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Entanglement detection via quantum Fisher information
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We propose an entanglement criterion in terms of quantum Fisher information, which complements the criterion
based on variance and local uncertainty relations [H. F. Hofmann and S. Takeuchi, Phys. Rev. A 68, 032103
(2003)]. We illustrate the significance of this criterion by showing that it can reveal entanglement undetectable by
the variance method. The dual relation between the criterion based on quantum Fisher information and that based
on variance are highlighted. The combination of these two criteria leads to a refined method for entanglement
detection, which is stronger than when either one is used alone.
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I. INTRODUCTION

A fundamental issue in quantum information theory is the
characterization or detection of entanglement [1–3]. Although
for pure states, this issue is well understood, the situation is
extremely complicated for mixed states. Even though much
progress has been made in the last two decades, we still do not
have an efficient method to tell whether a given quantum state
is entangled or not.

There are a variety of special approaches to entanglement
detection, among them the Peres-Horodecki positive partial
transpose (PPT) criterion [4], the reduction criterion [5], the
majorization criterion [6], and the computable cross norm (or
realignment) criterion [7], etc., are measurement (observable)
independent; and various methods based on Bell-type inequal-
ities [8], entanglement witnesses [9], Bloch representations
of density operators [10], local orthogonal observables [11],
and local uncertainty relations [12–15], etc., are measurement
(observable) dependent. The latter category of criteria are often
expressed in terms of inequalities satisfied by separable states,
which implies that any state violating these inequalities must
be entangled. The effectiveness of these criteria relies heavily
on certain notions of information content of quantum states
and choice of observables.

In this work, by use of quantum Fisher information
[16–23], which is a significant quantity with deep information
content and an intrinsic link with variance, we propose an
alternative entanglement criterion complementing the criterion
based on variance. The basic idea is to exploit the different
manifestations, for separable states and entangled states, of
the relation between local and global information content of
composite states. We illustrate the power of the criterion via
several examples.

The work is arranged as follows. In Sec. II, we review some
basic properties of quantum Fisher information, and highlight
its dual relation with variance. In Sec. III, we derive an
entanglement criterion based on quantum Fisher information,
demonstrate its power in detecting entanglement, and compare
it with the method based on variance. Finally, we conclude with
a summary and discussion in Sec. IV.
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II. QUANTUM FISHER INFORMATION

Give a quantum state ρ (density operator) and an observable
A on a system Hilbert space H , the variance

V (ρ,A) = trρA2 − (trρA)2

is usually interpreted as the uncertainty of A in the state ρ.
Taking an alternative viewpoint, and for the expedition of
comparison with quantum Fisher information, we may also
regard the variance as a quantity of certain “information
content” of ρ with respect to the observable A, although it
seems not to be a very “information-theoretic” quantity [21]. In
this context, a more information-oriented quantity is quantum
Fisher information defined as [16–18]

F (ρ,A) = 1
4 trρL2,

where L is the symmetric logarithmic derivative
determined by

i[ρ,A] = 1
2 (Lρ + ρL),

and the square bracket denotes commutator between operators.
Quantum Fisher information reduces to variance for pure

states, namely, F (ρ,A) = V (ρ,A) for any pure state ρ. In
general, if ρ is mixed, then

0 � F (ρ,A) � V (ρ,A).

Furthermore, variance and quantum Fisher information are
dual to each other in the sense that

V (|φj 〉〈φj |,A) = F (|φj 〉〈φj |,A),

and [24,25],

V (ρ,A) = max
∑

j

pjV (|φj 〉〈φj |,A),

F (ρ,A) = min
∑

j

pjF (|φj 〉〈φj |,A),

where the max and min are over all pure state ensemble
decompositions {pj ,|φj 〉} of ρ, that is, ρ = ∑

j pj |φj 〉〈φj |,
with pj � 0,

∑
j pj = 1, and |φj 〉 pure states.

Quantum Fisher information plays an extremely important
role in quantum detection and quantum estimation [16,17],
in particular in quantum metrology [26], since it places a
fundamental limit to the accuracy of quantum estimation. It
has the following remarkable information-theoretic properties
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[19–25], which are crucial ingredients of our approach to
entanglement detection.

