, as denoted by unitary
dispersion operators D̂1,D̂2.

The electric field operators before and after the Franson
interferometer are denoted by Ês,i(t) and Ê1,2(t), respectively,
with

Ês,i(t) =
∫

dωs,ie
−iωs,i t âωs,i

, (1)

where âωs,i
is the photon annihilation operator for frequency

ωs,i . In the Heisenberg representation, the unitary transforma-
tions of D̂1,2 can be easily incorporated by writing the field
operator at the detectors as

Ê1,2(t) = 1√
2

[
Ês,i(t) + eiφ1,2D̂

†
1,2Ês,i(t − �T )D̂1,2

]
, (2)

where we have ignored the common delay through the MZI’s
long and short paths, and �T is the propagation time difference
between the long and short paths, which is assumed to be
the same for both MZIs and much larger than the biphoton
correlation time. φ1,2 are two independent phase controls. The
operators in the second term can be conveniently evaluated in
the frequency domain,

D̂
†
1,2Ês,i(t − �T )D̂1,2 =

∫
dωs,ie

−iωs,i (t−�T )e−i�s,i (�s,i )âωs,i
,

(3)

where �s,i = ωs,i − ωp/2 is the frequency detuning from the
central wavelength which is taken as ωp/2 for simplifying the
analysis. The differential phase delay �s,i is of the form

�s,i(�s,i) =
∑
n�2

�n
s,i

n!
�(βnL), (4)

with βn being the nth-order dispersion coefficient of the fiber,
of which only the group velocity dispersion (GVD) β2 term
is dominant. Here �(βnL) denotes the differential amount
between the long and short paths. We calculate the coincidence
rate C between two detectors as in [2]

C ∝ 〈Ê†
1(t)Ê†

2(t)Ê2(t)Ê1(t)〉 (5)

∝ 〈Ê†
s (t)Ê†

i (t)Êi(t)Ês(t)〉 + 〈D̂†
1Ê

†
s (t − �T )D̂1D̂

†
2Ê

†
i (t − �T )Êi(t − �T )D̂2D̂

†
1Ês(t − �T )D̂1〉

+ {ei(φ1+φ2)〈Ê†
s (t)Ê†

i (t)D̂†
2Êi(t − �T )D̂2D̂

†
1Ês(t − �T )D̂1〉 + h.c.}. (6)

In Eq. (6) we assume that the detector timing jitters and the broadened biphoton temporal correlation are much smaller than
�T so that the photons traveling the long and short paths remain noncoincident. By substituting (1) and (3) into Eq. (6), we
obtain

C ∝
∫

dωs dωi

〈
cos2

[
φ̃ + ωp�T − [�s(�s) + �i(�i)]

2

]
â†

s â
†
i âi âs

〉
. (7)

The Franson interference visibility is given by V = (Cmax −
Cmin)/(Cmax + Cmin), where Cmax and Cmin are the maximum
and minimum coincidences obtained by varying φ̃ = φ1 + φ2.
Note that �ωp�T � 1 for a cw pump.

In examining Eq. (7) we note that any dispersion imposed
on the biphoton prior to entering the interferometer does
not affect the coincidences, since the integration does not
involve relative phase between the frequency modes. Only
the differential dispersion at each MZI degrades the Franson
visibility, unless �s(�s) + �i(�i) = 0. The obvious solution
is to cancel the dispersion locally with �s(�s) = �i(�i) = 0.
However, our primary interest and the emphasis of this Rapid
Communication is to achieve complete dispersion cancellation
nonlocally with �i(�i) = −�s(�s) and restore the Franson
visibility accordingly.

