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We present a perturbative approach to derive the semiclassical equations of motion for the two-dimensional
electron dynamics under the simultaneous presence of static electric and magnetic fields, where the quantized
Hall conductance is known to be directly related to the topological properties of translationally invariant magnetic
Bloch bands. In close analogy to this approach, we develop a perturbative theory of two-dimensional photonic
transport in gyrotropic photonic crystals to mimic the physics of quantum Hall systems. We show that a suitable
permittivity grading of a gyrotropic photonic crystal is able to simulate the simultaneous presence of analog
electric and magnetic field forces for photons, and we rigorously derive the topology-related term in the equation
for the electromagnetic energy velocity that is formally equivalent to the electronic case. A possible experimental
configuration is proposed to observe a bulk photonic analog to the quantum Hall physics in graded gyromagnetic
photonic crystals.

DOI: 10.1103/PhysRevA.88.013853 PACS number(s): 42.70.Qs, 03.65.Vf, 73.43.−f

I. INTRODUCTION

Since its first phenomenological observation more than 30
years ago [1,2], the physics of the quantum Hall effect has
spurred a wealth of groundbreaking theoretical achievements,
which have eventually clarified the generality of the topo-
logical aspects at the heart of this fascinating problem [3,4].
It is now understood that the dynamical properties of the
two-dimensional (2D) electron motion under the simultaneous
presence of electric and magnetic fields are determined by a
topological invariant of the Bloch bands, an integer known
as the Chern number [5], which is different from zero only
after time-reversal symmetry (TRS) is broken by the external
magnetic field perpendicular to the plane of motion. As a
consequence, the semiclassical equations of motion for the
electron group velocity depend on a topological term related
to the nonvanishing Berry curvature [6–8]. The relevance
of such topological theories is twofold. On one hand, the
generality of geometrical properties has been extensively used
to explain a number of physical phenomena in condensed
matter, from the anomalous Hall effect [9] to the existence of
topological superconductors and insulators [10]. On the other
hand, since the topological invariant is a global property of
the energy eigenstates of the system, it is intrinsically robust
against system perturbations such as lattice distortions and
disorder. As a typical example, in a quantum Hall system, the
transverse conductance is a multiple of the Chern invariant
of the gauge bundle [5,11], for which its value is extremely
stable against structural characteristics of the system, and it is
measured with accuracies of one part per hundred million [12].
As a further consequence, topologically nontrivial systems
possess chiral ballistic edge states at the border of a finite
sample [13,14]. Such states, induced by the spatial boundary
between systems with distinct topological phases, allow
unidirectional and nonreciprocal electronic transport [15], and
they are intrinsically immune to backscattering.
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The analogies between photonic band dispersion in artifi-
cially periodic electromagnetic systems, known as photonic
crystals [16], and the electron band theory in crystalline solids
have recently motivated the idea that TRS breaking allows
nontrivial topological properties of the photonic modes in such
systems [17,18]. Typically, Faraday-active elements arranged
in a periodic lattice produce the required breaking of symmetry
necessary to induce a nonvanishing Chern number for photonic
bands [19]. Following these early proposals, propagation of
backscattering immune photonic edge states has been observed
at the interface between a magneto-optical photonic crystal
and a topologically trivial photonic medium [20]. Clearly,
these features could be very important for future applications
in integrated photonic circuits because of the possibility to
exploit unidirectional channels of electromagnetic energy
transport that are intrinsically insensitive to disorder in the
sample, just like electronic transport in quantum Hall systems.
More recently, several theoretical works have elaborated on
the topological nature of one-way photonic edge modes in
specific gyroelectric [21–24] photonic crystals, TRS breaking
in microwave circuits [25,26], or the generation of artificial
gauge fields for photons in coupled cavity arrays [27–29].
The photonic analog of topological insulators has also been
recently proposed [30] and observed [31], along the same lines
of previous works [19,20]. However, the theoretical problem
of recovering the effective photon dynamics in TRS-broken
photonic systems, in full analogy to the electron transport
theory, has not been fully explored in the literature, to our
knowledge. A few early attempts to derive a topological-based
photon dynamical theory were mostly focused on systems
without TRS breaking [32,33], i.e., with a strict analogy with
the classical Hall transport properties. A rigorous derivation
of the topological terms in the semiclassical equations of
motion for photonic transport starting from a direct analogy
between Bloch-Floquet photonic modes and the magnetic
Bloch electron states is still lacking.

Here we go beyond previous works in analyzing the
analogies between electronic and photonic formalisms for
TRS-broken 2D crystals. To this end, we will first present
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a perturbative approach to obtain the equations of motion for
the electron transport in quantum Hall systems, rederiving the
well-known result that the semiclassical electron dynamics is
described by [6–8]

vnk = 1

h̄
∇kEnk − k̇ × �nk, (1)

k̇ = −e �E
h̄

, (2)

where k is the wave vector, n is the band index, vn(k) is
the group velocity associated with the magnetic Bloch band
energy En(k), �E is the applied electric field, and �n(k)
is the Berry curvature of the gauge bundle constructed on
the Brillouin zone. Essentially, TRS breaking results in a
topological correction, given by the Berry curvature, to the
standard equations of motion for the electron in the periodic
potential of crystalline solids (see, e.g., [34] for a textbook-like
formulation). We will then apply the same formalism to
Maxwell equations in periodic metamaterials with gyrotropic
components and weak grading along one direction, rigorously
obtaining the equation for the electromagnetic mode velocity
containing an analogous topological correction, as already
conjectured in [17–19]. As a final remark, we point out that
in the present work, we are mainly concerned with the link
between linear photonic crystal theory and the topological
aspects of single-electron transport in quantum Hall systems.
We are not dealing with the interesting problem of mimicking
many-body quantum states, such as the ones leading to the
fractional quantum Hall phenomenology [2], within strongly
nonlinear photonic systems [35].

