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Revisiting Bohr’s principle of complementarity with a quantum device
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Bohr’s principle of complementarity (BPC) is the cornerstone of quantum mechanics. According to this
principle, the total wavelike and particlelike information of a particle is limited by the Englert-Greenberger (EG)
duality relation. Here, by introducing a quantum detecting device into the experiment, we find that the limit of
the EG duality relation is exceeded because of the interference between the wave and particle properties of the
photon. A generalized EG duality relation is further developed. Our work provides a generalization of BPC and
gives new insights into quantum mechanics.
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Introduction. Bohr’s principle of complementarity (BPC)
has been the cornerstone of quantum theory since it was
proposed in 1928 [1,2]. This principle states that some physical
objects have multiple properties, but the exhibition of these
properties depends on what type of exclusive detecting devices
are used. One well-known example is the wave-particle duality
considered for a single particle in a two-way interferometer
[3]. One can choose to observe the wavelike or particle-
like behaviors of the particle through different detection
arrangements. Interference fringes have been observed for
massive particles, such as neutrons [4], electrons [5], atoms
[6,7], and molecules [8]; these species were all previously
thought to only be particlelike. These observations show the
unfamiliar wavelike side of these particles. In the case of light,
both the antibunching effect and interference fringes, which
are associated with the particlelike and wavelike properties,
respectively, have been previously demonstrated [9–11].

In addition to these all-or-nothing situations, some interme-
diate stages actually exist [12–16], in which the which-path in-
formation corresponding to the particlelike property is partially
detected. This detection then results in a reduced interference
visibility. This issue was first discussed by Wootters and
Zurek in 1979 [12]. Later, Greenberger and Yasin found
this phenomenon in an analysis of some unbalanced neutron
interferometry experiments [17]. Consistent conclusions were
then derived by Jaeger et al. in 1995 [18] and Englert in
1996 [19] independently. They derived the inequality

V 2 + D2 � 1, (1)

where V is the visibility of the interference fringes and D is
the path distinguishability of the particle, which stands for the
available which-path information of the system. This inequal-
ity is also known as the Englert-Greenberger (EG) duality
relation. Many experiments have demonstrated this inequality
with atoms [20], nuclear magnetic resonance [21,22], a faint
laser [23], and single photons in a delayed-choice scheme [24].
Recently, this duality relation has been extended to the more
general case of an asymmetric interferometer in which only
a single output port is considered, and this inequality still
holds [25].

One of the most efficient quantum systems for tests of the
BPC is a single photon in a Mach-Zehnder interferometer
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(MZI) [24]. For example, if the second beam splitter (BS)
in the MZI is replaced by a series of unbalanced BSs, the
visibility and path distinguishability will always satisfy the
EG duality relation. Here, we notice that all beam splitters of
this type are classical devices. What will happen when this
BS is replaced by a quantum BS (q-BS) [26,27]? The q-BS
was proposed by Ionicioiu et al. and was implemented in our
previous work [28]. In the language of q-BS, the unbalanced
BSs used in the previous experiment can be described by a set
of eigenstates. The same results will be found if the q-BS is
selected to collapse onto these eigenstates.

In our experiment, the q-BS is in a quantum superposition
state of two eigenstates, which are denoted as |a〉 (R = 0) and
|p〉 (R = 0.5) and correspond to the absence and presence of a
balanced BS, respectively. We place this q-BS in the MZI, and
not only the eigenstates but also the quantum superposition
states of the q-BS are selected as the bases for collapse during
detection. We find that the EG duality relation is exceeded if a
certain detection basis for the q-BS is chosen. We also develop
a method to generalize the EG relation in this Brief Report.

Theoretical framework. The experimental setup is sketched
in Fig. 1(a). The single photons are split by a 50 : 50 BS
into two paths, followed by a phase shift of ϕ, and are then
recombined with a q-BS. The use of the q-BS is the primary
difference between this setup and a regular MZI.

