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Uncertainty principle in a cavity at finite temperature
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We employ a dressed-state approach to perform a study on the behavior of the uncertainty principle for a
system in a heated cavity. We find, in a small cavity for a given temperature, an oscillatory behavior of the
momentum-coordinate product (� p) (� q), which attains periodically finite absolute minimum (maximum)
values, no matter how large the elapsed time is. This behavior is in sharp contrast to what happens in free space,
where the product (� p) (� q) tends asymptotically, for each temperature, to a constant value, independent of time.
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Introduction. An account of the subject of an interacting
particle-environment system can be found in Refs. [1–5],
in which the environment is considered an infinite set of
noninteractng oscillators. Here we consider a similar model,
treated with a different approach. Let us therefore begin
with some information about the method we employ: From
a general point of view, apart from computer calculations in
lattice field theory, currently, the most used method to treat
the physics of interacting particles is perturbation theory, in
which the starting point is bare fields (particles) interacting by
means of gauge fields. Actually, as a matter of principle, the
idea of bare particles associated with bare matter fields and of
a gauge particle mediating the interaction among them is in
fact an artifact of perturbation theory and, strictly speaking,
is physically meaningless. A charged physical particle is
always coupled to the gauge field; it is always “dressed” by
a cloud of quanta of the gauge field (photons in the case of
electrodynamics). Exactly the same type of argument applies
mutatis mutandis to a particle-environment system, in which
case we may speak of a “dressing” of the particle by the thermal
bath, the particle being dressed by a cloud of quanta of the
environment. This should be true in general for any system in
which a material particle is coupled to a field, no matter the
specific nature of the field (environment) or of the interaction
involved. We give a treatment to this kind of system using
some dressed (or renormalized) coordinates. In terms of these
new coordinates dressed states are defined which allow us to
divide the coupled system into two parts, the dressed particle
and the dressed environment, which makes working directly
with the concepts of bare particles, a bare environment, and the
interaction between them unnecessary. A detailed exposition
of our formalism and of its meaning for both zero and finite
temperature can be found in Refs. [6–10].

About the physical situation we deal with, on general
grounds, very precise investigations have been done on the
fundamentals of quantum physics, in particular on the validity
of the Heisenberg uncertainty relation. In [11], it is reported
that a great deal of effort is being made to minimize external
noise factors, such as thermal fluctuations and electricity
oscillations in experiments, in order to verify the relation,
in the spirit of zero-temperature quantum physics. However,
changes in the uncertainty principle induced by temperature
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are an idea already explored in the literature, in particular
for open systems. In [12], the authors study, with a thermal-
field-dynamics formalism, the relation between the sum of
information-theoretic entropies in quantum mechanics with
measurements of the position and momentum of a particle
surrounded by a thermal environment. It is found that this
quantity cannot be made arbitrarily small but has a universal
lower bound dependent on the temperature. They also show
that the Heisenberg uncertainty relation at finite temperature
can be derived in this context. In [13,14] the uncertainty
relation for a quantum open system consisting of a Brownian
particle interacting with an Ohmic bath of quantum oscillators
at finite temperature was obtained. These authors claim that
this allows us to get some insight into the physical mechanisms
involved in the environment-induced decoherence process.
Also, modifications of the uncertainty principle have been
proposed in, for instance, a cosmological context. As remarked
in [15], in quantum gravity a generalized position-momentum
uncertainty principle seems to be needed. The authors of
Ref. [15] investigate a possible connection between the gen-
eralized uncertainty principle and changes in the area-entropy
black-hole formula and the black-hole evaporation process.