(1) Additivity:

F (ρa ⊗ ρb,A ⊗ 1b + 1a ⊗ B) = F (ρa,A) + F (ρb,B),

where ρa and ρb are quantum states, A and B are observables,
and 1a and 1b stand for the identity operators, for the
subsystems a and b, respectively. The above equation means
that the information content of a composite system comprising
two uncorrelated subsystems is the sum of the information
content of the subsystems.

(2) Convexity:

F

⎛
⎝∑

j

λjρj ,A

⎞
⎠ �

∑
j

λjF (ρj ,A),

where
∑

j λj = 1,λj � 0 and ρj are quantum states. The
above inequality means that if several different quantum
systems are mixed, the information content of the resulting
system is not larger than the average information content of
the component systems. Intuitively, by mixing, one erases the
identity information of the component systems.

If we know the spectral decomposition

ρ =
∑

k

λk|k〉〈k|,

with {|k〉} an orthonormal base for the system Hilbert space H

(we append some zero λk if necessary), then quantum Fisher
information can be evaluated as [18,20]

F (ρ,A) =
∑
k,l

(λk − λl)2

2(λk + λl)
|〈k|A|l〉|2.

Moreover, if {Aμ} is a complete set of orthonormal observables
(with respect to the Hilbert-Schmidt inner product of opera-
tors), that is, trAμAν = δμν and {Aμ} constitutes a base for the
real Hilbert space of all observables (Hermitian operators) on
H , then ∑

μ

F (ρ,Aμ) = m −
∑
k,l

2λkλl

λk + λl

(1)

is independent of the choice of the orthonormal observable
base {Aμ}. Here m = dimH . In particular, we have∑

μ

F (ρ,Aμ) � m − 1. (2)

To establish the above relations, we first show that if {A′
r}

is another orthonormal observable base, then∑
μ

F (ρ,Aμ) =
∑

r

F (ρ,A′
r ).

Noting that both {Aμ} and {A′
r} are orthonormal observable

bases, we may write

A′
r =

m2∑
μ=1

arμAμ, r = 1,2, . . . ,m2,

with {arμ} a real orthogonal matrix, that is,

m2∑
r=1

arμarν = δμν, μ,ν = 1,2, . . . ,m2.

Consequently,∑
r

F (ρ,A′
r )

=
∑

r

∑
k,l

(λk − λl)2

2(λk + λl)

∣∣∣∣∣∣〈k|
m2∑

μ=1

arμAμ|l〉
∣∣∣∣∣∣
2

=
∑

r

∑
k,l

(λk − λl)2

2(λk + λl)
〈k|

m2∑
μ=1

arμAμ|l〉〈l|
m2∑
ν=1

arνAν |k〉

=
∑

r

⎛
⎝ m2∑

μ,ν=1

arμarν

⎞
⎠ ∑

k,l

(λk − λl)2

2(λk + λl)
〈k|Aμ|l〉〈l|Aν |k〉

=
m2∑

μ,ν=1

(∑
r

arμarν

)∑
k,l

(λk − λl)2

2(λk + λl)
〈k|Aμ|l〉〈l|Aν |k〉

=
∑

μ

∑
k,l

(λk − λl)2

2(λk + λl)
|〈k|Aμ|l〉|2

=
∑

μ

F (ρ,Aμ).

Consequently,
∑

μ F (ρ,Aμ) is independent of the choice of
the orthonormal observable base {Aμ}, which means that we
can evaluate it in terms of any orthonormal observable base.
In particular, we may take

{Aμ} = {Ek,E
+
k,l ,E

−
k,l} (3)

with

Ek = |k〉〈k|, k = 1,2, . . . ,m,

E+
k,l = 1√

2
(|k〉〈l| + |l〉〈k|), k < l, k,l = 1,2, . . . ,m,

E−
k,l = i√

2
(|k〉〈l| − |l〉〈k|), k < l, k,l = 1,2, . . . ,m,

then by straightforward calculations, we have

F (ρ,Ek) = 0, F (ρ,E+
k,l) = (λk − λl)2

2(λk + λl)
,

F (ρ,E−
k,l) = (λk − λl)2

2(λk + λl)
,

from which Eq. (1) follows.
Inequality (2) follows readily from Eq. (1) and∑

k,l

2λkλl

λk + λl

= 1 +
∑
k �=l

2λkλl

λk + λl

� 1.

