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Experimental investigation of quantum Simpson’s paradox
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The well-known Simpson’s paradox, or Yule-Simpson (YS) effect, is often encountered in social-science and
medical-science statistics. It occurs when the correlations present in different groups are reversed if the groups
are combined. Simpson’s paradox also exists in quantum measurements. In this Brief Report, we experimentally
realized two analogous effects: the quantum-classical YS effect and the quantum-quantum YS effect in the
quantum-dot system. We also compared the probability of obtaining those two effects under identical quantum
measurements and found that the quantum-quantum YS effect is more likely to occur than the quantum-classical
YS effect.
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Simpson’s paradox, also known as the Yule-Simpson
(YS) effect [1,2], is well known in statistics, and it has
been described in a few introductory statistics books [3,4].
There are several real-life examples in social-science statistics
and medical-science statistics [5–7]. In statistics, it is often
described visually by this thought experiment: A therapy
may appear suitable for both men and women separately but
unsuitable for people when the genders are considered together
[8]. The practical consequences are so counterintuitive that this
phenomenon has a considerable impact in decision making [9].
Therefore, a study of the YS effect is helpful in addressing
similar problems in real life. Simpson’s paradox has received
considerable attention from researchers, including in such
fields as social science [10,11], medical science [12–14],
geology [15], and game theories [16–18].

In the quantum domain, there also exist analogous effects
that suggest an opposite trend when previously partitioned
groups are combined [8,19,20]. Recently, mathematical anal-
ysis of Simpson’s paradox with respect to quantum measure-
ments was proposed [8], and this phenomenon was named
quantum Simpson’s paradox. It can be realized using light
sources which have long coherent length, such as weak
coherent light, single photons, etc. Semiconductor quantum
dots (QDs) are often mentioned as being artificial atoms
because of the complete three-dimensional confinement of
carriers and the strong photon antibunching observed in
single-exciton emissions [21,22]. Therefore, QDs have been
extensively investigated as single-photon sources [23,24]. In
addition, each photon from QDs corresponds to an event
for statistic research. So QDs is a good photon source for
researching quantum Simpson’s paradox.

In this Brief Report, we discuss our empirical observations
of two types of quantum Simpson’s paradoxes: the quantum-
classical (QC) YS effect and the quantum-quantum (QQ) YS
effect. Briefly, we first prepared two initial states |ψ1〉, |ψ2〉 and
conducted two quantum measurements, namely, A and B, such
that we obtained p1, p2 measured by A and q1, q2 measured by
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B. Next, we mixed these two initial states to produce two mixed
states, which we then characterized, respectively, with the two
former quantum measurements; the results were denoted as
p and q. We obtained the QC YS effect if the measurement
results satisfied p1 > q1 and p2 > q2 but p < q. Similarly,
the QQ YS effect was obtained when the system was prepared
using superposition states instead of mixed states, satisfying
the reversal of the measurement result. Then, we compared the
QC and QQ YS effects in the same situation and found that the
QQ YS effect was more likely to occur than the QC YS effect.
Finally, we present two typical conditions where the QQ YS
effect may be encountered but the QC YS effect will never
occur.

In our experiment, we prepared two initial states |ψ1〉, |ψ2〉
using single photons emitted from an InAs/GaAs QD, |ψj 〉 =
cos θj |H 〉 + sin θj |V 〉, j = 1,2, where |H 〉, |V 〉 are two
polarization states. Quantum measurement can be written as
�M = |ψϕM

〉〈ψϕM
|, where |ψϕM

〉 = cos ϕM |H 〉 + sin ϕM |V 〉,
M = A,B. In our assumption, the results of measurements
on two initial states should satisfy pj = 〈ψj |�A|ψj 〉 > qj =
〈ψj |�B |ψj 〉, j = 1,2 [8]. So the parameters in initial states
and measurements should satisfy

| cos(θj − ϕA)| > | cos(θj − ϕB)|, j = 1,2. (1)

For the QC situation, we prepared the system in mixed states
�γ , where �γ = cos2 γ |ψ1〉〈ψ1| + sin2 γ |ψ2〉〈ψ2|, γ = α,β.
We observed the QC YS effect if p < q. Here p = cos2 αp1 +
sin2 α p2 and q = cos2 βq1 + sin2 β q2 [8].

