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In a multipartite setting, it is possible to distinguish quantum states that are genuinely n-way entangled from
those that are separable with respect to some bipartition. Similarly, the nonlocal correlations that can arise from
measurements on entangled states can be classified into those that are genuinely n-way nonlocal, and those that
are local with respect to some bipartition. Svetlichny introduced an inequality intended as a test for genuine
tripartite nonlocality. This work introduces two alternative definitions of n-way nonlocality, which we argue are
better motivated both from the point of view of the study of nature, and from the point of view of quantum
information theory. We show that these definitions are strictly weaker than Svetlichny’s, and introduce a series
of suitable Bell-type inequalities for the detection of three-way nonlocality. Numerical evidence suggests that all
three-way entangled pure quantum states can produce three-way nonlocal correlations.

DOI: 10.1103/PhysRevA.88.014102

Consider two quantum systems, prepared in a joint quan-
tum state |¢) and located in separate regions of space.
Suppose Alice measures one system, obtaining outcome a,
and Bob the other, obtaining outcome b. The joint outcome
probabilities can be written P(ab|XY), where X denotes
Alice’s measurement and Y Bob’s measurement. If the
measurements are performed at spacelike separation, then
Bell’s condition of local causality [1] implies that even if
the particles have interacted in the past (or were produced
together in the same source), they are now independent.
Therefore, even if the quantum state of the two particles is
entangled, it ought to be possible to specify a more complete
description A of the joint state of the two particles, such that,
given A, the probabilities can be written in the form

P;(ab|XY) = Py(a|X)P,(b]Y). ey

The state A is conventionally referred to as a hidden state, since
it is not part of the quantum description of the experiment. Any
hidden state A which satisfies Eq. (1) is local. If the observed
correlations P(ab|XY) can be explained by a locally causal
theory, then they can be written

P(ab|XY) =) g, Pi(alX)P,(b]Y), )
A

with g, > 0and ) , @» = 1. On the other hand, if correlations
P(ab|XY) violate a Bell inequality [1], then they cannot be
written in this form. Such correlations cannot be explained
by a locally causal theory, and are referred to as nonlocal
correlations.

Quantum nonlocality is a puzzling aspect of nature, but also
an important resource for quantum information processing. An
information theoretic interpretation of quantum nonlocality
is that two separated parties who wish to simulate the
experiment with classical resources cannot do so using only
shared random data—they must also communicate with one
another. The fact that entangled quantum states can produce
nonlocal correlations enables the quantum advantage in
communication complexity problems [2], device-independent
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quantum cryptography [3,4], randomness expansion [5], and
measurement-based quantum computation [6,7].

With three or more systems, qualitatively different kinds
of nonlocality can be distinguished. For definiteness, consider
the tripartite case. If correlations can be written

P(abc|XYZ) =) g, Pi(alX) Pi(b|Y) Pi(c|2), 3)
A

with 0 < ¢, < 1 and ZA q,. = 1, then they are local. Other-
wise they are nonlocal. But, as pointed out by Svetlichny [8],
some correlations can be written in the hybrid local-nonlocal
form,

P(abc|XYZ) =) q; Pi(ab|XY) Pi(c|Z)
A

+ Y qu Pulac|XZ) Pu(b|Y)
"

+ > gy Pi(bclY Z)Py(alX),  (4)

v

where 0 < ¢5.,¢u.qy < 1 and ), ¢, + Zu GutY,q =1
Here, each term in the decomposition factorizes into a product

of a probability pertaining to one party’s outcome alone, and
a joint probability for the two other parties. We say that
correlations of the form (4) are S, local. If correlations cannot
be written in this form, then a term such as P, (abc| XY Z) must
appear somewhere in the decomposition. Such correlations
are often said to exhibit genuine three-way nonlocality,
although we will refer to this as Svetlichny nonlocality.
Svetlichny introduced an inequality, a violation of which
implies Svetlichny nonlocality. Svetlichny’s inequality can
be violated by appropriate measurements on a Greenberger-
Horne-Zeilinger (GHZ) or W state [9].

In further work, Seevinck and Svetlichny [10] and, inde-
pendently, Collins et al. [11] generalized the tripartite notion
of Svetlichny nonlocality to n parties. In both Refs. [10] and
[11], an inequality is derived that detects n-partite Svetlichny
nonlocality. See also Refs. [9,12,13].
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The present Brief Report considers two alternative defini-
tions of genuine multipartite nonlocality, which are different
from Svetlichny’s. We argue that these definitions are better
motivated, both physically and from the point of view of
information theory. We show that the alternative definitions
are strictly weaker than Svetlichny’s and describe a Bell
inequality such that its violation is sufficient for genuine
three-way nonlocality according to both alternative defini-
tions. Numerical evidence suggests that any pure, three-way
entangled quantum state can produce correlations that violate
this inequality. On the other hand, there exist pure, three-way
entangled quantum states for which we have not been able to
find any measurements giving rise to Svetlichny nonlocality.