In this Brief Report, we study the behavior of the particle-
environment system contained in a cavity of arbitrary size
under the influence of a heated environment. The environment
is composed of an infinite number of oscillators and is assumed
to be at a given temperature, realized by taking an appropriate
thermal distribution for its modes. This generalizes previous
works for zero temperature (for instance, Refs. [17–19])
for both inhibition of spontaneous decay in cavities and
the Brownian motion. We study the time-dependent mean
value for the dressed oscillator position operator taken in a
dressed coherent state. We find that in the case of both the
environment at zero temperature and the heated environment,
these mean values are independent of the temperature and are
given by the same expression. On the other hand, the mean-
square error for both the particle position and momentum are
dependent on the temperature. From them we get the time- and
temperature-dependent Heisenberg uncertainty relation. We
then investigate how heating affects the uncertainty principle
in a cavity of arbitrary size. This is particularly interesting in
a small cavity, where the result is not a trivially expected one.

The model. Our approach to the problem makes use of
the notion of dressed thermal states [8], in the context of a
model already employed in the literature, of atoms (or, more
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generally, material particles) in the harmonic approximation
coupled to an environment modeled by an infinite set of
pointlike harmonic oscillators (the field modes). The dressed
thermal state approach is an extension of the dressed (zero-
temperature) formalism already used earlier [16–19].

We consider a bare particle (atom, molecule, etc.) approx-
imated by a harmonic oscillator described by the bare coor-
dinate and momentum, q0 and p0, respectively, having bare
frequency ω0, linearly coupled to a set of N other harmonic
oscillators (the environment) described by bare coordinate
and momenta, qk and pk , respectively, with frequencies ωk ,
k = 1,2, . . . ,N . The limit N → ∞ will be understood. The
whole system is supposed to reside inside a perfectly reflecting
spherical cavity of radius R in thermal equilibrium with
the environment at a temperature T = β−1. The system is
described by the Hamiltonian

H = 1

2

[
p2

0 + ω2
0q

2
0 +

N∑
k=1

(
p2

k + ω2
kq

2
k

)] − q0

N∑
k=1

ckqk. (1)

The Hamiltonian (1) is transformed to the principal axis by
means of a point transformation, qμ = ∑N

r=0 t rμQr , pμ =∑N
r=0 t rμPr , where μ = (0,{k}), k = 1,2, . . . ,N ,

r = 0, . . . ,N , performed by an orthonormal matrix
T = (t rμ). The subscript r refers to the normal modes.
In terms of normal momenta and coordinates, the transformed
Hamiltonian reads H = 1

2

∑N
r=0(P 2

r + �2
rQ

2
r ), where the �r ’s

are the normal frequencies corresponding to the collective
stable oscillation modes of the coupled system. Using the
coordinate transformation in the equations of motion and
explicitly making use of the normalization of the matrix (t rμ),∑N

μ=0(t rμ)2 = 1, we get the matrix elements (t rμ) [16].
We take ck = η(ωk)u, where η is a constant independent

of k. In this case the environment is classified according to
u > 1, u = 1, or u < 1 as supra-Ohmic, Ohmic, or sub-Ohmic,
respectively [2,3]; we take, as in [16], η = 2

√
g�ω/π , where

�ω is the interval between two neighboring field frequencies
and g is a fixed constant characterizing the strength of the
coupling particle and environment. Restricting ourselves to an
Ohmic environment, we get an equation for the N + 1 eigen-
frequencies �r , corresponding to the N + 1 normal collective
modes [16]. In this case the eigenfrequencies equation contains
a divergence for N → ∞, and a renormalization procedure is
needed. This leads to the renormalized frequency [16] (this
renormalization procedure was pioneered in [20]),

ω̄2 = ω2
0 − δω2 = lim

N→∞
(
ω2

0 − Nη2
)
, (2)

where we have defined the counterterm δω2 = Nη2.
We introduce dressed and renormalized coordinates q ′

0 and
{q ′

k} for the dressed atom and the dressed field, respectively,
defined by √

ω̄μq ′
μ =

∑
r

t rμ

√
�rQr, (3)

where ω̄μ = {ω̄, ωk}. In terms of these, we define thermal
dressed states, precisely described in [7,8].