Our dispersion cancellation using Franson interferome-
try demonstrates the same underlying physics as Franson’s
original scheme. First, to preserve all the properties of the
initial biphoton temporal correlation, quantum entanglement
is necessary for complete nonlocal cancellation [14,15]. Using

classical fields with perfect frequency correlation in the
original Franson scheme would at best yield a narrowing of the
detected temporal correlation accompanied by a significant dc
background [14–16]. If the same frequency correlated classical
fields were used in Franson interferometry, the observed visi-
bility would be no greater than 50% [17]. Second, the demon-
strated dispersion cancellation is strictly nonlocally applied
without bringing the two photons together, which echoes the
essence of the Einstein-Podolsky-Rosen paradox [18]: Local
action by one subsystem (dispersion at signal side) can be non-
locally influenced by a different subsystem (compensation at
idler side).

We set up the experiment shown in Fig. 2. Frequency-
degenerate time-energy entangled photons at 1560 nm were
efficiently generated in a type-II single-spatial-mode PPKTP
waveguide source via cw SPDC with a brightness of 107

pairs/s per mW of pump [5]. After coupling into a polarization-
maintaining fiber, the orthogonally polarized signal and idler
photons were separated using a fiber polarizing beam splitter
and sent to their respective arms of the Franson interferometer.
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FIG. 2. (Color online) Experimental setup of dispersive Franson
interferometric measurement. BPF, bandpass filter; PBS, polarizing
beam splitter; PZT, piezoelectric transducer.

The coincidence measurement was performed using two 20%
efficient self-differencing InGaAs single-photon avalanche
photodiodes (SPAD) with square-wave gating at a 628.5-MHz
repetition rate [5]. The detector timing resolution is ∼100 ps,
which is much greater than the picosecond biphoton corre-
lation time. The SPADs had low after-pulse probability of
<6% and dark counts of <2 × 10−6 per gate. To achieve long
term phase stability, the fiber interferometer was enclosed
in a multilayered thermally insulated box, whose inside
temperature was actively stabilized to within 10 mK. The path
mismatch �T = 4.77 ns was set to match the duration of
three detector-gating periods. The difference in the two path
mismatches was fine tuned using an additional closed-loop
temperature control of the long-path fiber in the upper arm to
less than the biphoton coherence time of ∼1 ps. The variable
phase shift of each arm was set by a piezoelectric transducer
(PZT) fiber stretcher.

Figure 3 shows the spectra of signal and idler photons.
The biphoton phase-matching bandwidth was ∼1.6 nm at full
width at half maximum (FWHM). For an interferometer that
was constructed using standard single-mode fibers (SMFs)
with β2 = −22.5 fs2/mm, the expected temporal spread was
26 fs, which would only increase the ∼1 ps biphoton coherence
duration by <1 fs if a Gaussian spectral shape is assumed.
However, using Eq. (7) to numerically integrate over the
spectra in Fig. 3, we predict a 1.3% degradation of Franson
visibility due to dispersion caused by the broad spectral
pedestals outside of the central lobe in Fig. 3. Therefore, to
measure the intrinsic entanglement quality, such femtosecond-
level dispersion should be compensated and all other sources
of degradation be minimized.

Recently we have reported [5] a raw Franson visibility of
98.2 ± 0.3% with a mean photon pair per gate α = 0.24%
for an all-SMF interferometer configuration of Fig. 4(a).
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FIG. 3. (Color online) Spectra of signal, idler photons showing
∼1.6 nm bandwidth at FWHM and noticeable spectral pedestals.
Solid curves are sinc2 fits. Dashed curves are Gaussian fits.

FIG. 4. Configurations of Franson interferometer for testing
dispersion effects. The respective measured raw visibility is shown
to the right of each configuration.