As discussed in Ref. [25], we need to derive the photon
state after the q-BS and know the probabilities of each path
taken by the photon, in order to calculate the visibility. The
state of the q-BS is |q-BS〉 = 1√

2
(|a〉 + |p〉); hence, we derive

the photon state (before the q-BS state is detected) as

|ψ〉 = 1√
2
|particle〉|a〉 + 1√

2
|wave〉|p〉 (2)

according to Ref. [26], where |particle〉 = 1√
2
(|1〉 +

eiϕ |2〉) corresponds to the particle state, and |wave〉 =
ei

ϕ

2 (cos ϕ

2 |1〉eiδ1 − i sin ϕ

2 |2〉eiδ2 ) corresponds to the wave state.
δ1 and δ2 are two additional constant phases, which can be
adjusted in the experiment. In this experiment, δ1 and δ2 are
both set to be 0. The q-BS state is then collapsed onto an
arbitrary basis |b〉 = sin β|a〉 + cos β|p〉; therefore the photon
state becomes

ρ = ρ̃/Tr(ρ̃), (3)
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FIG. 1. (Color online) (a) The MZI with a q-BS. The primary difference between this setup and a regular MZI is that the second BS is
replaced with a q-BS. Pij (i,j = 1,2) are the four possible subpaths for the single photon used to define the distinguishability D. (b) The
simplified setup of the q-BS. Path 1 and Path 2 are each divided into two components, which are in quantum superposition states. Each
component corresponds to an eigenstate of the photon polarization. One component constructs the closed MZI (a BS is present), and the other
constructs the open MZI (no BS). PBS2 then recombines these two components and forms a quantum superposition state of the closed and
open MZIs. The direction of the photon polarization before PBS1, α, controls the states of q-BS. The polarizer with a β-oriented axis selects
the detection basis for the q-BS.

where ρ̃ = Trq-BS(Pb|ψ〉〈ψ |) with Pb = |b〉〈b| as the projec-
tion operator. Here, we derive the probability that the photon
takes Path 2 as

p2(ϕ) = Tr(|2〉〈2|ρ). (4)

From this probability, we have the visibility of Path 2,

V = pmax − pmin

pmax + pmin
. (5)

As shown in Fig. 1(a), each photon has four possible subpaths
from the first BS to the single-photon avalanche photodiodes
(APDs) (P11: the photon passes through both the first BS and
the q-BS; P12: the photon passes through the first BS and then
is reflected by the q-BS; P21: the photon is reflected by both
the first BS and the q-BS; P22: the photon is reflected by the
first BS and then passes through the q-BS). When a photon is
finally found to appear in Path 2, it can come from the first BS
to APD2 through either subpath P12 or P22. Assuming that
this photon has the probabilities w12 and w22 for P12 and P22,
respectively, the distinguishability of Path 2 can be written as

D = |w12 − w22|. (6)

If the photons definitely come from P12 or P22, then D = 1; if
the chance that the photons come from either of the two paths
is equal, D = 0. The same definitions of V and D are also
found in Ref. [25], in which the inequality (1) is shown to be
correct for a general situation with classical unbalanced beam
splitters.

Experimental demonstration and results. The single pho-
tons are generated from a single InAs/GaAs quantum dot, and
g(2)(0) is measured to be 0.167 ± 0.062 here [28,29]. The q-BS
in our experiment is realized by using the polarization state of
the photon as an ancilla to control the absence or presence of
the BS. A simplified setup for the q-BS is shown in Fig. 1(b).
The photon polarization for either path is first rotated by HWP1
(half-wave plate) in the direction of α, which corresponds
to the q-BS state of |q-BS〉 = sin α|a〉 + cos α|p〉. For this
experiment, we fix this angle at α = 45◦. The photons are then
split by PBS1 (polarizing beam splitter) into two components.
In one direction, the photons pass through a closed MZI with a
50:50 BS; in the other direction, the photons pass through

an open MZI with no BS. The two components are then
recombined by PBS2, and the photon state at that point is
exactly described by Eq. (2) with |a〉 ↔ |V 〉 and |p〉 ↔ |H 〉.
Note that |H 〉 and |V 〉 represent the horizontal and vertical
polarization states of the photons, respectively. The polarizer
set at the angle β chooses the detection basis for the q-BS.

