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Bloch oscillations of cold atoms in a cavity: Effects of quantum noise
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We extend our theory of Bloch oscillations of cold atoms inside an optical cavity [Venkatesh et al., Phys. Rev.
A 80, 063834 (2009)] to include the effects of quantum noise arising from coupling to external modes. The noise
acts as a form of quantum measurement backaction by perturbing the coupled dynamics of the atoms and the
light. We take it into account by solving the Heisenberg-Langevin equations for linearized fluctuations about
the atomic and optical mean fields and examine how this influences the signal-to-noise ratio of a measurement
of external forces using this system. In particular, we investigate the effects of changing the number of atoms,
the intracavity lattice depth, and the atom-light coupling strength, and show how resonances between the Bloch
oscillation dynamics and the quasiparticle spectrum have a strong influence on the signal-to-noise ratio, as well
as heating effects. One of the hurdles we overcome in this paper is the proper treatment of fluctuations about
time-dependent mean fields in the context of cold-atom cavity QED.

DOI: 10.1103/PhysRevA.88.013848 PACS number(s): 37.30.+i, 42.50.Lc, 37.10.Vz, 37.10.Jk

I. INTRODUCTION

When quantum particles in a periodic potential of period d

are subject to a weak additional constant force F they do not
uniformly accelerate like free particles, but instead undergo
Bloch oscillations [1] at an angular frequency given by

ωB = Fd/h̄. (1)

Bloch oscillations (BOs) of cold atoms in optical lattices were
first observed in 1996 by uniformly accelerating the lattice [2]:
In a frame comoving with the lattice the atoms experience
a constant force. At about the same time, the accelerating
lattice method was used to observe Wannier-Stark ladders [3],
which are a different aspect of the same “tilted lattice” physics.
The method has subsequently been employed to realize beam
splitters for atom optics capable of large momentum transfers;
see, e.g., [4].

In gravity-driven BOs the lattice is held fixed in space but
oriented vertically so that gravity provides the force Fg = mg

on the atoms (of mass m). From Eq. (1), a measurement
of ωB corresponds to a measurement of the applied force
F if we know d/h̄. This Bloch oscillator may be viewed
as an interferometer in momentum space [5] and has been
experimentally demonstrated by a number of groups [6–9].
For example, the experiment [9] used gravity-driven BOs of
strontium atoms to measure the local acceleration due to grav-
ity at the level of �g/g = 5 × 10−6. Like any interferometer,
long coherence times are crucial for precision measurements
and in [9] the BOs were coherent over 7 s, corresponding
to ≈4000 oscillations. This remarkable degree of coherence
was greatly facilitated by the choice of strontium atoms,
which have very weak s-wave scattering, and thus dynamical
instabilities normally associated with superflow in lattices
[10,11] were highly suppressed. Variations on this scheme
that improve the visibility of the BOs, including frequency
[12] and amplitude [13,14] modulation of the lattice, have
allowed for the measurement of gravity at the level of �g/g =
10−9. In these latest experiments the BOs were coherent for
over 20 s.

The experiments referred to above all involve destructive
measurements of the BOs due to the nature of the imaging

process of the atoms, whether it be in situ or by a
time-of-flight technique after the lattice has been switched
off [14]. Therefore, a precision measurement of ωB by the
above methods requires that the experiment be rerun many
times, each run being for a slightly different hold time, so
that the oscillations can be accurately mapped out. This
not only takes a long time, but also requires that the initial
conditions be recreated as faithfully as possible for each
run.

In [15] we proposed a scheme for continuous (i.e., non-
destructive) measurements of BOs based upon placing the
atoms inside a Fabry-Perot optical resonator which would
allow for an estimate of ωB from the data acquired over a
single run. A related scheme has also been independently
proposed for ring cavities [16]. The periodic potential is now
provided by the standing wave of light which forms inside
the cavity when it is pumped by a laser. Orienting the cavity
vertically, the atoms execute BOs along the cavity axis as
depicted in Fig. 1. The enhanced atom-light coupling inside
a high-Q cavity means that the oscillating atoms imprint
a detectable periodic modulation on both the phase and
amplitude of the light which can be seen in either transmission
or reflection. Thus, the measurement is performed upon the
light leaking out of the cavity rather than directly upon the
atoms.