It is worthwhile to note that our renormalized coordinates
are objects different from both the bare coordinates q and the
normal coordinates Q. Also, our dressed states, although being

collective objects, should not be confused with the eigenstates
of the system [21]. In terms of our renormalized coordinates
and dressed states, we can find a natural division of the system
into the dressed (physically observed) particle and the dressed
environment. The dressed particle will contain automatically
all the effects of the environment on it.

A cavity of arbitrary size at finite temperature. To study the
behavior of the system in a cavity of arbitrary size, we write
the initial physical state in terms of dressed coordinates. We
assume that, initially, the system is described by the density
operator, ρ̂(0) = ρ̂0 ⊗ ρ̂ ′

β , where ρ̂0 is the density operator
associated with the oscillator q ′

0, which can be, in general, in
a pure or mixed state. Also, ρ̂ ′

β is the dressed density operator
associated with the dressed field modes. We assume thermal
equilibrium for these dressed modes; thus

ρ̂ ′
β =

⊗
k e−βĤ ′

k

Tr
⊗

k e−βĤ ′
k

, Ĥ ′
k = 1

2
p̂′2

k + 1

2
ω2

k q̂
′2
k . (4)

The time evolution of the density operator is given by the
Liouville–von Neumann equation, whose solution, in the case
of an entropic evolution, is given by ρ̂(t) = e− i

h̄
Ĥ t ρ̂(0)e

i
h̄
Ĥ t .

Then, the time evolution of the average thermal expectation
value of an operator is given by

〈Â〉(t) = Tr[Âe− i
h̄
Ĥ t ρ̂(0)e

i
h̄
Ĥ t ] = Tr[Â(t)ρ̂(0)], (5)

where the cyclic property of the trace has been used; above,
Â(t) = e

i
h̄
Ĥ t Âe− i

h̄
Ĥ t is the time-dependent operator Â in the

Heisenberg representation.
Dressed coherent states in a heated environment. Let

us consider a Brownian particle embedded in a heated
environment as described above. In our notation, we speak
of a dressed Brownian particle, and we use the dressed-state
formalism. We assume, as usual, that, initially, the particle and
the environment are decoupled and that the coupling is turned
on suddenly at some given time, which we choose at t = 0. In
our formalism, we define |λ〉 as a dressed coherent state given
by

|λ,n′
1,n

′
2, . . . ; t = 0〉 = e−|λ|2/2

∞∑
n′

0=0

λn′
0√

n′
0!

|n′
0n

′
1, . . .〉 , (6)

where n′
0 stands for the occupation number of the dressed

particle and n′
1,n

′
2, . . . are the occupation numbers of the

field modes. For zero temperature we have n′
1 = n′

2, . . . = 0.
For finite temperature, we will perform computations taking
ρ̂0 = |λ〉〈λ|. This means that, at the initial time, the dressed
particle oscillator is in a pure coherent state. Keeping this
in mind, we consider the quantity 〈q̂ ′

0〉(t), which we denote
by q ′

0(t), q ′
0(t) = Tr[q̂ ′

0(t)ρ̂(0)]. In order to evaluate the above
expression we first compute q̂ ′

0(t). Using the relation between
the dressed coordinates and the normal coordinates, Eq. (3), the
expression for Ĥ in terms of the normal coordinates, and
the Baker-Campbell-Hausdorff formulas, we get, after some
steps of calculation,

q ′
0(t) =

√
h̄

2w̄0
[λf00(t) + λ∗f ∗

00(t)], (7)
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where f00(t) is one of the quantities fμν(t) = ∑
s t sμt sν e

−i�s t

[17].
Note that the above expression is independent of the

temperature and coincides with the one obtained previously
for the zero-temperature case [17]. This is because ρ̂β has even
parity in the dressed momentum and position operators. For the
same reason, we find an entirely similar formula for p′

0(t). The
situation is different for the quantity q ′2

0 (t) = 〈q̂ ′2
0 〉(t). After

performing computations similar to those above, we get

q ′2
0 (t,β) = h̄

2ω̄

{
[λf00(t) + λ∗f ∗

00(t)]2

+2
∑

k

|f0k(t)|2n′
k(β) + 1

}
. (8)

Then from Eqs. (7) and (8) we obtain for the mean-square error

(�q ′
0)2(t,β) = 〈

q̂ ′2
0

〉
(t,β) − [〈q̂ ′

0〉(t)]2

= h̄

2ω̄
+ h̄

ω̄

∑
k

|f0k(t)|2n′
k(β), (9)

where n′
k(β) is given by the Bose-Einstein distribution,

n′
k(β) = 1/(eh̄βωk − 1) [8].

