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Mode competition in a dual-mode quantum-dot semiconductor microlaser
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This paper describes the modeling of quantum-dot lasers with the aim of assessing the conditions for stable cw
dual-mode operation when the mode separation lies in the THz range. Several possible models suited for InAs
quantum dots in InP barriers are analytically evaluated, in particular quantum dots electrically coupled through a
direct exchange of excitation by the wetting layer or quantum dots optically coupled through the homogeneous
broadening of their optical gain. A stable dual-mode regime is shown possible in all cases when quantum dots are
used as active layer whereas a gain medium of quantum well or bulk type inevitably leads to bistable behavior.
The choice of a quantum-dot gain medium perfectly matched the production of dual-mode lasers devoted to THz
generation by photomixing.
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CW THz and millimeter wave generation using the beating
frequency of a dual-mode laser is a topic that has attracted
many efforts recently because there is currently a lack of
versatile and easy to use sources at these frequencies [1]. To
fill this gap, THz photomixing has many strengths, including
the use of photonic technologies as the manufacture of laser
diodes and complex optical systems or the ability to carry the
beat on optical fiber.

Regarding the optical beat source, several alternatives were
considered. The easiest way is to combine two independent
lasers that are stabilized in frequency and amplitude. This
solution is now commercial but it is expensive because of the
use of extended cavity lasers or high power DFB requiring
sophisticated control electronics [2]. In addition, the use of
two independent lasers implies that the drift and noise are
added in the beat noise which directly blames the linewidth of
the THz signal generated.

The use of a single laser operating in the dual-mode regime
seems the most simple and should allow an improvement of
compactness. Several techniques have been proposed. First
with the advent of manufacturing technologies, semiconductor
lasers can now include a complex structure with multiple
DFB sections operating independently [3]. The fact that the
two modes inject each other can lead to instabilities and may
seriously decrease the tuning range. Modal competition is thus
at the heart of the stable dual-mode operation of a single semi-
conductor laser. Since the seminal work of Lamb [4], it is well
known that even if the laser cavity allows two simultaneous
modes with similar quality factors and gains, the gain medium
nonlinearity sometimes forbids their simultaneous emission. A
stable dual-mode operation is only allowed when the coupling
factor between the modes is not strong enough. Otherwise the
laser operates in a bistable regime where one mode dominates.
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Although unwanted, this case unfortunately happens with gain
media such as bulk semiconductor or quantum wells (QWs).
The physical origin is the short conduction-band intraband
relaxation time that couples two adjacent modes sharing the
same carrier population. Following Agrawal [5] and taking an
intraband relaxation time below 100 fs which is consistent
with InGaAsP active layers [6] or InGaAs QW [7], it is
not possible to have a stable dual-mode operation if the two
modes are separated by less than 1.6 THz. This result was
also obtained from rate equations [8,9]. Such an estimation
moreover neglects the spatial hole burning which is also
involved in the coupling of longitudinal modes [10]. This
leaves no chance for a semiconductor laser emitting at 1.55 μm
and incorporating a bulk or QW gain medium to operate dual
mode with a beating of ≈1 THz.

Our dual-mode laser design involving a slow optical Bloch
mode in a vertical cavity structure is supposed to operate dual
mode [11]. It is thus mandatory to incorporate a gain medium
that will not preclude the laser to operate in the desired regime
because of a too strong coupling between modes. As shown by
the above analysis, this coupling is mainly due to the sharing
of the same carrier populations in the conduction band by the
two adjacent modes. The proposed solution to circumvent this
strong coupling is to use InAs quantum dots (QDs). In fact
dual-mode lasing has already been reported in InAs QD lasers
owing to the simultaneous emission of the fundamental and
excited QD states [12,13], or using a QD mode-locked laser
with a selectively filtered external cavity [14], and recently
owing to optical injection in a DFB [15]. It has however not
yet been reported for a cw monolithic dual-mode QD laser.
Our purpose is then to verify analytically that either optical or
electrical coupling between InAs dot populations will remain
at a sufficiently low level to maintain a possible cw dual-mode
operation.