Measured visibility included accidental coincidences and the
0.3% uncertainty was based on one standard deviation of
100 measurement samples collected over a total duration of
10 s. Our high-speed data acquisition was largely the result
of a reasonably good system efficiency of the source-detector
combination. We noted in Ref. [5] that a visibility degradation
of ∼0.4% was due to multipair events and accidentals, and
the remaining 1.4% degradation was attributed to dispersion
(but without supporting evidence). Here we verified fiber
dispersion was the origin of the degradation by applying
narrow-band spectral filtering to the biphoton, as shown
in Fig. 4(b). With the same α, we measured a raw vis-
ibility of 99.4 ± 0.3% after 0.36-nm bandpass filtering of
the biphoton spectra. We should point out the extra loss
incurred by narrow-band filtering and the resultant reduction
of pair flux.

A better way to restore perfect Franson interference is to
cancel dispersion of the fiber interferometer without restricting
the biphoton bandwidth. In Fig. 4(c), for benchmarking, we
implemented an interferometer with its dispersion canceled
locally by replacing a portion of the long-path SMF with
low-dispersion LEAF fiber (β2 = −6.19 fs2/mm at 1560 nm)
such that the differential dispersion �s,i was zero. We chose
LEAF fiber because it has a core dimension very close to
SMF so that splicing loss would be minimum. Without loss
of flux, we measured a raw visibility of 99.6 ± 0.2% at
the same α = 0.24%. The visibility improvement of 1.4%
with respect to the all-SMF configuration is in excellent
agreement with our theoretical prediction, which also implies
that the dispersion cancellation was complete. Lastly, Fig. 4(d)
shows an interferometer with dispersion canceled nonlocally,
corresponding to the case �s = −�i . In this configuration,
the entire signal arm was made of SMF, with a differential
second-order dispersion of �(β2L) = −2.2 × 10−2 ps2. In
the idler arm, the long path comprised 269.5 cm of LEAF
fiber and 18.0 cm of SMF, whereas the short path used
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FIG. 5. (Color online) Measured raw Franson visibility versus
generated pair per gate, for local (upper panel) and nonlocal (lower
panel) cancellation configurations. Error bars are based on one
standard deviation of 100 measurement samples each with an
integration time of 0.1 s. The linear fits (solid lines) represent the
V = 1 − α functional dependence. The inset shows the interference
fringe of coincidences corresponding to 99.6% visibility using
nonlocal cancellation.

190.0 cm of SMF so that the differential dispersion came to
+2.2 × 10−2 ps2. For Fig. 4(d) configuration, we measured
a raw visibility 99.6 ± 0.2% that is higher than the 98.2%
visibility obtained in the dispersion-limited case of Fig. 4(a).
Together with the measurements for Figs. 4(b) and 4(c), we
have clearly demonstrated nonlocal cancellation of dispersion
in Franson interferometry. Additionally, for configurations
4(a), 4(c), and 4(d), we measured the Franson visibility at
increasing pair generation rate. The results in Fig. 5 are in
good agreement with the expected theoretical relationship
V ≈ 1 − α [19]. At 99.6 ± 0.2% we have achieved near-unity
Franson visibility that is limited only by the mean pair per

gate α = 0.24% and the remaining accidental coincidences
with experimental uncertainties. Note that successful cancel-
lation is consistently maintained at each measurement with
different α.

The raw visibility we measured via dispersion cancellation
represents a significant violation of Bell’s inequality by 145
standard deviations. We believe it is the highest violation ever
reported for Franson interferometry, and the measured quality
of time-energy entanglement is at the same level as that of its
polarization counterpart [3,4]. Maximal violation of CHSH
inequality is essential in quantum information applications,
including certified random number generation [20], remote
state preparation, and quantum repeaters. An immediate appli-
cation is high-dimensional time-energy entanglement-based
quantum key distribution where multiple time bits are encoded
per photon-pair coincidence [5]. Achieving near-unity Franson
visibility can significantly improve the secure key rate by
putting a tighter bound on Eavesdropper’s accessible informa-
tion [21]. Another nonlocal cancellation application is on-chip
Franson interferometric measurement in which a semiconduc-
tor waveguide-based MZI possesses a significant imbalance of
dispersion between two highly unequal paths, and such a GVD
mismatch is difficult to cancel locally and quickly. It is thus
desirable to keep the on-chip MZI as one arm of the Franson
interferometer, and apply nonlocal dispersion cancellation at
the remote arm by implementing a fiber-based MZI whose
dispersion can be easily engineered to cancel the on-chip
dispersion.