The paper is organized as follows. In Sec. II, we present
a perturbative approach to derive the known results of a
topological term in the single-electron semiclassical equations
of motion in quantum Hall systems. In Sec. III, we explicitly
treat photonic crystals on an analog footing, by applying
the same perturbative concepts from Sec. II to Maxwell
equations. We will then show that a combination of gyrotropic
materials and weak grading of the photonic crystal permittivity
along the propagation direction are able to closely mimic
the semiclassical single-electron dynamics in quantum Hall
systems also from a topological perspective. Finally, in Sec. IV,
we give some conclusive remarks, proposing a possible
experimental setting where these geometrical aspects could
be probed through photon transmission.

II. SINGLE-ELECTRON TRANSPORT IN ELECTRIC AND
MAGNETIC FIELDS

The single-electron Hamiltonian in a 2D crystal with a
magnetic field applied orthogonally to the periodicity plane is

Ĥ = 1

2m

(
p + e

c
A

)2

+ Vc(r), (3)

where p = (px,py) is the electron momentum, A = (Ax,Ay)
is the vector potential associated to the applied magnetic
field B = ∇ × A, Vc(r) = Vc(x,y) is the 2D periodic crystal
potential, and m is the two-dimensional effective electron
mass. The real-space configuration of a quantum Hall system
is schematically represented in Fig. 1.

x 

y 
z 

B 

FIG. 1. (Color online) Scheme of a quantum Hall geometry for
electron transport on a two-dimensional lattice under the simultane-
ous presence of static electric and magnetic fields.

In general, the Hamiltonian (3) lacks translational in-
variance because of the presence of the vector potential A.
However, this model is still invariant by translational symmetry
if the ratio between the magnetic field flux entering the original
unitary cell and the magnetic flux quantum (�0 = hc/e) is a
rational number [36]. It is then possible to extend the validity
of this condition to values of �/�0 arbitrarily close to any
irrational number, with a negligible error [37–39]. Hence, we
can always assume that the eigenfunctions of (3) are of the
Bloch type,

ψnk(r) = eik·runk(r), (4)

and the eigenvalue equation reads

Ĥψnk(r) = Enkψnk(r), (5)

where n is now interpreted as a magnetic band index, k is still
the Bloch wave vector, and unk(r) is the periodic part of the
Bloch wave function. It is easy to see that by using Eq. (4), it
is also possible to obtain the parametric eigenvalue equation
for unk(r), which directly corresponds to Eq. (5) and reads

Ĥkunk(r) = Enkunk(r). (6)

The effects of a static electric field (the Hall field �E) on
the single-particle dynamics can be described by using a
perturbative approach. The perturbed Hamiltonian will be a
sum of the zero-order Hamiltonian, given by Eq. (3), and a
perturbation term given by

Vp = e �E · r. (7)

Up to first order in perturbation theory, the eigenvalues Ẽn(k)
and eigenvectors |ψ̃nk〉 read

Ẽnk � Enk + 〈ψnk|Vp|ψnk〉, (8)

|ψ̃nk〉 � |ψnk〉 +
∑
m�=n

|ψmk〉 〈ψmk|Vp|ψnk〉
Enk − Emk

. (9)

We notice that there is no mixing in k (horizontal mixing) in
Eq. (9) since Vp is an electric dipole term with a static electric
field, which does not produce mixing of different states within
the first Brillouin zone. To proceed with the calculation of the
conductivity in this system, we first calculate the expectation
value of the group velocity in a perturbed state, within the
framework of the Hellmann-Feynman (HF) theorem [40],
whose validity is guaranteed by the fact that the perturbed
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states preserve the Bloch form to first approximation,

|ψ̃nk〉 � eik·r|unk〉 + eik·r ∑
m�=n

|umk〉 〈umk|Vp|unk〉
Enk − Emk

� eik·r|ũnk〉, (10)

where, in the spirit of k · p theory, we have defined

|ũnk〉 .= |unk〉 +
∑
m�=n

|umk〉 〈umk|Vp|unk〉
Enk − Emk

. (11)

Redefining for ease of notation |ũnk〉 .= |ñ〉, from Eqs. (4)–(6)
the expectation value for the group velocity of the electron on
the state |ψ̃nk〉 is

ṽnk = 〈ñ| 1

m
(p + h̄k)|ñ〉 = 〈ñ|∇kĤk|ñ〉, (12)

from which, using Eq. (11), we get (neglecting higher-order
terms)

ṽnk � 〈n| 1

m
(p + h̄k)|n〉

+
∑
m�=n

〈m| 1

m
(p + h̄k)|n〉 〈n|e �E · r|m〉

Enk − Emk

+
∑
m′ �=n

〈n| 1

m
(p + h̄k)|m′〉 〈m

′|e �E · r|n〉
Enk − Em′k

. (13)

With this notation, the HF equations read

〈m| 1

m
(p + h̄k)|n〉 = Enk − Emk

h̄
〈m|∇kn〉, (14)

〈m| r |n〉 = i 〈m|∇kn〉 , (15)

valid for m �= n. By using Eq. (14) in Eq. (13), and assuming
(without loss of generality) that the Hall field is directed along
x, �E = EH x̂ (x̂ indicates the unit vector in the x direction), we
have

ṽnk = 1

h̄
∇kEnk +

∑
m′ �=n

∑
m�=n

eEH

h̄
(〈m|∇kn〉〈n|x|m〉

−〈n|∇km
′〉〈m′|x|n〉), (16)

from which, using Eq. (15), we get

ṽnk = 1

h̄
∇kEnk +

∑
m′ �=n

∑
m�=n

ieEH

h̄
(〈m|∇kn〉〈n|∂kx

m〉

−〈n|∇km
′〉〈m′|∂kx

n〉). (17)

From Eq. (15), it is straightforward to show that

i〈n|∇km〉 = −i〈∇kn|m〉, (18)

which we can plug into Eq. (17) to obtain

ṽnk = 1

h̄
∇kEnk −

∑
m′ �=n

∑
m�=n

ieEH

h̄
(〈∂kx

n|m〉〈m|∇kn〉

−〈∇kn|m′〉〈m′|∂kx
n〉). (19)