For the QQ situation, any superposition state can be
expressed as |ψγ 〉 = 1√

Nγ

[cos γ |ψ1〉 + e−iφγ sin γ |ψ2〉],
where

√
Nγ is the normalization [8]. We used five variable

parameters in each measurement: θ1, θ2, α, φγ , and ϕM ,
describing the initial states |ψ1〉, |ψ2〉, the superposition state
|ψγ 〉, and the measurement M . For simplicity, we set the value
of φγ to zero in the experiment. This reduced the complexity
of the experiment without changing the quantum properties of
the superposition state. Accordingly, the state of the
system became |ψγ 〉 = 1√

Nγ

[cos γ |ψ1〉 + sin γ |ψ2〉], and

Nγ = 1 + cos(θ1 − θ2) sin 2γ , γ = α,β. The QQ YS effect
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FIG. 1. (Color online) Experimental setup, showing the three stages of the experiment. Note that the parameters γ , θ1, θ2, and ϕM in the
main text were set to variable values by modulating HWP1–HWP4, respectively, which were installed in four motorized rotation stages (RS)
and computer controlled.

subsequently occurred if appropriate parameters were chosen
to satisfy P < Q, where

P = p + cos(θ1 − ϕA) cos(θ2 − ϕA) sin 2α

1 + cos(θ1 − θ2) sin 2α
,

(2)
Q = q + cos(θ1 − ϕB) cos(θ2 − ϕB) sin 2β

1 + cos(θ1 − θ2) sin 2β
.

To realize the calculation above, we added two labels |1〉,
|2〉 to the initial states |ψ1〉 and |ψ2〉, respectively, and prepared
the photon in state

|ψ〉 = cos γ |ψ1〉|1〉 + sin γ |ψ2〉|2〉, (3)

where cos2 γ and sin2 γ are the probabilities of the photon
existing in states |ψ1〉 and |ψ2〉, respectively. Now, the classical
mixture of these two initial states was derived by simply tracing
out the states of the labels. This mixture was expressed by the
density operator �γ , �γ = cos2 γ |ψ1〉〈ψ1| + sin2 γ |ψ2〉〈ψ2|.
On the other hand, it is also possible to postselect only the
|+〉 = 1√

2
(|1〉 + |2〉) component of the label states to erase the

man-made labels in Eq. (3). In this manner, it became possible
to derive the quantum superposition of these two initial states
as |ψγ 〉 = cos γ |ψ1〉 + sin γ |ψ2〉.

The experimental setup, shown in Fig. 1, was divided
into three parts. The first part (not shown here) involved
the generation of single photons [25]. A self-assembled
InAs/GaAs QD sample was placed in a 7 K cryostat. Single
photons are generated by the sample when excited by a
focused He-Ne laser and separated by a grating [26]. Then
we filtered out H polarized photons using a polarized beam
splitter (PBS). The second part involved the preparation of the
state shown in Eq. (3). The polarization states were rotated
by a half-wave plate (HWP1) and split into two paths by
beam displacer 1 (BD1), with different probabilities. Next,
the photons in path 1 were prepared in |ψ1〉 by HWP2, while
photons in path 2 were prepared in |ψ2〉 by HWP3. The most
important part of the experimental setup is the third part, which
was controlled by HWP4, BD2, BD3, two phase plates (PP),
and two single-photon avalanche photodiodes (APDs). This

involved the preparation of the mixed state (in the QC situation)
or the superposition state (in the QQ situation), followed by
the quantum measurements. Typically, when the system is
prepared in a classical-mixture state, the photon numbers can
be directly counted using two APDs, on the basis of which it is
possible to calculate the probability of the measurement. For
the quantum superposition state, we inserted a 45◦ polarizer
into the position indicated by a dashed circle, on the basis of
which we postselected the |+〉 term. Next, we tilted two PPs to
simultaneously set the phase of the two paths to zero. Finally,
we counted and calculated the probability of the measurements
we conducted.

The first step of our experiment involved generating single
photons. The microphotoluminescence spectra of the QDs
is shown in the inset of Fig. 2. We used a grating to
obtain the exciton emission (peak X) with a wavelength at
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FIG. 2. (Color online) The HBT result of the QD sample that
we used in the experiment. By fitting the results [red (gray) curve],
we derived a second-order correlation function and obtained g2(0) =
0.034. The inset shows the microphotoluminescence spectra for the
QDs studied in this Brief Report.
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921.093 nm. Then we performed a Hanbury Brown–Twiss
(HBT) experiment. We fitted the experimental data with the
expression of a − b exp(−|t |/c) and g(2)(0) = (a − b)/a. As
Fig. 2 shows, the red (gray) solid line is the fitting result, taking
a = 1 ± 0.004, b = 0.966 ± 0.012, and c = 1.661 ± 0.040.
Therefore we obtained g(2)(0) = 0.034. If we ignore the
influences of background and dark counts, photons in the
exciton signal can be considered single photons, and each
photon corresponds to a single event in statistical research.
The bandwidth of the exciton emission is �λ = 0.085 nm, so
the coherent length of those photons is l = λ2/�λ = 9.98 mm.
Single photons emitted from QDs may not be indistinguishable
because of photon decoherence, which will broaden the
bandwidth of the exciton emission. However, the coherent
length of the photons is much larger than their wavelength,
so that the broadening does not affect the feasibility of this
experiment. In the following, we will present two kinds of YS
effects in the QD system and compare them under identical
values of the variable parameters.