A semiconductor laser with a bulk or QW gain medium is
generally described on the basis of population rate evolutions.
Ahmed and Yamada [16] gave a fairly complete version of
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it from which one has extracted the equations describing a
dual-mode laser,

dN

dt
= κ − N

τn

− A1NS1 − A2NS2, (1a)

dS1

dt
= − S1

τp1

+ A1NS1 (1 − ε1S1 − ϑ1S2) , (1b)

dS2

dt
= − S2

τp2

+ A2NS2 (1 − ε2S2 − ϑ2S1) , (1c)

where N is the carrier density beyond transparency, κ =
I/(eV) is the pumping parameter which depends directly on
the injection current I and volume of the active region V , τn is
the carrier recombination time, the Ai are the differential gains
and Si the corresponding photon densities, τpi

are the photon
lifetime within the cavity, and εi and ϑi the self-saturation and
cross-saturation coefficients of optical gains. Indices i refer of
course to the various modes allowed by the cold cavity here
reduced to 2. Considering a laser running well above threshold,
it is possible to neglect the nonradiative recombination of
carriers N/τn whose contribution can be seen as implicitly
counted by a slight modification of the κ values which reflects
the pumping threshold. In (1) the coupling terms between the
two modes appear explicitly with ϑi . As their physical origin
is similar to the self-saturation gain terms εi , these must also
be taken into account. The omission of the correction factor
(1 − εiSi − ϑiSj ) in the carrier equation however provides a
great simplification of the calculations at the cost of a very
weak approximation.

Among the stationary solutions of (1), only the one with
simultaneous nonzero optical intensities S1 and S2 corresponds
to a dual-mode laser, others accounting instead of bistable
operations. In the general case these solutions are quite
complicated but in the simplistic case where the two modes are
close to the gain maximum with a spacing small enough that
their parameters are very similar, then εi = ε, ϑi = ϑ , τpi

=
τp, and Ai = A yielding Sss

1 = Sss
2 = κ/(2u) and N ss = u/A,

with u = 1
2 (ε + ϑ)κ + 1

τp
.

The stability is further demonstrated by introducing pertur-
bations to the stationary values, N = N ss + n, Si = Sss

i + si ,
and keeping only the first order. One obtains a matrix system of
three coupled first-order differential equations. The dual-mode
stationary solution is then stable if the variations diminish
over time, which is true if and only if the real parts of the
eigenvalues of the corresponding matrix � are negative. Here
we have

� =

⎛
⎜⎝

−Aκ
u

−u −u
Aκ

2u2τp
− εκ

2 −ϑκ
2

Aκ
2u2τp

−ϑκ
2 − εκ

2

⎞
⎟⎠, (2)

whose characteristic polynomial is

P(λ) = −
(

λ − κ

2
(ϑ − ε)

)

×
[
λ2 + λ

(
Aκ

u
+ κ

2
(ϑ + ε)

)
+ Aκ

]
. (3)

The eigenvalues of � are the roots of P , that is, κ
2 (ϑ − ε) and

the two roots of the polynomial of degree two on the right

side. With our choice of parameters, all coefficients of this
polynomial are positive and then the two roots always exhibit
negative real parts. Consequently, the dual-mode stationary
solution proposed is stable if and only if ϑ < ε.

The self-saturation and cross-saturation coefficients can be
calculated using a quantum model of the gain medium and the
result shows typically ϑ ≈ 4ε/3 [5,16,17]. In such conditions,
natural dual-mode behavior is not expected from a semicon-
ductor laser, unless strong dispersive effects are included in
the cavity to remove the condition assumed here: εi = ε,
ϑi = ϑ , τpi

= τp, and Ai = A. This was recently confirmed
by numerical simulations of the dynamics of semiconductor
lasers made with typical parameters from GaAs or InGaAsP
technologies. Bistable or highly multimode behaviors with
a total power usually spread over a large number of modes is
always obtained, in perfect agreement with experiments [9,16].
This result was also confirmed with a Maxwellian modeling
of laser [18] which only shows possibilities of either a
single-mode behavior (actually bistable), or highly multimode.
Both our analysis and these works indicate that dual-mode
semiconductor lasers are of course totally unexpected!

A similar extensive stability analysis was proposed in [19]
to account for the degeneracy of the two polarization modes
of VCSELs. This question is mathematically analogous to our
problem invoking two longitudinal modes except that there
is no theoretical estimations of the coupling factor in that
case. A fairly comprehensive system behavior was reported,
including the polarization switching of a VCSEL based on the
gain saturation in a manner consistent with what is observed
experimentally.