III. ENTANGLEMENT CRITERION

With the above preparation, we now consider entanglement
detection via quantum Fisher information. For a bipartite
quantum system Ha ⊗ Hb, let {Aμ} and {Bμ} be any local
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observables (not necessarily orthonormal at present) for Ha

and Hb, respectively. The Hofmann-Takeuchi entanglement
criterion based on local uncertainty relations states that if [12]∑

μ

V (ρa,Aμ) � V a,
∑

μ

V (ρb,Bμ) � V b (4)

for any local quantum states ρa and ρb pertaining to subsys-
tems a and b, respectively, then for any separable state ρab on
Ha ⊗ Hb, it holds that∑

μ

V (ρab,Aμ ⊗ 1b + 1a ⊗ Bμ) � V a + V b. (5)

Therefore, if a quantum state violates the above inequality,
then it must be entangled.

This criterion has the intuitive interpretation that a global
state, if separable, will inherit the uncertainty relations of
the local subsystems. The power of this criterion lies in the
flexibility to choose observables Aμ and Bμ. As demonstrated
by Gühne et al. [13], this criterion is strictly stronger than the
computable cross norm criterion (realignment criterion).

Now, since quantum Fisher information is a more
information-theoretic quantity than variance, one is naturally
led to replace variance by quantum Fisher information to de-
vise some entanglement criteria [24]. The precise formulation
is as follows. As opposed to inequality (4), if∑

μ

F (ρa,Aμ) � Fa,
∑

μ

F (ρb,Bμ) � Fb (6)

for any local quantum states ρa and ρb pertaining to subsys-
tems a and b, respectively, then for any separable state ρab on
Ha ⊗ Hb, it holds, in contrast to inequality (5), that∑

μ

F (ρab,Aμ ⊗ 1b + 1a ⊗ Bμ) � Fa + Fb, (7)

from which we obtain an entanglement criterion based on
quantum Fisher information: Whenever ρab violates inequality
(7), it must be entangled.

To establish the above criterion, note that any separable
state can be expressed as

ρab =
∑

j

λjρ
a
j ⊗ ρb

j ,

where
∑

j λj = 1,λj � 0, ρa and ρb are local quantum states
for subsystems a and b, respectively. Now by the additivity
and convexity of quantum Fisher information, we have∑

μ

F (ρab,Aμ ⊗ 1b + 1a ⊗ Bμ)

�
∑

μ

∑
j

λjF
(
ρa

j ⊗ ρb
j ,Aμ ⊗ 1b + 1a ⊗ Bμ

)

=
∑

j

λj

∑
μ

[
F

(
ρa

j ,Aμ

) + F
(
ρb

j ,Bμ

)]

�
∑

j

λj (Fa + Fb)

� Fa + Fb.

The above entanglement criterion via inequality (7) has a clear
and intuitive informational interpretation: The information

content of a separable state of the global system, as quantified
by quantum Fisher information, is bounded above by the sum
of local information content.

In the case Ha = Hb with dimension m, if we take {Aμ}
and {Bμ} as complete sets of orthonormal observables for
subsystems a and b, respectively, then by inequality (2), we
have∑

μ

F (ρa,Aμ) � m − 1,
∑

μ

F (ρb,Bμ) � m − 1,

for any states ρa and ρb of subsystems a and b, respectively.
Therefore, by inequality (7), we have∑

μ

F (ρab,Aμ ⊗ 1b + 1a ⊗ Bμ) � 2m − 2, (8)

for any separable state ρab. Consequently, any state violating
the above inequality has to be entangled.

In contrast, for the conventional variance, we have [21]∑
μ

V (ρa,Aμ) = m − tr(ρa)2 � m − 1,

∑
μ

V (ρb,Bμ) = m − tr(ρb)2 � m − 1,

from which we obtain, via inequality (5),∑
μ

V (ρab,Aμ ⊗ 1b + 1a ⊗ Bμ) � 2m − 2 (9)

for any separable state ρab. Consequently, any state violating
this inequality has to be entangled.