We prepared single photons collected in the first step in
two initial states |ψ1〉, |ψ2〉 by modulating HWP2 and HWP3.
The probabilities of photons existing in these two states were
determined by the angle between the crystal axis of HWP1 and
the H polarization direction of the photons. Then we prepared
the system in classical mixed states or quantum superposition
states and measured them with measurements A and B, which
were determined by HWP4.

Considering the complexity of the experiment, we simply
set the values of all the parameters mentioned (α, β, θ1,
θ2, ϕA, ϕB) to be l

n
2π + π/4, l,n ∈ N , l � n. Further

selection was conducted to satisfy the constraints pj > qj ,
j = 1,2. Next, we conducted quantum measurements on both
the mixture state and superposition state under the same
parameters. The results are presented in Fig 3, where the ratio
P/Q is shown as a function of the ratio p/q. The region

FIG. 3. (Color online) The value of quantum measurements for
both the mixture state and the superposition state. The results are
presented as the ratio P/Q as a function of p/q. In the experiment,
the values of all variable parameters were set to l

n
2π + π/4, l,n ∈ N ,

l � n, and n = 7 here.

FIG. 4. (Color online) Experimental comparison of the quantum-
quantum YS effect with the quantum-classical YS effect when the
mixing parameters α and β are fixed with an equal value of π/4.
Values of other parameters were set to l

n
2π + π/4, l,n ∈ N , l � n,

and n = 21 here.

p/q ∈ (0,1) × P/Q ∈ (0,1) corresponds to the joint occur-
rence of the QC and QQ YS effects. When the occurrence of
the effects are considered separately, the QC YS effect occurs
alone in the region p/q ∈ (0,1) × P/Q ∈ (1,∞), while the
QQ YS effect occurs in the region p/q ∈ (1,∞) × P/Q ∈
(0,1). As Fig. 3 shows, when the QQ YS effect occurs, the QC
effect may or may not occur; that is, the occurrences of the QC
and QQ YS effects are independent of each other. We can also
easily conclude that the QQ YS effect is more likely to occur
than the QC YS effect among all the parameter values.

Next, we present two typical situations where the QQ YS
effect may occur but the QC YS effect never does. For the first
situation, α, β are set to an equal value: α = β = π/4. In this
case, cos2 α = sin2 α = cos2 β = sin2 β = 1

2 . Therefore, p is
always larger than q under the given constraints. However,
the QQ YS effect may occur when appropriate parameters are
chosen, as Fig. 4 shows. There are some dots in the region
p/q ∈ (1,∞) × P/Q ∈ (0,1), which denotes the occurrence
of the QQ YS effect, but there are no dots in the region
p/q ∈ (0,1) × P/Q ∈ (1,∞). The second situation occurs
when p1 = p2 > q1 = q2. If the system is prepared in a mixed
state, p = p1, q = q1, which means the QC YS effect will
never occur. But under certain predetermined parameters, the

TABLE I. An example for the quantum-quantum YS effect when
p1 = p2 > q1 = q2. In this case, the quantum-classical YS effect will
never occur, but the quantum-quantum YS effect may occur when
appropriate parameters are chosen. Here, n was set to be 20, and
α = 7π

20 , β = 9π

20 , θ1 = π

5 , θ2 = 4π

5 , ϕA = 0, ϕB = π

2 .

�A �B

cos α |ψ1〉 p1 = 0.635 > q1 = 0.359 |ψ1〉 cos β

sin α |ψ2〉 p2 = 0.626 > q2 = 0.329 |ψ2〉 sin β

|ψα〉 P = 0.169 < Q = 0.500 |ψβ〉
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QQ YS effect will take place. An example of this is shown
in Table I.

Here we should point out that there is actually no
real paradox in Simpson’s paradox, including the classical
[8,13,27], QC, and QQ cases. In the classical and QC
situations, the YS effect arises from the redistribution of the
samples when the original two groups of samples are combined
with different weights. In the QQ situation, the redistribution
of samples is not the only reason that causes the paradox any
longer. In some special cases, the YS effect does not appear in
the QC case but occurs in the QQ case with the same weighting
of initial states, as shown in Fig 4. The quantum interference
plays a very important role here, which constitutes another
reason for the YS effect in the quantum mechanics frame and
makes the quantum YS effect strikingly differ from its classical
version.

In summary, Simpson’s paradox is a representative para-
doxical effect that is mostly observed in social science, medical
science, and game theory. In this work, we have presented an

experimental realization of this effect in a QD system prepared
in either a classical mixed state or a quantum superposition
state. Moreover, we also found that the QC and QQ YS effects
can occur independently. In addition, we observed that the QQ
YS effect is more likely to occur than the QC one. Finally, we
discussed two typical situations where only the QQ YS effect
occurs.
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