To measure the visibility, we leave both paths in Fig. 1(a)
unblocked, count the number of photons detected by the APDs,
and then calculate the probability that the photon takes Path
2, i.e., p2(ϕ). The results are shown in Fig. 2. The solid
lines are the theoretical fits corresponding to each set of
experimental data. Figure 2(a) is the β = 0 case, in which
the q-BS state is detected in the basis of |b〉 = |p〉, which
is the eigenstate associated with the closed MZI. Therefore,
the photons behave as a wave, and the visibility [shown in
Fig. 3(a)] of the interference fringe reaches 0.961 ± 0.004.
This result coincides with the result for the classical-BS
experiment found in Ref. [24]. Figure 2(c) corresponds to
the case β = π

2 . Similarly, the q-BS state is detected in
the other eigenstate |b〉 = |a〉, which is associated with the
open MZI. Thus, the photons behave as particles. The result
is also the same as that shown in the classical BS case.
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FIG. 2. (Color online) Probability that the photon takes Path 2.
(a)–(c) correspond to the cases with β = 0, 3π

16 , and π

2 , respectively.
The solid lines are the corresponding theoretical fits for each case.

014103-2



BRIEF REPORTS PHYSICAL REVIEW A 88, 014103 (2013)

β

V
D

D
+ 

V
2

2

(a)

(b)

(c)

/π

FIG. 3. (Color online) (a) The visibility V , (b) the path distin-
guishability D, and (c) V 2 + D2. The dashed line in (c) is the limit
of the EG duality relation (1), and is exceeded in this situation.

However, β = 3π
16 for Fig. 2(b), so the detection basis here

is a quantum superposition state, which is related to the MZI
in both a closed and an opened state. The visibility in this
case is 0.707 ± 0.017. The photon behaves as a quantum
superposition of a wave and a particle; this behavior is well
illustrated by the expression of the photon’s state ρ; i.e.,
C1(sin β|particle〉 + cos β|wave〉) (where C1 is a coefficient).
This phenomenon does not have a counterpart in the classical
BS experiment. The differences between the experimental
and theoretical values are caused by the counting statistics,
imperfections in the optical glasses, the dark and background
counts, and tiny instabilities in the MZIs. In particular, we want
to note that although δ1 and δ2 are set to 0, they will vary slightly
in the experiment. In Fig. 2(b), these two phases are fitted
to be δ1 = (0.070 ± 0.040)π and δ2 = (−0.050 ± 0.007)π .
This difference causes the interference fringes to deviate
slightly from the δ1 = δ2 = 0 case, but this difference does
not influence the conclusions. In Fig. 3, the gray dotted lines
are simulated from these fitted values.

Then, we measure the distinguishability D. We first block
Path 1 after the first BS in Fig. 1(a) and count the number
of photons detected by APD2. This subpath is P22, and the
number is denoted N22. Then, we block Path 2 after the first
BS and count the number of photons detected by APD2.
This subpath is P12, and the photon number is denoted N12.
Thus, we know the detected photons came from P12 and P22
with the probabilities of N12

N12+N22
and N22

N12+N22
, respectively.

Hence, the distinguishability of Path 2 can be calculated from
D = |N12−N22|

N12+N22
according to Eq. (6). The result is shown by

the larger dots in Fig. 3(b), and the line of smaller dots
is the theoretical simulation. If β = 0 (the closed MZI),
then D = 0.045 ± 0.024 and no which-path information is
available. However, if β = π

2 (the open MZI), then D =
0.97751 ± 0.0038 and full which-path information is detected.
This result is in agreement with the wavelike and particlelike
behaviors of the photons as previously discussed. For these
all-or-nothing cases, the q-BS collapses onto the eigenstates;
therefore, these situations give the same results as the classical
BS experiment: The inequality (1) holds, and the upper bound
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FIG. 4. (Color online) V 2
g + D2

g after combination of the photon
numbers of two orthogonal-base cases with (a) varying β and fixed
α = π

4 and (b) varying α and arbitrary β. The generalized EG duality
relation holds for these results.

is reached [see in Fig. 3(c)]. In contrast, in the quantum
intermediate case β = 3π

16 , the value of V 2 + D2 is beyond
the limit of the EG duality relation [1, the blue dashed line in
Fig. 3(c)] by 10 deviations and is 1.428 ± 0.043. This result
coincides with the results from the theoretical simulation.