Due to the extremal properties of variance and quantum
Fisher information, as recently conjectured by Toth and Petz
[24], and established by Yu [25], it is amusing to compare
criteria (8) and (9): When variance is replaced by quantum
Fisher information, the inequality is reversed. Thus they are
formally dual to each other and may be combined together to
yield a stronger criterion than when either one is used alone.
More precisely, for any bipartite m × m dimensional state ρab,
and any local orthonormal observable bases {Aμ} and {Bμ},
we evaluate

F =
∑

μ

F (ρab,Aμ ⊗ 1b + 1a ⊗ Bμ),

V =
∑

μ

V (ρab,Aμ ⊗ 1b + 1a ⊗ Bμ),

and partition the interval [0,∞) into three disjoint subintervals
as (note that F � V , and without loss of generality, we assume
that F does not vanish)

[0,∞) = [0,F ) ∪ [F,V ] ∪ (V,∞),

then we have the following mutually exclusive scenarios,
among which one and only one occurs:

(i) If 2m − 2 ∈ [0,F ), then entanglement is detected by the
criterion based on quantum Fisher information.

(ii) If 2m − 2 ∈ [F,V ], the detection is inconclusive in the
sense that we cannot tell whether the state is entangled or not.

(iii) If 2m − 2 ∈ (V,∞], then entanglement is detected by
the criterion based on variance.

In particular, when ρab = |�〉〈�| is an m × m dimensional
pure state, by noting that for any pure state, quantum Fisher
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information coincides with variance, we conclude from
inequalities (8) and (9) that∑

μ

V (ρab,Aμ ⊗ 1b + 1a ⊗ Bμ) = 2m − 2, (10)

∑
μ

F (ρab,Aμ ⊗ 1b + 1a ⊗ Bμ) = 2m − 2. (11)

Thus any pure state violating the above equalities must be
entangled. Consequently, any pure state entanglement can al-
ways be determined by the combination of the criteria based on
variance and quantum Fisher information, although it may not
be detected by either criterion, i.e., inequality (8) or (9), alone!

To gain a feeling of how criteria (8) and (9) work, let us
illustrate them by some examples. The first example, despite
its simplicity and triviality, highlights the merit of combining
the criteria based on variance and quantum Fisher information,
which has its origin of concavity of variance and convexity of
quantum Fisher information.

Example 1. Let Ha = Hb with dimension m = 2. For a two-
qubit pure state ρab = |�〉〈�| with |�〉 = 1√

2
(|00〉 + |11〉)

(Bell state), take the local orthonormal observables as

{Aμ} = {Bμ} =
{

1√
2
,
σ1√

2
,
σ2√

2
,
σ3√

2

}
,

where σj are the Pauli matrices, then we have∑
μ

F (ρab,Aμ ⊗ 1b + 1a ⊗ Bμ)

=
∑

μ

V (ρab,Aμ ⊗ 1b + 1a ⊗ Bμ) = 4 > 2m − 2 = 2.

Consequently, the entanglement in ρab can be detected by
quantum Fisher information and variance since Eqs. (10) and
(11) are not satisfied. Similarly, if |�〉 = 1√

2
(|01〉 − |10〉) (Bell

state), then∑
μ

F (ρab,Aμ ⊗ 1b + 1a ⊗ Bμ)

=
∑

μ

V (ρab,Aμ ⊗ 1b + 1a ⊗ Bμ) = 0 < 2m − 2 = 2.

In this case, the entanglement in ρab can also be detected by
quantum Fisher information and variance.

The following example shows that the entanglement cri-
terion based on quantum Fisher information may be more
powerful than that based on variance in some nontrivial cases.

Example 2. Let Ha = Hb with dimension m = 3, and
{|0〉,|1〉,|2〉} be an orthonormal base of Ha (and also of Hb).
Consider the 3 × 3 dimensional state

ρab
p = (1 − p) 1

9 + p|	〉〈	| (12)

on Ha ⊗ Hb with 1 the identity operator on Ha ⊗ Hb, and

|	〉 = 1√
3

(|00〉 + |11〉 + |22〉).