QD lasers are significantly different. Once created QDs
have little interaction with each other and substantially the
same ability to capture a free carrier from the barrier. Moreover
the total number of active QDs in resonance with a given mode
is determined by the construction, and even if this number is
high, it remains much smaller than the possible number of
states allowed in the conduction band of a bulk or QW gain
medium.

Excited QDs are weakly interconnected. At first glance,
they cannot directly exchange carriers either within the QD
population of the same mode, or between QD populations
addressing different modes. Such an exchange of carriers
between two QDs must involve first thermionic emission to the
barrier and the capture by another QD. This indirect process
considerably weakened the coupling as compared to bulk or
QW lasers. Given the values of the energy levels at stake in
a system with InAs QDs in the InP barrier, we neglect this
coupling here.

According to the QDs manufacturing method, a
monoatomic InAs wetting layer appearing at the growth
interface is often common to all dots. Owing to this layer,
the QDs are likely to have a kind of direct electrical coupling
that can transfer the excitation of a dot family to another
family addressing another mode. The coupling effectiveness
obviously depends on the average distance between dots, and
on the nature and thickness of this wetting layer which is
intimately dependent of the growth technology.

The homogeneous optical linewidth of a single QD is
estimated between 3 and 12 meV at room temperature [20–24].
A direct optical coupling thus necessarily occurs between
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two QD populations addressing optical modes separated
energetically by ≈4.2 meV to obtain a beating at ≈1 THz.

Starting from multimode rate equations for semiconductor
lasers [9] and QD lasers [25] we have used the following set
of rate equations to encompass all these specific properties of
an above-threshold QD dual-mode laser,

dN1

dt
= α1κ + k1N2P1 − k2N1P2 − N1

τn1

−A1(N1 − P1)(S1 + εS2), (4a)
dN2

dt
= α2κ + k2N1P2 − k1N2P1 − N2

τn2

−A2(N2 − P2)(S2 + εS1), (4b)
dS1

dt
= − S1

τp1

+ (A1(N1 − P1) + εA2(N2 − P2))S1, (4c)

dS2

dt
= − S2

τp2

+ (A2(N2 − P2) + εA1(N1 − P1))S2, (4d)

with Bi = Ni + Pi the total number of QD addressing mode
i = 1,2, Ni the number of excited dots, and Pi the number of
unexcited dots; κ is the total pumping and 0 � αi � 1 with
α1 + α2 = 1 two parameters that reflect the distribution of the
pump between the two QD families. Ai , τni , and τpi

account for
the modal gains, the carrier lifetime in the excited state and the
photon lifetime within the cavity for each of the two modes.
ki are constants reflecting the exchange rate of the excited
states between the two QD families via the InAs wetting layer
and ε = 1/(1 + 	2) accounts for the direct optical coupling
between dots families via 	 the ratio between the mode energy
separation to half the QD homogeneous broadening energy.

a. Uncoupled quantum dots. An ideal dual-mode QD laser
with two uncoupled dot families perfectly centered on the two
optical modes is obtained when ki = ε = 0. Corresponding
stationary populations are straightforwardly obtained:

N ss
i = Bi

2
+ 1

2Aiτpi

, (5a)

Sss
i = αiκτpi

− 1

2

(
Biτpi

τni

+ 1

Aiτni

)
, (5b)

giving an estimate of threshold pumping κthi = 1
2αiτni

(Bi +
1

Aiτpi

) when Sss
i = 0. This is in fact the behavior of two

completely independent lasers with quantum efficiencies and
thresholds evidencing no modal competition. It is easy to verify
when inserting (5) in (4) that this solution is always stable and
that it can be generalized to any number of n juxtaposed modes.

b. Quantum dots electrically coupled through the wetting
layer. Let us now imagine that the two QD populations can
interact with each other directly. Presumably an excited dot of
the first family can transfer its excitation to an unexcited dot
of the second family, the difference in photon energy being
supplied or absorbed by the states involved in the wetting
layer. This is accounted for by nonzero ki constants in (4) that
avoids to introduce a new carrier equation accounting for the
population shared via the wetting layer. At the limit where
ki → ∞, the rate of population exchanges is governed by the
laws of mass action and a chemical-like equilibrium law is
obtained:

N1 + P2 ↔ N2 + P1. (6)

In between infinitely coupled QDs and uncoupled QDs the
dual-mode stationary solution for carriers and photons can
be calculated. If the former is again given by (5a), the latter
is much more complicated in general. Two special cases are
however interesting:

(a) when the coupling induced by the wetting layer are
identical ki = k.