By using the completeness relation∑
m

|m〉〈m| =
∑
m�=n

|m〉〈m| + |n〉〈n| = I, (20)

Eq. (19) is reduced to

ṽnk = 1

h̄
∇kEnk − ieEH ŷ

h̄
[〈∂kx

n|∂ky
n〉 − 〈∂ky

n|∂kx
n〉], (21)

where we have indicated with ŷ the unit vector in the y

direction. The last equation can be rewritten as

ṽnk = 1

h̄
∇kEnk − ieEH ŷ

h̄
[(〈∇kn| × |∇kn〉) · ẑ]

= 1

h̄
∇kEnk − ieEH ŷ

h̄
[(curl〈n|∇kn〉) · ẑ], (22)

and defining the Berry curvature

�nk
.= i(curl〈n|∇kn〉) = i∇k × 〈n|∇kn〉, (23)

we finally get

ṽnk = 1

h̄
∇kEnk + e

h̄
�E × �nk, (24)

which can be recast in the more familiar and well-known
expression [6–8], given by Eq. (1), by using the semiclassical
equation of motion, given by Eq. (2).

The importance of the topological term defined by the
Berry curvature in Eq. (24) emerges after calculating the
Hall conductance for this system. We briefly report here this
calculation, for the sake of completeness. In the simplest
thermodynamical case in which the temperature of the system
is T � 0, the contribution of a given magnetic Bloch band to
the drift velocity is

vd,n = S

4π2

∫
BZ

d2kṽnk = S

4π2

eEH ŷ
h̄

∫
BZ

d2k(�nk · ẑ),

(25)

where S is the 2D volume of the primitive cell, �nk · ẑ is the
component of the Berry curvature along z, and the integral is
performed over the first Brillouin zone for which, using Eq. (1),
the term ∇kEnk does not contribute. From the last equation,
we straightforwardly get the current density contributed by the
given band,

Jn = − 1

4π2

e2EH ŷ
h̄

∫
BZ

d2k(�nk · ẑ), (26)

from which the transverse conductivity (in 2D, the Hall
conductance) is quantized and given by integer multiples of
the quantum of conductance, e2/h, as

σxy
n = − 1

4π2

e2

h̄

∫
BZ

d2k(�nk · ẑ) = −e2

h
Cn, (27)

where Cn = 1
2π

∫
BZ

d2k(�nk · ẑ) is exactly the well-known
expression for the Chern number [5,41], which we have
independently obtained here.

III. THEORY OF PHOTONIC TRANSPORT IN
GYROTROPIC 2D PHOTONIC CRYSTALS

Time-reversal symmetry (TRS) breaking is responsible
for the topological nature of the integer quantum Hall phe-
nomenology, which is a strong indication that an analogous
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effect must exist in photonic band-gap media with broken
TRS, as pointed out by Haldane and Raghu [17,18]. In order
to rigorously check the deep connections between electronic
and photonic semiclassical dynamics, we hereby develop
a bulk topological theory for weakly perturbed photonic
crystals with broken TRS, which will lead to an equation
for the velocity of the electromagnetic mode containing
a topological term formally equivalent to Eq. (1), thus
enforcing the analogies between Schrödinger and Maxwell
equations.

In the most general case where the dielectric permittivity
↔
ε

and the magnetic permeability
↔
μ are second-order tensors,

Maxwell equations in photonic crystals can be written in
the form of a generalized eigenvalue problem (see, e.g.,
Ref. [16]),

�eE(r) = ω2↔
ε (r)E(r), (28)

�mH(r) = ω2↔
μ(r)H(r), (29)

where E(r) and H(r) are the electric and the magnetic fields,
respectively, and ω is the oscillation frequency, while

�e
.= ∇ × [

↔
μ

−1
(r)∇ × •], (30)

�m
.= ∇ × [

↔
ε

−1
(r)∇ × •] (31)

are linear operators of the generalized eigenvalue problem.
Such an eigenvalue problem can be recast in a standard one by
using the following basis states [42–44]:

Fe(r) = ↔
ε

1
2 (r)E(r), (32)

Fm(r) = ↔
μ

1
2 (r)H(r) , (33)

which allow one to obtain the eigenvalue equations

�e Fe(r) = ω2 Fe(r), (34)

�m Fm(r) = ω2 Fm(r), (35)

where the Hermitian operators are defined as

�e
.= ↔

ε
− 1

2 (r)∇ × {↔μ−1
(r)∇ × [

↔
ε

− 1
2 (r)•]}, (36)

�m
.= ↔

μ
− 1

2 (r)∇ × {↔ε−1
(r)∇ × [

↔
μ

− 1
2 (r)•]}. (37)

Normalization of the fields is well defined by the notion
of scalar product, 〈Fe,m|Fe,m〉 = ∫

d3rF∗
e,m(r)Fe,m(r), and by

physically requiring that the electromagnetic energy density be
finite in the system [16]. Since the two eigenvalue equations
are perfectly specular with each other, we will focus on
the equation for the electric field henceforth. Following the
proposal in [19], we allow TRS breaking in the system by
using 2D gyrotropic photonic crystals. For practical purposes,
we assume a 2D square lattice of YIG (yttrium iron garnet)
rods in air [19], without loss of generality of the formalism.
The permittivity and the permeability of this system can be

explicitly represented as

↔
ε =

⎡
⎢⎣

ε(r) 0 0

0 ε(r) 0

0 0 ε(r)

⎤
⎥⎦ , (38)

↔
μ =

⎡
⎢⎣

μ(r) iγ (r) 0

−iγ (r) μ(r) 0

0 0 μ0

⎤
⎥⎦ , (39)

and the inverse of
↔
μ is

↔
μ

−1 =

⎡
⎢⎣

μ̄−1(r) iη(r) 0

−iη(r) μ̄−1(r) 0

0 0 μ−1
0

⎤
⎥⎦ , (40)

where μ̄−1(r)
.= μ(r)