Let {Aμ} be the local orthonormal observable base for
subsystem a defined by Eq. (3), more explicitly,

A1 = |0〉〈0|, A2 = |1〉〈1|, A3 = |2〉〈2|,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

p

V
ar

ia
nc

e 
an

d 
qu

an
tu

m
 F

is
he

r i
nf

or
m

at
io

n

F
p

V
p

2m−2

FIG. 1. (Color online) Variance Vp = ∑
μ V (ρab

p ,Aμ ⊗ 1b +
1a ⊗ Bμ) and quantum Fisher information Fp = ∑

μ F (ρab
p ,Aμ ⊗

1b + 1a ⊗ Bμ) versus the parameter p in the state ρab
p , as defined

by Eq. (12). We see clearly that in this case, the entanglement
criterion based on variance is inconclusive in detecting entanglement
of ρab

p since inequality (9) is not violated for any p; while by the
entanglement criterion based on quantum Fisher information, we
conclude that ρab

p is entangled whenever p > 2/3 since inequality
(8) is violated for such a p.

A4 = 1√
2

(|0〉〈1| + |1〉〈0|), A5 = 1√
2

(|0〉〈2| + |2〉〈0|),

A6 = 1√
2

(|1〉〈2| + |2〉〈1|), A7 = i√
2

(|0〉〈1| − |1〉〈0|),

A8 = i√
2

(|0〉〈2| − |2〉〈0|), A9 = i√
2

(|1〉〈2| − |2〉〈1|),

and let {Bμ} be similarly defined for subsystem b. When p =
0.7, we obtain∑

μ

F
(
ρab

p ,Aμ ⊗ 1b + 1a ⊗ Bμ

) = 4.2609 > 2m − 2 = 4,

∑
μ

V
(
ρab

p ,Aμ ⊗ 1b + 1a ⊗ Bμ

) = 6.2667 > 2m − 2 = 4.

Thus the entanglement in this mixed state ρab
p for p = 0.7

can be detected by the criterion based on quantum Fisher
information, inequality (8), but cannot be detected by the
criterion based on variance, inequality (9). Put it alternatively,
by inequality (8), we conclude that the state is entangled; while
by inequality (9), we cannot tell if the state is entangled or not.

More generally, we depict the graph of variance and
quantum Fisher information versus the parameter p in Fig. 1.
We see that when p ∈ (2/3,1], the state ρab

p violates inequality
(8), and thus ρab

p with such a p is entangled. On the other hand,
we observe that the state ρab

p always satisfies inequality (9) for
p ∈ [0,1], and thus the criterion based on variance cannot
detect the entanglement.

It should be noted that, apart from quantum Fisher in-
formation, there are many (actually an infinite number of)
other versions of quantum Fisher information arising from
monotonic metrics which generalize the classical (unique)
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Fisher information [19–22]. For example, the Wigner-Yanase
skew information [27]

I (ρ,A) = − 1
2 tr[

√
ρ,A]2

is another remarkable information quantity generalizing the
classical Fisher information [20]. This quantity has similar
properties as that of quantum Fisher information such as
additivity and convexity [27,28]. Moreover, we have [20]

0 � I (ρ,A) � F (ρ,A) � V (ρ,A). (13)

Proceeding analogously as the above derivation of criterion
(8), one may employ the skew information to devise the
following entanglement criterion [29,30]:∑

μ

I (ρab,Aμ ⊗ 1b + 1a ⊗ Bμ) � 2m − 2.

However, this criterion is strictly weaker than that based on
quantum Fisher information due to inequality (13) and the
extremal property of F recently discovered in Refs. [24,25].
In particular, following example 2, we have for p = 0.7,∑

μ

I
(
ρab

p ,Aμ ⊗ 1b + 1a ⊗ Bμ

) = 3.0265 < 2m − 2 = 4,

and thus the criterion based on the skew information fails to
detect the entanglement, which in contrast can be detected by
quantum Fisher information.

IV. DISCUSSION

In summary, we have obtained an entanglement criterion
based on quantum Fisher information and have made a
comparison with that based on variance. This criterion can
be used to detect entanglement that cannot be detected by
variance in certain cases. The two criteria are dual to each
other, and when combined together, gain more advantage in
detecting entanglement.

We have only considered the scalar case. In general,
quantum Fisher matrices are more informative than the
scalar quantum Fisher information, which is usually expressed
as the trace of the information matrices [31]. Therefore,
it is desirable to construct an entanglement criterion by
use of quantum Fisher information matrices, and make a
comparative study with other detection methods, such as the
covariance matrix criterion [32] and PPT. This will be pursued
elsewhere.
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