Different kinds of nonlocality. Consider again the case of
bipartite correlations. There are various ways in which a hidden
state A might fail to be local. Let P, (a|XY) = >, Pi(ab|XY)
be the marginal probability for Alice to obtain outcome a
when the measurement choices are X and Y, and similarly
let P,(b|XY) =), P.(ab|XY) be the probability for Bob to
obtain b. Suppose that XA satisfies

Pi(a|XY) = Pi(a|XY') Va,X,YY', (&)

P.(b|XY) = P,(b|X'Y) Vb,Y,X.X . (6)

In this case, if Alice and Bob are in possession of two particles,
which they know to be in the hidden state A, then even if
A is nonlocal, observing her own outcome gives Alice no
information about Bob’s measurement choice. This is because
the marginal probabilities for a are independent of Bob’s
choice. Hence Bob cannot send signals to Alice by varying
his measurement choice. Similarly, Alice cannot send signals
to Bob. Such a A is nonsignaling.

If Eq. (5) is satisfied but Eq. (6) is violated, then Bob’s
outcome gives him at least some information about Alice’s
measurement choice, hence Alice can send signals to Bob.
The hidden state A is one-way signaling. Similarly, if Eq. (6)
is satisfied but Eq. (5) is violated. If Egs. (5) and (6) are both
violated then X is two-way signaling.

So far, this discussion has followed many treatments of
quantum nonlocality in that no attention has been given to
the timing of Alice’s and Bob’s measurements. It has been
assumed—naively—that the measurements can unproblem-
atically be regarded as simultaneous, or alternatively that
the probabilities P, (ab|XY) are independent of the timing
of the measurements. With one-way and two-way signaling
states, this can quickly cause problems. Suppose that a
hidden state A is one-way signaling from Alice to Bob.
Then the outcome probabilities for a measurement of Bob’s
depend on which measurement setting Alice chooses. If Bob
obtains his measurement outcome before Alice chooses her
setting (with respect to some frame) then this implies some
kind of backwards causality (with respect to that frame).
Worse, Fig. 1 shows how signaling hidden states can lead to
grandfather-style paradoxes, where no consistent assignment
of probabilities to outcomes is possible.

One solution to these problems would be to restrict attention
to models that involve only nonsignaling hidden states. But a
more general solution is to introduce a notion of a hidden
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FIG. 1. (Color online) Let X,Y,a,b € {0,1}. The particle pair
labeled 1 is independent from the pair labeled 2. The joint state A,
is such that if a; = Yy, then P, (a;b:|X,Y;) = 0, whereas A, is such
that if b, # X,, then P, (axb>|X,Y,) = 0. Consistent predictions are
impossible if measurement choices are as shown.

state, according to which the outcome probabilities can vary
according to the timing of the measurements. In a fully general
treatment, A will be time dependent, or alternatively, A will
refer to the state of the particles at some fixed time (perhaps
just after creation) in some fixed frame, and the probabilities
for outcomes depend on the exact timing of the measurements.

For now, let us keep things simple. Consider a hidden
state A such that the probabilities do not depend on the exact
timing of measurements, but do depend on the time ordering,
where this ordering is determined with respect to a fixed
background frame. If Alice performs X before Bob performs
Y, the probabilities are given by

PA<B(ab|XY). (7)

If Bob performs Y before Alice performs X, the correlations
may be different with probabilities given by

PE=A(ab|XY). 8)

Paradoxes such as that of Fig. 1 are avoided if (1) the
fixed background frame determining the time ordering of
measurements is the same for all particle pairs, and (2) the
correlations P<B(ab|XY) and PE<A(ab|XY) are at most
one-way signaling, with PA<8(ab|XY) satisfying Eq. (5) and
PB=A(ab|XY) satisfying Eq. (6). An explicit model depending
on the time ordering of measurements and satisfying the above
two conditions is given by Bohm’s theory [14].

Given a set of bipartite quantum correlations P(ab|XY),
these considerations about the time ordering of measurements
do not make any difference to the basic question of whether or
not P(ab|XY)is nonlocal, which is perhaps why time ordering
is not often emphasized. In the case of three or more observers,
however, it makes an important difference to the classification
of different kinds of multipartite nonlocality.