μ2(r)−γ 2(r) and η(r)
.= −γ (r)

μ2(r)−γ 2(r) .
In the following, and in full analogy to the electron

dynamics reported above, we will assume a 2D photon dynam-
ics, where mirror symmetry with respect to the propagation
plane allows one to define even (transverse-electric, TE)
and odd (transverse-magnetic, TM) modes, respectively [16].
Moreover, as can be seen from Eq. (40), we have introduced
a magnetic “Faraday mixing” only in the xy plane, which
means that we can restrict our analysis to the TM modes
only, i.e., (Hx,Hy,Ez) field components different from zero.
This assumption is realistic for the cases usually considered
for 2D photonic crystals with gyrotropic constituents (see
also the discussion in Sec. IV), where no mixing of the two
polarization eigenstates occurs. An eigenvalue equation for the
scalar problem is then explicitly derived as (see Appendix A
for the derivation details)

�Fz = ω2Fz, (41)

where Fz is the z component of the vector F (we have dropped
the subscript e for easier notation), and the operator is explicitly
given by

� = { − ε−1μ̄−1∇2

− [μ̄−1∇ε−1 + ε−1∇μ̄−1 + iε−1(ẑ × ∇η)] · ∇
− 1

2∇μ̄−1 · ∇ε−1 − 1
2 μ̄−1∇2ε−1

+ 1
4 μ̄−1ε(∇ε−1)2 − 1

2 i(ẑ × ∇η) · ∇ε−1
}
. (42)

The operator in Eq. (42) has translational symmetry, so its
eigenvectors satisfy the Bloch-Floquet theorem [16] and are
given by an expression similar to Eq. (4). We can rewrite
the eigenvalue problem for the periodic part of Fz, which we
define as unk to keep the analogy with the electronic case, as
in Eq. (6),

�kunk = ω2
nkunk. (43)

In order to apply the perturbative approach described in
the previous section, we introduce a photonic perturbation
mimicking the effect of an electric field as a dragging force,
which is achieved by adding a weak modulation �ε to the
periodic permittivity, imposing the following conditions:

(1) �ε
ε

� 1,
(2) �ε

ε
is slowly varying on the scale determined by the

lattice constant a,
(3) �ε

ε
is a linear function of x.
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We notice that the x axis is chosen here just to preserve the
connection with the treatment given for the electron dynamics
in Sec. II. As an explicit example and without loss of generality,
we can assume �ε

ε
= λx

a
, where λ is a small constant. With

this slow grading of the permittivity, the perturbed operator �̃

takes the form (see Appendix B for the explicit derivation)

�̃ = � − λ
x

a
� = � + Vp, (44)

where we have implicitly defined

Vp .= −λ
x

a
�. (45)

Using the perturbation theory up to the first order, we get the
perturbed eigenvectors and eigenstates

ω̃2
nk � ω2

nk + 〈Fnk|V pFnk〉, (46)

|F̃nk〉 � |Fnk〉 +
∑
m�=n

|Fmk〉 〈Fmk|V pFnk〉
ω2

nk − ω2
mk

, (47)

where by Fnk we mean the z component of the Bloch
eigenfunction F. Exactly as done in the previous section, we
then write

|ũnk〉 .= |unk〉 +
∑
m�=n

|umk〉
〈
umk

∣∣V p

kunk
〉

ω2
nk − ω2

mk

, (48)

V p

k
.= e−ik·rV peik·r. (49)

In this framework, we notice that we are conceptually
exploiting an adaptation of the k · p theory [45–47]. To
avoid mathematical issues at degeneracy points in the first
Brillouin zone, we are assuming nondegenerate photonic
bands throughout the paper.

The dynamical properties will be given by calculating the
electromagnetic field velocity. However, a note of warning
is important here. In fact, while the physical velocity of
an electromagnetic mode, i.e., the one associated to the
electromagnetic energy flux from the Poynting vector, Snk =
1
2 Re{E∗

nk × Hnk}, is given by

v(e)
nk =

∫
d3rSnk

Unk
, (50)

where the electromagnetic energy density is expressed as
Unk = U e

nk + Um
nk, with U e

nk = 1
4

∫
d3r(

↔
εEnk) · E∗

nk and Um
nk =

1
4

∫
d3r(

↔
μHnk) · H∗

nk, the group velocity of the mode is
actually given by

v(g)
nk = ∇kω = 1

2ωnk

〈unk|∇k�k|unk〉
〈unk|unk〉 , (51)

where the last equality is the photonic crystal version of
Eq. (12), as in Ref. [16] (see also Appendix C). In an
ideal photonic crystal made of nondispersive constituents, one
can show that v(e)

nk = v(g)
nk [16,48], as it has been specifically

shown for generic 2D photonic crystals in a photonic k · p
framework [49]. Even if the equality between energy and group
velocity is not generally fulfilled in perturbed systems, it can
be shown (see Appendix D) that in the case of nondispersive
media (i.e., for frequency-independent permittivity and per-
meability tensors), the energy velocity of the mode can be

defined as

ṽ(e)
nk = 1

2ωnk

〈ũnk|∇k�k|ũnk〉
〈unk|unk〉 , (52)

where we are implicitly assuming that up to first order
in perturbation theory, we can approximate 〈ũnk|ũnk〉 �
〈unk|unk〉 in the denominator (as we have done throughout
Appendix D).