Analogously, we obtain the momentum mean-square error,

(�p0)2(t,β) = p′2
0 (t,β) − [p′

0(t)]2

= h̄ω̄

2
+ h̄ω̄

∑
k

|f0k(t)|2n′
k(β). (10)

From Eqs. (9) and (10) we obtain the time- and temperature-
dependent Heisenberg relation,

�q ′
0(t,β)�p′

0(t,β) = h̄

2
+ h̄

∑
k

|f0k(t)|2n′
k(β). (11)

Time behavior in a cavity with a heated environment. Let
us consider the time evolution of the uncertainty relation
�q ′

0(t,β)�p′
0(t,β) given in Eq. (11) in a finite (small) cavity,

characterized by the dimensionless parameter δ = gR/πc,
and take a coupling regime defined by a relation between
g and the emission frequency ω̄, g = α ω̄. For instance, if
we consider δ = 0.1, α = 0.2, and ω̄ ≈ 1014/s (in the visible
red), this corresponds to a cavity radius R ∼ 10−6 m. We
measure the uncertainty relation in units of h̄ and call it
for simplicity �q ′

0(t,β)�p′
0(t,β) = �(t,β). Then calculations

can be performed in a similar way as in Ref. [8], and we obtain
(there is no confusion between the variable t describing time
and the matrix elements t rμ)

�(t,β) = 1

2
+

∞∑
k=1

1

e(h̄βg/δ)k − 1

[(
t0
0

)2(
t0
k

)2

+2
∞∑
l=1

t0
0 t l0t

0
k t lk cos(�0 − �l)t

+
∞∑

l,n=1

t l0t
n
0 t lkt

n
k cos(�l − �n)t

]
. (12)
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FIG. 1. (Color online) Time evolution of the thermal-dependent
uncertainty relation �β (t) for three different values of the temper-
ature, T = 3.85 (β = 0.26; solid line), T = 3.57 (β = 0.28; dashed
line), and T = 1.96 (β = 0.51; dot-dashed line). We take g = 1.0,
ω̄ = 5.0, and δ = 0.1; the scale for the temperature, the vertical axis,
and time is in units such that kB = h̄ = c = 1; the inset shows the
temperature dependence of two neighboring minimum (solid line)
and maximum (dashed line) values of �β (t) for two times, t ≈ 2.3
and t ≈ 2.5, where they occur.

The matrix elements t rμ in the above formulas are evaluated
in [8],

t0
k ≈ k g2

√
2δ

k2g2 − �2
0δ

2
, t lk ≈ 2kδ

k2 − (l + εl)2

1

l
,

(t k0 )2 ≈ 2gR

πck2
= 2δ

k2
, (t0

0 )2 ≈ 1 − πgR

3c
= 1 − π2δ

3
, (13)

where εl is a small quantity such that 0 < εl < 1. Actually, for
a small cavity (δ � 1), εl ≈ δ/k.

Comments. Equation (12) describes the time evolution
of the uncertainty relation �q ′

0(t,β)�p′
0(t,β) ≡ �(t,β) in a

small cavity. A plot of this time evolution is given in Fig. 1
for some representative values of the temperature. The thermal
uncertainty function �(t,β) is an oscillating function which
attains periodically an absolute minimum (maximum) value,
Min[�(t,β)] (Max[�(t,β)]). Since the periodic character of
�(t,β) does not involve β, the location of these extrema on
the time axis does not depend on the temperature. Indeed,
we can see from Fig. 1 that the values of these minima and
maxima depend on the temperature, β−1, but appear to be,
for each temperature, the same for all values of time where
they occur; in other words the values of the absolute extrema
appear to be independent of time. The inset in Fig. 1 shows a
neighboring absolute minimum and maximum (corresponding
to t ≈ 2.3 and t ≈ 2.5) as functions of temperature. We find
from Fig. 1 that raising the temperature increases the amplitude
of oscillation and the mean value of the uncertainty relation and
that its lower and upper bounds also grow with temperature.