Sss
i = αiκτpi

− 1

2

(
Biτpi

τni

+ 1

Aiτni

+ kτpi

[
Bj

Aiτpi

− Bi

Ajτpj

])
, (7)

(b) when the material and cavity parameters are identical
for the two modes, i.e., Ai = A, Bi = B, τpi

= τp, τni = τn.

Sss
i = αiκτp − 1

2

(
Bτp

τn

+ 1

Aτn

+ (ki − kj )τp

[
1

2A2τ 2
p

− B2

2

])
, (8)

where (i,j ) = (1,2) or (2,1). If (a) and (b) occur simultane-
ously, the situation is similar to that of uncoupled QDs because
the ki terms cancel out. Except this particular case, the coupling
by the wetting layer induces a differentiation between the
thresholds of the two laser modes obtained here by setting
Si = 0 in (7) and (8). The mode that had the lowest threshold
before coupling feeds its population of excited QDs by direct
transfer from the one who had the highest threshold, the result
is an amplification of the threshold difference. In the extreme
case where the constants ki are large, one population of excited
QDs will reach first its stimulated emission threshold and
will therefore clamp. In turn, the other population of excited
QDs saturates and the second mode will never reach its own
threshold. Strong coupling between QD populations thus leads
to the destruction of the two-mode regime.

When the coupling is moderate, the dual-mode laser regime
is preserved and the stability analysis is conducted. Reporting
the stationary values plus a fluctuation in (4) yields the
evolution matrix of these fluctuations:

� =

⎛
⎜⎜⎜⎝

−σ1 ζ2 −δ1 0

ζ1 −σ2 0 −δ2

β1 0 0 0

0 β2 0 0

⎞
⎟⎟⎟⎠, (9)

with

β1 = 2A1S
ss
1 β2 = 2A2S

ss
2 ,

ζ1 = k1N
ss
2 + k2P

ss
2 ζ2 = k2N

ss
1 + k1P

ss
1 ,

δ1 = A1
(
N ss

1 − P ss
1

)
δ2 = A2

(
N ss

2 − P ss
2

)
,

σ1 = β1 + ζ1 + 1/τn1 σ2 = β2 + ζ2 + 1/τn2,

which are all positive terms since the population inversion
above the threshold requires N ss

i > P ss
i .

Fluctuations may return to equilibrium if and only if the
eigenvalues λ of � have negative real part. These eigenvalues
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are the roots of the characteristic polynomial,

P(λ) = λ4 + (σ1 + σ2)λ3 + (π1 + π2 + σ1σ2 − ζ1ζ2)λ2

+ (π1σ2 + π2σ1)λ + π1π2, (10)

with πi = βiδi .
According to the Routh-Hurwitz criterion, all roots of the

fourth-order polynomial P(λ) = ∑4
i=0 ai λ

i have their real
part negative if and only if ai > 0 ∀i and r = a2a3 − a1a4 −
a2

3a0/a1 > 0. The first condition is ensured because σi > ζi

and the second yields r as

r = (σ1 + σ2)(σ1σ2 − ζ1ζ2) + σ1σ2
(π1 − π2)2

π1σ2 + π2σ1
. (11)

Noting that σi > ζi this difference is always positive. It proves
that the coupling of carriers by a chemical-like equilibrium
law between the two QD populations does not prohibit a stable
dual-mode behavior in the sense of modal competition, even
if it is likely to push the threshold up to an unacceptable value
for one of the lasing mode if too strong.

c. Quantum dots optically coupled through the homoge-
neous linewidth. We now consider the two QD families coupled
only through the homogeneous gain width of each dot. The ε

value is calculated from the homogeneous gain width and thus
ranges from ≈ 10% to 60% for a 1 THz frequency separation,
depending on whether one considers a broadening of 3 meV
or 10 meV.