By using now Eq. (48), and redefining |ũnk〉 .= |ñ〉 and
|unk〉 .= |n〉 for ease of notation, Eq. (52) can be written as

ṽ(e)
nk = 1

2ωnk〈n|n〉
[(

〈n| +
∑
m�=n

〈m|
〈
V p

kn
∣∣m〉

ω2
nk − ω2

mk

)
∇k�k

×
(

|n〉 +
∑
m′ �=n

|m′〉
〈
m′∣∣V p

kn
〉

ω2
nk − ω2

m′k

)]
, (53)

from which, taking into account only the first-order terms, we
get

ṽ(e)
nk = 1

2ωnk〈n|n〉

×
[
〈n|∇k�k|n〉 +

∑
m′ �=n

〈n|∇k�k|m′〉
〈
m′∣∣V p

kn
〉

ω2
nk − ω2

m′k

+
∑
m�=n

〈m|∇k�k|n〉
〈
V p

kn
∣∣m〉

ω2
nk − ω2

mk

]
. (54)

Using now the first of the photonic HF equations (see
Appendix C for details),

〈umk|∇k�k|unk〉 = (
ω2

nk − ω2
mk

)〈unk|∇kunk〉, (55)

Eq. (54) takes the form

ṽe
nk = 1

2ωnk 〈n|n〉
[
〈n|∇k�k|n〉 −

∑
m′ �=n

〈n|∇km
′〉〈m′∣∣V p

kn
〉

+
∑
m�=n

〈m|∇kn〉〈n∣∣V p†
k m

〉]
. (56)

From Eq. (45), we can write that

〈
m

∣∣V p

kn
〉 = −

〈
m

∣∣∣∣x λ

a
�kn

〉
=

∑
s

−〈m|x|s〉
〈
s

∣∣∣∣λa�kn

〉

=
∑

s

−λ

a
〈m|x|s〉ω2

nkδsn = −λ

a
〈m|x|n〉ω2

nk, (57)

and using what we have shown in Eq. (56), we get

ṽe
nk = 1

2ωnk〈n|n〉
[
〈n|∇k�k|n〉

+
∑
m′ �=n

λ

a
〈n|∇km

′〉〈m′|x|n〉ω2
nk

−
∑
m�=n

λ

a
〈m|∇kn〉〈n|x|m〉ω2

nk

]
. (58)
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Using now the second photonic HF equation, and the fact that
the operator −i∇k is self-adjoint, Eq. (58) becomes

ṽe
nk = 1

2ωnk〈n|n〉
[
〈n|∇k�k|n〉

−
∑
m′ �=n

i
λ

a
ω2

nk〈∇kn|m′〉〈m′|∂kx
n〉

+
∑
m�=n

i
λ

a
ω2

nk〈m|∇kn〉〈∂kx
n|m〉

]
, (59)

from which, exploiting the completeness relation, we straight-
forwardly obtain

ṽe
nk = 1

2ωnk〈n|n〉
[
〈n|∇k�k|n〉

− i
λ

a
ω2

nk(〈∇kn|∂kx
n〉 − 〈∂kx

n|∇kn〉)

+ i
λ

a
ω2

nk(〈∇kn|n〉〈n|∂kx
n〉 − 〈n|∇kn〉〈∂kx

n|n〉)
]
. (60)

At last, in close analogy to the perturbative approach described
for the electronic transport in the previous section, the last line
in Eq. (60) gives a null contribution and, with little algebraic
effort, we obtain

ṽe
nk = 1

2ωnk〈n|n〉
[
〈n|∇k�k|n〉 − λ

a
ω2

nkŷ(�nk · ẑ)

]

= ve
nk − λ

2a

ωnkŷ(�nk · ẑ)

〈n|n〉 . (61)

If we now define the generalized wave-vector equation

κ̇
.= − λ

2a

ωnkx̂
〈n|n〉 , (62)

we can recast Eq. (61) in the compact and familiar form

ṽe
nk = ve

nk − κ̇ × �nk, (63)

which exactly represents the photonic analog of Eq. (1). In
fact, from Eq. (60), a “photonic” Berry curvature can be
explicitly defined by a formally similar expression to the
electronic case in Eq. (23), �nk

.= i∇k × 〈n|∇kn〉. We stress
that the derivation of Eq. (63) is strictly valid only within the
assumptions made throughout this section, namely, consider-
ing 2D photonic crystals made of nondispersive gyrotropic
materials in which no TE-TM mixing occurs. We notice that
also here the Berry curvature is interpreted as a geometric
property of the gauge bundle, referred to a given photonic
band. The relevance of this topological property in photonic
systems has been already discussed in the literature [17,19].
In particular, when this quantity is different from zero, the
gauge bundle is nontrivial and the topology of the bundle
affects the dynamics of light propagation in the system. As
remarked by Raghu and Haldane [17], a necessary condition to
obtain a nontrivial bundle is TRS breaking, as in the gyrotropic
2D photonic crystal system assumed here. In general, when
the degeneracy of photonic bands along the high-symmetry
direction in reciprocal space is removed by TRS breaking,
the associated bundle can “twist,” giving rise to nontrivial
topological features, which can manifest themselves, e.g., as
ballistic one-way edge states [19].

Despite the formal similarities between electronic and
photonic two-dimensional periodic systems, there are a con-
siderable number of physical and mathematical differences
that should be carefully taken into account, such as the
vectorial nature of operators and fields or the reformulation
of HF theorem in the general case. However, it is interesting
to emphasize that the detection of such topological features
appears easier in the photonic case, since the electromagnetic
edge mode can be observed by direct injection of light into the
system, as is further discussed in the next section.

IV. DISCUSSION AND PHYSICAL REALIZATION

Equation (63) is the central result of this paper. It rigorously
shows that by perturbing a gyrotropic photonic crystal with a
linear grading of the permittivity (permeability), the expression
for the energy velocity of an electromagnetic mode contains,
in addition to a zero-order term, a geometrical term depending
on the Berry curvature, in full analogy with the semiclassical
equation for the electron velocity in quantum Hall systems.
Within this framework, the bulk dynamics of light propagation
in a gyrotropic photonic crystal is deeply connected to the
recent observation of backscattering immune edge states [20],
which is now rigorously explained in the photonic context
by the bulk-edge correspondence [13] (also known as the
holographic principle). In fact, although the presence of such
edge states in systems with broken TRS is a clear indication
of nontrivial topological properties, a bulk theory is always
needed to rigorously justify and fully understand their physics.