We infer from Fig. 1 that for a small cavity in all cases an
oscillatory behavior is present for �(t,β), with the amplitude
of the oscillation depending on the temperature T . For larger
values of T the amplitude of the oscillation and both its
absolute minimum and maximum values are larger than for
lower temperatures. This behavior of the uncertainty principle
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should be contrasted with the case of an arbitrarily large cavity
(free space). In this last case, the product (�p) (�q) goes,
asymptotically, as t → ∞ for each temperature, to a constant
value �(β). This asymptotic value depends on the temperature
and grows with it but is independent of time. Distinctly, for a
small cavity, even for t → ∞, the product (�p) (�q) presents
oscillations which have larger and larger amplitudes for higher
temperatures.

The result above falls into a general context of the different
behaviors of quantum systems confined in cavities, as com-
pared to free space, in both zero and finite temperature. In [17]
some of us got the expected result that the probability P (t) that
a simple cold atom in free space, excited at t = 0 and remaining
excited after an elapsed time t , decays monotonically, going to
zero as t → ∞, while in a small cavity P (t) has an oscillatory
behavior, never reaching zero. For ω̄ ∼ 1014 (in the visible
red), R ≈ 10−6 m in a weak (of the order of electromagnetic)

coupling regime, Min P (t) ≈ 0.98, which is in agreement with
experimental observations [22]. At finite temperature Ref. [8]
obtained, for a small cavity, that the occupation number of
a simple atom in a heated environment has an oscillatory
behavior with time and that its mean value increases with
increasing temperature. In [9,10] the behavior of an entangled
bipartite system at zero and finite temperature is investigated;
taking two measures of entanglement, an oscillatory behavior
for a small cavity (entanglement is preserved at all times)
results, while it disappears as t → ∞ for free space.

We hope that the result presented in this Brief Report
will have some usefulness in nanophysics or in quantum
information theory. At this moment we are not able to comment
about these aspects; they will be the subject of future studies.

Acknowledgments. The author thanks FAPERJ and CNPq
(Brazilian agencies) for partial financial support.

[1] W. G. Unruh and W. H. Zurek, Phys. Rev. D 40, 1071 (1989).
[2] B. L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev. D 45, 2843 (1992).
[3] F. Haake and R. Reibold, Phys. Rev. A 32, 2462 (1985).
[4] A. O. Caldeira and A. J. Legget, Ann. Phys. (N.Y.) 149, 374

(1983).
[5] F. C. Khanna, A. P. C. Malbouisson, J. M. C. Malbouisson,

and A. E. Santana, Thermal Quantum Field Theory: Algebraic
Aspects and Applications (World Scientific, Singapore, 2009).

[6] G. Flores-Hidalgo, C. A. Linhares, A. P. C. Malbouisson, and
J. M. C. Malbouisson, J. Phys. A 41, 075404 (2008).

[7] G. Flores-Hidalgo, A. P. C. Malbouisson, J. M. C. Malbouisson,
Y. W. Milla, and A. E. Santana, Phys. Rev. A 79, 032105 (2009).

[8] F. C. Khanna, A. P. C. Malbouisson, J. M. C. Malbouisson, and
A. E. Santana, Phys. Rev. A 81, 032119 (2010).

[9] E. R. Granhen, C. A. Linhares, A. P. C. Malbouisson, and
J. M. C. Malbouisson, Phys. Rev. A 81, 053820 (2010);
C. A. Linhares, A. P. C. Malbouisson, and J. M. C. Malbouisson,
ibid. 82, 055805 (2010).