This exceeding of the EG duality relation is caused by
the quantum superposition of the wave and particle states of
the photons, i.e., the interference between these two states.
This interference is introduced by the q-BS and a quantum
intermediate detection basis. To illustrate this point and derive
a generalized EG duality relation, we combine the correspond-
ing photon counts of the two orthogonal bases related to β and
β + π

2 and then calculate V 2
g + D2

g in the same way. The forms
of Vg and Dg are the same as V and D, respectively. However,
the photon counts and the meanings are different. Vg and Dg

correspond to the sum of the counts of two orthogonal bases
and describe the behavior of photons in these two cases as
a whole; the wave-particle interference becomes an internal
effect here. In contrast, V and D describe the behavior of
photons in a single detection basis. We find that the generalized
inequality (V 2

g + D2
g � 1) holds for our results, as shown in

Fig. 4(a). The solid line is the theoretical simulation. To further
analyze this combination process, we calculate the final state of
the photon after the combination. The final state is found to be
C2(sin2α|particle〉〈particle| + cos2α|wave〉〈wave|), where C2

is a coefficient. This state is a classical mixture of the wave and
particle properties and is independent of the chosen orthogonal
basis pair (defined by β). However, the state is related to the
parameter α, which determines the state of the q-BS and the
probabilities of the photon passing through the closed or open
MZIs. V 2

g + D2
g is calculated to be sin4α + cos4α, which is

no larger than 1; when α = π
4 , then V 2

g + D2
g = 0.5. We have

also measured V 2
g + D2

g for various values of α, and the results
shown in Fig. 4(b) further prove our previous discussions.
There is a systematic error in Fig. 4 that may be caused
by the dark and background counts, decoherence processes,
imperfections in the optical glasses, and a lack of precision in
the experimental parameters.
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Discussions. Actually, violation of the BPC, and specifi-
cally, violation of the EG duality relation, has been declared
by Afshar et al. [30], who believe that quantum mechanics is
not correct; however, others disagree with this interpretation
[31–34], and the debate continues. Here, we must note that our
experiment is completely unrelated to the Afshar experiment.

Although our results exceed the EG duality relation, our
experiment as a whole is in agreement with quantum theory.
Our experiment does not demonstrate that the EG duality
relation is wrong. The EG duality relation is definitely correct
within the range of classical detecting devices. However, in
our experiment, a q-BS is used instead of a classical BS.
This BS can remain in the quantum superposition of the
two originally exclusive states of a classical BS (e.g., the
absence and presence). The q-BS allows the wave and particle
properties of the photon to be quantum superimposed (or to
interfere); this feature of q-BS demonstrates the advantages of
the q-BS over the classical BS and breaks the limitation on
information extraction from the wave and particle properties.
When we consider both of the orthogonal detection bases, the
interference between the wave and particle properties becomes
an internal effect. Then a generalized EG duality relation
holds.

We emphasize that although we use a q-BS in the ex-
periment, the q-BS is also composed of a series of classical
devices since all experimental devices can be only available
as classical devices. If one considers every part of our q-BS

separately as a classical device and calculates the EG duality
relation, he finds that this relation always holds. This approach
is certainly reasonable; however, in this approach, our q-BS is
not still a “quantum BS,” but is a stack of “classical devices.”
Then, the physical meanings are changed, and our purpose
of “exploring the new phenomena with quantum devices”
is lost.

Conclusions. In conclusion, we introduced a polarization-
controlled q-BS into an MZI, and selected some quantum-
superposition states of the q-BS as the detection bases. We
find that the limit of the EG duality relation is exceeded. We
conclude that this result is caused by the interference between
the wave and particle properties of the photons. When we
combine the corresponding photon numbers of two mutually
orthogonal detection bases of the q-BS, the wave-particle
interference becomes an internal effect, and the generalized
EG duality relation holds. This work is entirely within standard
quantum theory but opens a new way for people to understand
the quantum world through the replacement of classical
devices with quantum ones.
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