A possible experimental scheme to demonstrate the bulk
analog of the quantum Hall effect is proposed in Fig. 2. It
shows a weak (e.g., λ ∼ 10−2) linear grading of the dielectric
permittivity along the propagation direction of a 2D YIG-rod
photonic crystal. Indeed, grading of the refractive index can
be technologically achieved in different ways today [50]. A
light beam propagating along the grading direction would
experience a topology-related bending within the photonic
crystal region, according to Eq. (63), that would not be present
in the absence of TRS breaking.

Finally, we would like to stress that a rigorous reformulation
of the semiclassical equation of motion, given by Eq. (2),
expressing the time derivative of the crystal momentum k, is
out of the range of application of the present model. In fact,
even if we can speculate that the equation for k̇ should have

FIG. 2. (Color online) Schematic of a gyromagnetic pillar-based
photonic crystal with weak index grading along the propagation
direction, for a bulk photonic crystal analog of the quantum Hall
effect to be experimentally shown.
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the same explicit expression as in Eq. (62), the demonstration
that k̇ = κ̇ has to be found independently of the theoretical
framework presented so far, which goes beyond the scope of
the present work.

V. CONCLUSIONS

In summary, we have derived a perturbative theory of the
photonic transport in two-dimensional, nondispersive photonic
crystals with gyrotropic constituents and a weak permittivity
grading. Time-reversal symmetry is broken by the gyrotropic
nature of the metamaterials employed, in analogy to the
magnetic field in the electron transport, while the role of the
dragging force induced by the electric field in quantum Hall
systems is played here by the weak permittivity grading along
the propagation direction. The specularity of the theoretical
formulation between electric and magnetic fields, in terms of
a generalized eigenvalue problem from Maxwell equations,
allows a direct transfer of these results to two-dimensional
photonic crystals made of gyroelectric materials with a grading
of the magnetic permeability.

Under the assumption made, we have found that a complete
formal analogy exists between the semiclassical equations
of motion for an electron in a quantum Hall system and
the electromagnetic energy transport in such a bulk photonic
crystal, where the energy velocity of a given photonic mode
is corrected by a topology-related term with the formal
meaning of a Berry curvature. We have rigorously derived the
explicit expression of the photonic Berry curvature in terms of
differential operators derived from Maxwell equations, with a
formally analogous procedure to the electronic case. Thanks to
the bulk-edge correspondence, this work gives a fully rigorous
theoretical account of the recent experimental results obtained
for electromagnetic energy transport through backscattering
immune chiral edge states.

Moreover, these results allow one to design possible
experimental configurations where the direct photonic analog
of the quantum Hall effect can be probed in a bulk two-
dimensional photonic crystal, instead of edge transport. In fact,
the two-dimensional propagation of an electromagnetic beam
in the photonic crystal region should be strongly influenced by
the topological term, and a measurement of the beam deviation
from the expected direction should give a direct measure of
the Berry curvature in such a topological photonic insulator
system.
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APPENDIX A: EXPLICIT FORM OF THE PHOTONIC
EIGENVALUE EQUATION

Here we explicitly obtain the eigenvalue problem for the
field component Fz starting from Eq. (34),

↔
ε− 1

2 ∇ × [
↔
μ

−1∇ × (
↔
ε− 1

2 Fe)] = ω2 Fe. (A1)

First, we impose the condition

F = Fe = (0,0,Fz),

which is justified because there is no TE-TM mixing in our
system, from the assumption we have made on the tensorial
form of the permittivity and permeability tensors, given by
Eqs. (38) and (39), respectively. We now calculate Eq. (A1)
step by step, starting from

∇ × (
↔
ε− 1

2 F) = ( − 1
2ε− 3

2 ∂yεFz + ε− 1
2 ∂yFz

)
x̂

+ (
1
2ε− 3

2 ∂xεFz − ε− 1
2 ∂xFz

)
ŷ .= ζx x̂ + ζy ŷ,

(A2)

with obvious definitions of ζx and ζy . The second step is to
calculate

↔
μ

−1∇ × (
↔
ε− 1

2 F) = ↔
μ

−1
ζ

= (μ̄−1ζx + iηζy)x̂ + (μ̄−1ζy − iηζx)ŷ
.= θx x̂ + θy ŷ, (A3)

with obvious definitions of θx and θy , as before. From Eq. (A3),
we obtain

∇ × ↔
μ

−1∇ × (
↔
ε− 1

2 F) = ∇ × θ

= (−∂zθy)x̂ + (∂zθx)ŷ

+ (∂xθy − ∂yθx)ẑ , (A4)

from which, using the relation ∂zFz = 0, which derives from
the transversality condition ∇ · (

↔
ε E), and the relations ∂zε =

∂zμ = ∂zη = 0, due to the symmetry of the system, we get

∇ × ↔
μ

−1∇ × (
↔
ε− 1

2 F) = (∂xθy − ∂yθx)ẑ . (A5)

Multiplying Eq. (A5) by ε− 1
2 , we obtain the eigenvalue

problem

ω2Fz = { − ε−1μ̄−1∇2

+ ε−1[μ̄−1ε−1∇ε − ∇μ̄−1 − i(ẑ × ∇η)] · ∇
+ 1

2ε−2[∇μ̄−1 · ∇ε − 3
2 μ̄−1ε−1(∇ε)2

+ i(ẑ × ∇η) · ∇ε + μ̄−1∇2ε
]}

Fz. (A6)

Using the relations

ε−2∇ε = −∇ε−1, (A7)

ε−2∇2ε = 2ε(∇ε−1)2 − ∇2ε−1, (A8)

to point out the role of ε−1 with respect to ε, Eq. (A6) assumes
exactly the same expression as in Eq. (41) with the operator in
Eq. (42).