[10] E. G. Figueiredo, C. A. Linhares, A. P. C. Malbouisson, and
J. M. C. Malbouisson, Phys. Rev. A 84, 045802 (2011).

[11] A. Clerk, Nat. Nanotechnol. 4, 796 (2009).
[12] S. Abe and N. Suzuki, Phys. Rev. A 41, 4608 (1990).
[13] B. L. Hu and Y. Zhang, Mod. Phys. Lett. A 8, 3575 (1993).

[14] B. L. Hu and Y. Zhang, Int. J. Mod. Phys. A 10, 4537
(1995).

[15] G. Amelino-Camelia, M. Arzano, Y. Ling, and G. Mandanici,
Classical Quantum Gravity 23, 2585 (2006).

[16] N. P. Andion, A. P. C. Malbouisson, and A. Mattos Neto, J. Phys.
A 34, 3735 (2001).

[17] G. Flores-Hidalgo and A. P. C. Malbouisson, Phys. Rev. A 66,
042118 (2002).

[18] A. P. C. Malbouisson, Ann. Phys. (N.Y.) 308, 373 (2003).
[19] G. Flores-Hidalgo and A. P. C. Malbouisson, Phys. Lett. A 337,

37 (2005).
[20] W. Thirring and F. Schwabl, Ergeb. Exakten Naturwiss. 36, 219

(1964).
[21] Notice that our dressed states are not the same as those employed

in studies involving the interaction of atoms and electromagnetic
fields [23] and in the study of the radiation damping of classical
systems [24].

[22] W. Jhe, A. Anderson, E. A. Hinds, D. Meschede, L. Moi, and
S. Haroche, Phys. Rev. Lett. 58, 666 (1987).

[23] C. Cohen-Tannoudji, Atoms in Electromagnetic Fields (World
Scientific, Singapore, 1994).

[24] T. Petrosky, G. Ordonez, and I. Prigogine, Phys. Rev. A 68,
022107 (2003).

014101-4

http://dx.doi.org/10.1103/PhysRevD.40.1071
http://dx.doi.org/10.1103/PhysRevD.45.2843
http://dx.doi.org/10.1103/PhysRevA.32.2462
http://dx.doi.org/10.1016/0003-4916(83)90202-6
http://dx.doi.org/10.1016/0003-4916(83)90202-6
http://dx.doi.org/10.1088/1751-8113/41/7/075404
http://dx.doi.org/10.1103/PhysRevA.79.032105
http://dx.doi.org/10.1103/PhysRevA.81.032119
http://dx.doi.org/10.1103/PhysRevA.81.053820
http://dx.doi.org/10.1103/PhysRevA.82.055805
http://dx.doi.org/10.1103/PhysRevA.84.045802
http://dx.doi.org/10.1038/nnano.2009.368
http://dx.doi.org/10.1103/PhysRevA.41.4608
http://dx.doi.org/10.1142/S0217732393002312
http://dx.doi.org/10.1142/S0217751X95002102
http://dx.doi.org/10.1142/S0217751X95002102
http://dx.doi.org/10.1088/0264-9381/23/7/022
http://dx.doi.org/10.1088/0305-4470/34/18/303
http://dx.doi.org/10.1088/0305-4470/34/18/303
http://dx.doi.org/10.1103/PhysRevA.66.042118
http://dx.doi.org/10.1103/PhysRevA.66.042118
http://dx.doi.org/10.1016/S0003-4916(03)00173-8
http://dx.doi.org/10.1016/j.physleta.2005.01.066
http://dx.doi.org/10.1016/j.physleta.2005.01.066
http://dx.doi.org/10.1007/BFb0117009
http://dx.doi.org/10.1007/BFb0117009
http://dx.doi.org/10.1103/PhysRevLett.58.666
http://dx.doi.org/10.1103/PhysRevA.68.022107
http://dx.doi.org/10.1103/PhysRevA.68.022107