In the general case the expression of stationary solutions is
complex, but in the particular case of two populations having
the same QD parameters τni = τn, τpi

= τp, Ai = A, Bi = B,
and identical pumps αi = 1/2, they are

N ss
i = B

2
+ 1

2A(1 + ε)τp

, (12a)

Sss
i = κτp

2
− Bτp

2τn

− 1

2A(1 + ε)τn

. (12b)

Like previously, the stability analysis of the dual-mode
regime has been conducted in the general case. Again this
stability is governed by the sign of the real parts of the
eigenvalues of the evolution matrix,

� =

⎛
⎜⎜⎜⎝

−σ1 0 −δ1 −εδ1

0 −σ2 −εδ2 −δ2

β1 ξ2 0 0

ξ1 β2 0 0

⎞
⎟⎟⎟⎠. (13)

All the terms of this matrix were chosen positive,

β1 = 2A1S
ss
1 β2 = 2A2S

ss
2 ,

ξ1 = 2εA1S
ss
2 ξ2 = 2εA2S

ss
1 ,

δ1 = A1
(
N ss

1 − P ss
1

)
δ2 = A2

(
N ss

2 − P ss
2

)
,

σ1 = β1 + ξ1 + 1/τn1 σ2 = β2 + ξ2 + 1/τn2,

and the eigenvalues are the roots of the following charac-
teristic polynomial [assuming πi = δi(εξi + βi) for further

simplification],

P(λ) = λ4 + (σ1 + σ2)λ3 + (σ1σ2 + π1 + π2)λ2

+ (π1σ2 + π2σ1)λ + (1 − ε2)δ1δ2(β1β2 − ξ1ξ2). (14)

As ξ1ξ2 = ε2β1β2, the constant term can be written more
simply as c = (1 − ε2)2δ1δ2β1β2, and all the coefficients of
P(λ) are then positive since 0 < ε < 1. According to the
Routh-Hurwitz criterion, P(λ) roots exhibit negative real parts
if and only if r > 0,

r = (σ1 + σ2)σ1σ2 + (π1σ1 + π2σ2) − (σ1 + σ2)2c

π1σ2 + π2σ1
. (15)

Notice that r is an increasing function of ε on [0,1] as a sum
of functions of such type. The required proof is thus obtained
by just checking if the value at ε = 0 is positive. At ε = 0,
c = π1π2 thus allows one to write as in (11)

(π1σ1 + π2σ2) − (σ1 + σ2)2c

π1σ2 + π2σ1
= σ1σ2

(π1 − π2)2

π1σ2 + π2σ1
.

This proves that r > 0 and concludes again to the stability of
the dual-mode regime in that case. It compares favorably with
experiments involving edge-emitting QD lasers which have
shown narrower spectra at ambient temperature than at liquid
nitrogen temperature but always multimode [25].

If ε → 1 we have c → 0 and one eigenvalue becomes null
while the real part of all others remains strictly negative: The
two-mode regime is thus marginally stable. This is a limit case
that is far from the scenario we have chosen for THz radiation
by photomixing with an energy gap of 4.1 meV between
modes and QD homogeneous linewidths between 3 and
10 meV.

We studied different semiconductor laser types devoted
to operate continuously in stable dual-mode emission. The
proposed analysis is based on the rate equations and Lamb’s
theory. After considering the case of laser with bulk or
QW gain mediums for which it is demonstrated that the
natural behavior is bistable and not dual mode, we evaluated
analytically what should be expected from QD semiconductor
lasers. We have considered uncoupled as well as coupled
QDs either electrically through a direct exchange of excitation
by the wetting layer, or optically through the homogeneous
broadening of the gain. In all cases we have shown analytically
that a stable dual-mode emission is possible. If the objective of
building a dual-mode semiconductor laser producing a stable
beating frequency in the THz range is highlighted, the selection
of a QD as gain medium is the most suitable as compared
to bulk or QWs that inevitably lead to a bistable behavior.
The incorporation of QDs in the active membranes of future
photonic crystal optoelectronic components for the 2.5D THz
radiation by photomixing is on the way [11].

This work was supported by the French Agence Nationale
de la Recherche under Contract No. ANR-08-NANO-052
BASTET.
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