APPENDIX B: EXPLICIT DERIVATION OF THE
PERTURBED PHOTONIC OPERATOR

The perturbed operator, obtained by replacing ε → ε + �ε

in Eq. (42), has the form

�̃ = { − (ε + �ε)−1μ̄−1∇2

− [μ̄−1∇(ε + �ε)−1 + (ε + �ε)−1∇μ̄−1

+ i(ε + �ε)−1(ẑ × ∇η)] · ∇
− 1

2∇μ̄−1 · ∇(ε + �ε)−1 − 1
2 μ̄−1∇2(ε + �ε)−1
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+ 1
4 μ̄−1(ε + �ε)[∇(ε + �ε)−1]2

− 1
2 i(ẑ × ∇η) · ∇(ε + �ε)−1

}
. (B1)

By using the following Taylor expansions,

(ε + �ε)−1 � ε−1 − ε−1

(
�ε

ε

)
,

∇(ε + �ε)−1 � ∇ε−1 − ∇ε−1

(
�ε

ε

)
,

[∇(ε + �ε)−1]2 � (∇ε−1)2 − 2(∇ε−1)2

(
�ε

ε

)
,

∇2 (ε + �ε)−1 � ∇
[
∇ε−1 − ∇ε−1

(
�ε

ε

)]

� ∇2ε−1 − ∇2ε−1

(
�ε

ε

)
, (B2)

which can be obtained assuming that �ε/ε � 1 and
∇(�ε/ε) � 0, Eq. (B1) becomes

�̃ =
{

− ε−1μ̄−1∇2 − [μ̄−1∇ε−1 + ε−1∇μ̄−1 + iε−1(ẑ × ∇η)] · ∇ − 1

2
∇μ̄−1 · ∇ε−1 − 1

2
μ̄−1∇2ε−1

+ 1

4
μ̄−1ε(∇ε−1)2 − 1

2
i(ẑ × ∇η) · ∇ε−1

}
−

(
�ε

ε

){
− ε−1μ̄−1∇2 − [μ̄−1∇ε−1 + ε−1∇μ̄−1 + iε−1(ẑ × ∇η)] · ∇

− 1

2
∇μ̄−1 · ∇ε−1 − 1

2
μ̄−1∇2ε−1 + 1

4
μ̄−1ε(∇ε−1)2 − 1

2
i(ẑ × ∇η) · ∇ε−1

}
= � −

(
�ε

ε

)
� , (B3)

which demonstrates the formal expression given in Eq. (44).

APPENDIX C: FORMULATION OF HELLMANN-FEYNMAN EQUATIONS IN PHOTONIC CRYSTAL CONTEXT

In this Appendix we show how the HF theorem is easily reformulated in the photonic crystal context, and explicitly derive the
two HF equations that are the photonic crystal analog of Eqs. (14) and (15), respectively. We begin by considering the parametric
eigenvalue problem for the periodic part of the Bloch function,

�k|unk〉 = ω2
nk|unk〉. (C1)

Taking the derivative with respect to k and multiplying both sides by 〈unk|, we obtain

〈unk|∇k�k|unk〉 = 〈unk|∇kω
2
nk|unk〉 = 2ωnk∇kωnk〈unk|unk〉, (C2)

from which, given the definition of group velocity as v(g)
nk = ∇kωnk, we get

v(g)
nk = 1

2ωnk

〈unk|∇k�k|unk〉
〈unk|unk〉 , (C3)

which is the photonic formulation of the HF theorem reported in Eq. (12). In the same way, by differentiating Eq. (C1) with
respect to k, and then multiplying by 〈umk|, we get

〈umk|∇k�k|unk〉 = (
ω2

nk − ω2
mk

)〈umk|∇kunk〉, (C4)

which is the photonic formulation of the first HF equation reported in Eq. (14).
Unfortunately, the tensorial nature of the operators makes the photonic reformulation of the second HF equation (15) rather

difficult to demonstrate explicitly in the general case. However, we show here a demonstration for the particular case considered,
i.e., applying the photonic operator to the scalar component of the field. From Eq. (41) with Eq. (42), we have

�kunk = { − ε−1μ̄−1∇2 − [2iε−1μ̄−1k + μ̄−1∇ε−1 + ε−1∇μ̄−1 + iε−1(ẑ × ∇η)] · ∇
+ ε−1μ̄−1k2 − iμ̄−1k · ∇ε−1 − iε−1k · ∇μ̄−1 + ε−1k · (ẑ × ∇η)

− 1
2 i(ẑ × ∇η) · ∇ε−1 − 1

2∇μ̄−1 · ∇ε−1 + 1
4 μ̄−1ε(∇ε−1)2 − 1

2 μ̄−1∇2ε−1}unk = ω2
nkunk, (C5)

where unk is the Bloch part of the component Fz, and hence

∇k�k = ∇k[ε−1μ̄−1(−i∇ + k)2 − iμ̄−1∇ε−1 − iε−1∇μ̄−1 + ε−1(ẑ × ∇η)]

= −2iε−1μ̄−1∇ + 2ε−1μ̄−1k − i[μ̄−1∇ε−1 + ε−1∇μ̄−1 + iε−1(ẑ × ∇η)]. (C6)

Using now the commutation relations

[∇,r] = 1, (C7)

[∇2,r] = 2∇, (C8)

it is straightforward to show

[�k,r] = −2ε−1μ̄−1∇ − 2iε−1μ̄−1k − μ̄−1∇ε−1

−ε−1∇μ̄−1 − iε−1(ẑ × ∇η) = −i∇k�k. (C9)
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Using the last relation in Eq. (C4), we obtain

i〈umk|[�k,r]|unk〉 = (
ω2

nk − ω2
mk

)〈umk|∇kunk〉, (C10)

from which

i〈umk|�kr − r�k|unk〉 = i〈umk|r|unk〉
(
ω2

mk − ω2
nk

)
= (

ω2
nk − ω2

mk

)〈umk|∇kunk〉, (C11)

which finally gives

〈umk|r|unk〉 = i〈umk|∇kunk〉, (C12)

i.e., exactly the photonic crystal analog of Eq. (15).