Genuine three-way nonlocality. In Eq. (4), the probabilities
are assumed to be independent of the time ordering of measure-
ments, and no constraint is placed on the bipartite correlations
appearing in each term. So P, (ab|XY), for example, can be
one-way or two-way signaling. But, as shown above, problems
can arise with signaling hidden states, including paradoxes that
can result if measurement outcomes can be used to determine
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measurement choices on other particles. One remedy is to
consider only nonsignaling hidden states. This suggests the
following definition of genuine tripartite nonlocality.

Definition 1. Suppose that P(abc|XY Z) can be written in
the form

P(abc|xyz) = Y _ g, Pi(ablxy)Pi(c|2)
A

+ Y quPulaclxz)Pu(bly)
"

+ ) quPu(becly)Py(alx), (9

where the bipartite terms are nonsignaling, satisfying condi-
tions of the form (5) and (6). Then the correlations are NS,
local. Otherwise, we say that they are genuinely three-way NS
nonlocal.

As we have seen, however, a more general remedy is to de-
fine hidden states in such a way that correlations can depend on
the time ordering of the measurements. It is convenient to write
PATAB(ab|X Y) for a set of time-order-dependent correlations,
so that P;AE (ab|XY) = P{KB(aleY) when Alice measures
before Bob and PAT’“’ (ab|XY) = Pf<A(ab|XY) when Bob
measures before Alice. As always, assume that P/*<5(ab|XY)
and P2<4(ab|XY) are at most one-way signaling, satisfying
Egs. (5) and (6), respectively.

Definition 2. Suppose that P(abc|XY Z) can be written in
the form

P(abelxyz) = ) g, P[*" (ablxy)Pi(c|2)
A
+ > quP*(aclx2) Py(bly)
"

+ > quPl*(belyz)Pi(alx).  (10)

Then the correlations are 7, local. Otherwise they are gen-
uinely three-way nonlocal.

Interpretation from the point of view of quantum infor-
mation. It is useful to contrast Definition 2 and Svetlichny’s
one from the perspective of classical simulations of quantum
correlations in term of shared random data and communication
(for examples of such a model, see Ref. [15]). Svetlichny
models naturally correspond to simulation models where
all parties receive their input (the measurement they are to
simulate) at the same time, then there are several rounds of
communication between subsets of the parties, and, finally, all
parties produce an output (the measurement outcome). Models
of the form (10), on the other hand, correspond to simulation
models where inputs are given to the parties in a sequence,
where the order in the sequence is arbitrary and not fixed in
advance. On receiving an input, a party must produce an output
immediately and may send a communication to a subset of the
other parties. This means that although a party’s output can
depend on communications already received, it cannot depend
on communications from parties later in the sequence.

The distinction between both types of models is crucial for
the simulation of quantum correlations in applications such
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as measurement-based computation where measurements
are performed adaptively, that is, where the choice of which
measurement to perform on a particular system may depend
on the measurement outcome that was obtained from another
system. In this context, Svetlichny-type simulation models in
which all inputs are given at the same time are not relevant.

Finally, models based on the definition (9) can be inter-
preted as simulation models where classical communication is
replaced by no-signaling resources [16] [such as Popescu-
Rohrlich (PR) boxes [17]]. They are well adapted to the
characterization of nonlocality for cryptographic applications
secure against postquantum adversaries [3].

Characterization and detection of three-way nonlocality.
Let NS, be the set of all tripartite correlations that are NS,
local, according to Definition 1. Similarly, let 7, be the set of
correlations that are 7, local according to Definition 2, and
S, the set of S, local correlations according to the Svetlichny
definition. Given these sets, we have the following results
(see details in the Supplemental Material [18]). First,
the different definitions of multipartite nonlocality are
inequivalent, as one can show the following theorem:

Theorem 1. NS, C T, C S, where the inclusion is strict.

Proof. See Appendix C in the Supplemental Material [18].

Note that, contrarily to S, models, both NS, and 7, models
can only reproduce no-signaling correlations (this is true on
average for 7, models even though they may involve one-
way signaling between the parties at the hidden level; see
Appendix B in the Supplemental Material [18]). Second, the
NS,, T, and S sets can be characterized efficiently:

Theorem 2. Given correlations P(abc|XY Z) with a finite
number of measurement settings and outputs, it is a linear
programming problem to determine whether they belong to
the sets NS», 75 or S».

Proof. See Appendix A in the Supplemental Material [18].