In summary, we have rigorously investigated the dispersive
effect in nonlocal Franson interferometry. We have demon-
strated complete cancellation of femtosecond-level dispersion
in a strictly nonlocal sense, and recovered a nearly perfect
quantum interference visibility that represents the highest level
of entanglement quality measured so far for time-energy entan-
gled photons. Dispersion-canceled Franson interferometry is
relevant to a range of temporal measurements and applications
exploiting entangled states of light.
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[10] J. Le Gouët, D. Venkatraman, F. N. C. Wong, and J. H. Shapiro,
Opt. Lett. 35, 1001 (2010).

[11] J. D. Franson, Phys. Rev. A 45, 3126 (1992).
[12] K. A. O’Donnell, Phys. Rev. Lett. 106, 063601 (2011).
[13] S.-Y. Baek, Y.-W. Cho, and Y.-H. Kim, Opt. Express 17, 19241

(2009).
[14] T. Wasak, P. Szankowski, W. Wasilewski, and K. Banaszek,

Phys. Rev. A 82, 052120 (2010).
[15] J. D. Franson, Phys. Rev. A 81, 023825 (2010).

020103-4

http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1103/PhysRevLett.62.2205
http://dx.doi.org/10.1103/PhysRevA.60.R773
http://dx.doi.org/10.1134/S1054660X06110053
http://dx.doi.org/10.1134/S1054660X06110053
http://dx.doi.org/10.1364/OE.20.026868
http://dx.doi.org/10.1364/OE.20.026868
http://dx.doi.org/10.1103/PhysRevA.45.6659
http://dx.doi.org/10.1103/PhysRevA.45.6659
http://dx.doi.org/10.1103/PhysRevLett.87.117902
http://dx.doi.org/10.1103/PhysRevLett.87.117902
http://dx.doi.org/10.1103/PhysRevLett.91.083601
http://dx.doi.org/10.1038/nphys1093
http://dx.doi.org/10.1364/OL.35.001001
http://dx.doi.org/10.1103/PhysRevA.45.3126
http://dx.doi.org/10.1103/PhysRevLett.106.063601
http://dx.doi.org/10.1364/OE.17.019241
http://dx.doi.org/10.1364/OE.17.019241
http://dx.doi.org/10.1103/PhysRevA.82.052120
http://dx.doi.org/10.1103/PhysRevA.81.023825


RAPID COMMUNICATIONS

NONLOCAL CANCELLATION OF DISPERSION IN . . . PHYSICAL REVIEW A 88, 020103(R) (2013)

[16] J. H. Shapiro, Phys. Rev. A 81, 023824 (2010).
[17] J. D. Franson, Phys. Rev. Lett. 67, 290 (1991).
[18] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777

(1935).
[19] I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden,

and N. Gisin, Phys. Rev. A 66, 062308 (2002).

[20] S. Pironio, A. Acı́n, S. Massar, A. Boyer de la Giroday, D. N.
Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A.
Manning, and C. Monroe, Nature (London) 464, 1021 (2010).

[21] T. Brougham, S. M. Barnett, K. T. McCusker, P. G. Kwiat,
and D. J. Gauthier, J. Phys. B: At. Mol. Opt. Phys. 46, 104010
(2013).

020103-5

http://dx.doi.org/10.1103/PhysRevA.81.023824
http://dx.doi.org/10.1103/PhysRevLett.67.290
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRevA.66.062308
http://dx.doi.org/10.1038/nature09008
http://dx.doi.org/10.1088/0953-4075/46/10/104010
http://dx.doi.org/10.1088/0953-4075/46/10/104010