APPENDIX D: DEMONSTRATION OF AN EXPRESSION
FOR THE ENERGY VELOCITY

In the perturbed two-dimensional photonic crystal con-
sidered, where separation of TE and TM modes occurs
and the permittivity and permeability tensors are assumed
nondispersive, from Eq. (50) we can write Eq. (52) as

ṽ(e)
nk = Re

∫
d3rẼ∗(z)

nk × H̃(x,y)
nk∫

d3rε
∣∣E(z)

nk

∣∣2 , (D1)

where Ẽ∗(z)
nk and H̃(x,y)

nk are the perturbed electric and magnetic
fields, respectively. In Eq. (D1), we have implicitly kept only
the unperturbed product in the denominator, and we considered
twice the electric contribution to the total electromagnetic
energy density, i.e., Unk = 2U e

nk, as is true for harmonic modes
(see, e.g., p. 16 of Ref. [16]). Using the Maxwell equation

∇ × E(r) = iω
↔
μ(r)H(r), (D2)

we can rewrite Eq. (D1) as

ṽ(e)
nk = 1

ω
∫

d3rε
∣∣E(z)

nk

∣∣2

× Re
∫

d3r
[ − iμ̄−1Ẽ∗(z)

nk ∇Ẽ(z)
nk − ηẼ∗(z)

nk

(
ẑ × ∇Ẽ(z)

nk

)]
.

(D3)

From Eq. (47), we straightforwardly obtain the relation

∣∣Ẽ(z)
nk

〉 = ∣∣E(z)
nk

〉 + ∑
m�=n

∣∣E(z)
mk

〉 〈ε 1
2 E(z)

mk|V p
(
ε

1
2 E(z)

nk

)〉
ω2

nk − ω2
mk

= ∣∣E(z)
nk

〉 + ∑
m�=n

Jmn

∣∣E(z)
mk

〉
, (D4)

which, once inserted in Eq. (D3), gives

ṽ(e)
nk = v(e)

nk + 1

ω
∫

d3r ε
∣∣E(z)

nk

∣∣2

× Re
∫

d3r
∑
m�=n

[ − iμ̄−1J∗
mnE∗(z)

mk ∇E(z)
nk

− iμ̄−1JmnE∗(z)
nk ∇E(z)

mk − ηJ∗
mnE∗(z)

mk

(
ẑ × ∇E(z)

nk

)
− ηJmnE∗(z)

nk

(
ẑ × ∇E(z)

mk

)]
. (D5)

Integrating the second and the fourth term in the square
brackets by parts, the last equation becomes

ṽ(e)
nk = v(e)

nk + 1

ω
∫

d3rε
∣∣E(z)

nk

∣∣2

× Re
∫

d3r
∑
m�=n

{ − 2μ̄−1Re
(
iJ∗

mnE∗(z)
mk ∇E(z)

nk

)

+ i∇μ̄−1JmnE∗(z)
nk E(z)

mk − 2iηIm
[
J∗
mnE∗(z)

mk

(
ẑ × ∇E(z)

nk

)]
+ JmnE∗(z)

nk E(z)
mk(ẑ × ∇η)

}
. (D6)

Except for the first term, all the other terms in the square
bracket of Eq. (D6) give a null contribution. In fact, after
observing that Jmn does not depend on spatial variables, we can
see that the third term is purely imaginary, while the second
and fourth terms are odd functions [51]. Thus, we can write

ṽ(e)
nk = v(e)

nk − 2

ω
∫

d3r ε
∣∣E(z)

nk

∣∣2

× Re
∫

d3r
∑
m�=n

μ̄−1Re
(
iJ∗

mnE∗(z)
mk ∇E(z)

nk

)
. (D7)

Now we have to verify if the following equality is correct:

ṽ(e)
nk

?= 1

2ω

〈ũnk|∇k�k|ũnk〉
〈unk|unk〉 , (D8)

where, as before, ũnk is the Bloch part of the perturbed field
component F̃nk = F̃ (z)

e . To this end, the second member of
Eq. (D8), which we define S, can be rewritten using the
relations

S = 1

2ω

〈F̃nk|∇k�|F̃nk〉
〈Fnk|Fnk〉 = 1

2ω

〈
ε

1
2 Ẽ(z)

nk

∣∣∇k�
∣∣ε 1

2 Ẽ(z)
nk

〉
〈
ε

1
2 E(z)

nk

∣∣ε 1
2 E(z)

nk

〉 , (D9)

where we have defined the operator ∇k� as

∇k�|Fnk〉 .= ∇k�k|unk〉, (D10)

which explicitly gives

∇k� = −2iε−1μ̄−1∇ − i[μ̄−1∇ε−1 + ε−1∇μ̄−1

+ iε−1(ẑ × ∇η)]. (D11)

Using Eqs. (D9) and (D11), we obtain

S = 1

2ω
〈
E(z)

nk

∣∣εE(z)
nk

〉
×

∫
d3r

{
Ẽ∗(z)

nk

[ − iε−1μ̄−1∇εẼ(z)
nk − 2iμ̄−1∇Ẽ(z)

nk

− iμ̄−1ε∇ε−1Ẽ(z)
nk − i∇μ̄−1Ẽ(z)

nk + (
ẑ × ∇η

)
Ẽ(z)

nk

]}
,

(D12)
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from which, observing that ∇ε−1 = −ε−2∇ε, we get

S = 1

2ω
〈
E(z)

nk

∣∣εE(z)
nk

〉
∫

d3r
[ − 2iμ̄−1Ẽ∗(z)

nk ∇Ẽ(z)
nk

− i∇μ̄−1
∣∣Ẽ(z)

nk

∣∣2 + (ẑ × ∇η)
∣∣Ẽ(z)

nk

∣∣2]
. (D13)

In the last equation, we can use the same consider-
ations as before regarding odd functions, from which

we get

S = v(e)
n (k) − 4

2ω
〈
E(z)

nk

∣∣εE(z)
nk

〉
× Re

∫
d3r

∑
m�=n

μ̄−1Re
(
iJ∗

mnE∗(z)
mk ∇E(z)

nk

)
, (D14)

which, compared to Eq. (D7), finally gives Eq. (52).
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