Furthermore, we have an inequality for the NS, and T sets:

Theorem 3. If correlations P(abc| XY Z) are NS, or T; local,
then

I = —2P(AB;) — 2P(B,Cy) — 2P(A,C))
— P(AgBoCy1) — P(AoB1Co) — P(A1ByCop)
+2P(A1B1Co) +2P(A1BoCr) +2P(ApB1Cy)
+2P(AB,C)) <0, (11)

where we have introduced the notation P(A;B;)=
Pla=0b=0|X=iY =j), P(A;BjCy)= P(a=0,b=
0,c=0X=iY=jZ=k).

Proof. See Appendix B in the Supplemental Material [18].

Just like Svetlichny introduced an inequality, violation of
which implies Svetlichny nonlocality, Eq. (11) is a Bell-type
inequality, a violation of which implies that correlations
are genuinely three-way nonlocal (hence also three-way NS
nonlocal). In Appendix D (see Supplemental Material [18]) we
provide also a complete characterization of the NS, polytope
in the presence of binary inputs and outputs. Inequality (11)
belongs to the family number 6 in this list, and is thus a tight
constraint on the NS, as well as the 75 sets.

Multipartite nonlocality and noisy quantum states. It is
interesting to investigate the extent to which different quantum
states can produce each type of multipartite nonlocality.
Consider an experiment in which measurements are performed
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TABLE 1. Minimum values of the p parameter required for
the quantum states pguz and py to exhibit genuine multipartite
nonlocality. These values were found by numerical optimization.
It is assumed that three parties each have two possible measurement
settings, each with two outcomes. If p > pns then correlations can be
produced which are three-way NS nonlocal (see Definition 1). If p >
pr., then correlations can be produced which are three-way nonlocal
(Definition 2). If p > pg, then correlations can be produced which are
Svetlichny nonlocal. Inequalities demonstrating the different notions
of nonlocality of py for values of p higher than the above thresholds
are described in Appendix D in the Supplemental Material [18].

State Pns pr Ps
PGHZ 1/v2 1/3/2 1/3/2
ow 0.8 0.82 0.92

on a tripartite quantum state, with each party having a choice
of two measurement settings, and each measurement having
two possible outcomes. Let

IGHZ) = 1/+/2(]000) + |111)), (12)
|W) = 1/+/3(001) + [010) + [100)), (13)
penz = p IGHZ)(GHZ| + (1 — p)1/8, (14)
pw = pIWY W[+ (1 - p)/8, (15)

where I is the identity and 0 < p < 1. We have determined
using linear programming the minimum values of p for which
the states pguz and pw will exhibit each kind of multipartite
nonlocality. Results are summarized in Table 1.

For the noisy GHZ state, it makes no difference which def-
inition is employed—three-way NS nonlocal, three-way non-
local, and Svetlichny nonlocal correlations can be generated
whenever p > 1/+/2. In the case of the noisy W state, there is
arange of values of p for which the state is too noisy to exhibit
Svetlichny nonlocality, but can still produce correlations which
are three-way nonlocal, and similarly a range of values of p for
which the state is too noisy to exhibit three-way nonlocality,
but can still produce correlations which are three-way NS
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nonlocal. This again demonstrates that the different definitions
of multipartite nonlocality are strictly inequivalent.

Multipartite nonlocality and tripartite entanglement.
Finally, we conclude by presenting numerical results that
suggest that all pure tripartite entangled states are three-way
nonlocal. An arbitrary pure state of three qubits that is
genuinely tripartite entangled can always be written in the form
[19] [¥) = A0|000) + A1e?]100) + A,|101) + A3|110) +
Ml111), with ¢ €[0,7], A =0, Y, A2=1, A #0,
A2 4+ Aq # 0, and Az 4+ A4 # 0. We tested inequality (11) for
83 = 32768 states of this form obtained by considering eight
possible values for five independent variables parametrizing
these states. After numerical optimization of the measurement
settings, a violation was found in each case. We thus have the
following conjecture:

Conjecture 1. All genuinely tripartite entangled states can,
with a suitable choice of measurements, generate genuinely
three-way nonlocal correlations.

Note, however, that we were not able to find any violation
of the Svetlichny type for the following tripartite entangled
state, |y) = ‘/7§|000) + ?IIIO) + A%|111) [though it violates
inequality (11)]. Our search included the 1087 different
Svetlichny inequalities introduced in Ref. [20], as well as a
linear programming search over the Svetlichny polytope with
two measurements settings per party.

Note added in proof. While the present Brief Report
formally makes public the alternative definitions of multi-
partite nonlocality presented here, they have already been
communicated privately to close collaborators. In particular,
Definitions 1 and 2 were used in Refs. [21-23]. Note also the
independent work [24] where Definition 2 is introduced and
motivated from a different (though related) perspective.
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