The strong atom-light coupling that can be realized in
cavity-QED stands in contrast to the case of optical lattices
in free space where the atoms exert only a tiny backaction
upon the light. The optical dipole interaction between a single
cavity photon and a single atom is characterized by the Rabi
frequency g0 = (μ/h̄)

√
h̄ωc/(ε0V ), where ωc and V are the

frequency and volume of the relevant cavity mode and μ is the
atomic transition dipole moment. Defining the cooperativity
C ≡ g2

0/(2γ κ), where 2γ is the spontaneous emission rate
of the atom in free space and 2κ is the energy damping
rate of the cavity, 1/C is the number of atoms required to
strongly perturb the light field. The normal mode splitting
that results from strong coupling has been directly observed
in a number of cold-atom optical cavity experiments [17–20].
In the experiment [20], which was performed with a Bose-
Einstein condensate, the cooperativity was C = 145. Even
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FIG. 1. (Color online) Schematic of the precision measurement
proposal in [15]. A dilute cloud of cold atoms undergoes BOs in
the combined intracavity lattice potential and the acceleration due to
gravity. The transmitted light field’s intensity and phase are modulated
at the Bloch frequency. An in situ precise measurement of the Bloch
frequency (and hence the force) can be performed by detecting the
transmitted light.

more pertinently, these systems have been used to detect the
presence of single atoms [21–23], as well as to follow their
dynamics in real time [24,25]. The collective dynamics of
ultracold atomic gases have also been tracked using cavities
[26–28]. The key experimental steps necessary for the continu-
ous monitoring of BOs in a cavity have, therefore, already been
demonstrated.

The drawback with any continuous measurement scheme is
measurement backaction. In cavities this backaction typically
takes the form of cavity photon number fluctuations which
lead to random force fluctuations on the atoms, as is evident
in the erratic nature of the single-atom trajectories seen in
the experiments [24,25] referred to above. In the many-
atom context, quantum measurement backaction generally
manifests itself in a heating of the atom cloud (although
under some circumstances it can lead to cooling [29]). In the
cavity-optomechanical regime (where the collective motion
can be modeled as a harmonic oscillator of angular frequency
ω) the heating rate is expected to be R = (xzpf/h̄)2SFF (−ω)
[30], where xzpf is the zero-point fluctuation and SFF is the
spectral density of the force fluctuations (which is directly
proportional to the cavity photon number fluctuations). This
heating rate is in agreement with observations when convolved
with technical fluctuations [31].

In the system considered in this paper (see Fig. 1), we can
divide the backaction into two types. One type comes from
the fact that the atoms sit in an optical lattice whose depth is
periodically modulated in time at the frequency ωB due to the
effect of BOs. This backaction is a classical effect in the sense
that it occurs even when the light field is treated classically
(no photons). The nonlinearity that arises from this backaction
can lead to swallowtail loops in the atomic band structure
[32,33] that mimic the effects of direct atom-atom interactions
[34–37]. These loops are the counterpart in the atomic wave

function of optical bistability in the light [26–28,38]. The
second type of backaction arises only when the fluctuations
due to the discrete photon nature of the light field are taken
into account and is related to the heating effect mentioned
above. The characteristic frequency of these latter fluctuations
is κ , which is much larger than ωB.

The first type of backaction was analyzed in our previous
paper [15], where our main aim was to show that, despite
the self-generated time modulation of the intracavity optical
lattice, the Bloch acceleration theorem still applies and the
BO frequency is not modified (although harmonics can be
generated). This latter result is clearly very important if the
cavity BO method is to be used for precision measurements
and may be viewed as a consequence of the fact that the
formula (1) does not depend on the depth of the lattice, only
its spatial period. An estimate of the effects of the second type
of backaction was also given in our previous paper, but this
estimate was obtained under the assumption that the photon
number fluctuations were due purely to the photon shot noise
found in a coherent state of light. This ignores the correlations
that build up between the atoms and the light inside the cavity
and our main aim in this paper is to solve the dynamics
of the coupled photon and atom fluctuations systematically
from first principles and thereby capture these correlations.
This will allow us to properly determine the sensitivity
of the measurement of the Bloch frequency to quantum
fluctuations.

The plan of this paper is as follows. In Sec. II we introduce
the physical system, the associated Hamiltonian, and the
equations of motion. We then review in Secs. III and IV
the mean-field approximation and the associated numerical
results which were the focus of our previous paper [15], before
introducing in Sec. V the main model to be treated in this paper,
which adds quantum fluctuations. This is an elaboration of the
linearization approach presented in, e.g., [39–41], to include a
time-dependent mean-field component (due to the BOs). The
fluctuations correspond to quasiparticles (excitations out of the
mean field), and their spectrum is analyzed in Sec. VI and then
used to help interpret the numerical results for the quantum
dynamics presented in Sec. VII. We also develop a simple rate
equation picture, valid in the weak coupling regime, to help
us understand the rate of quasiparticle excitation. Following
this we change gears slightly and apply the above results
to investigate how quantum fluctuations affect a precision
measurement of ωB by calculating the signal-to-noise ratio
(SNR). We present the theory lying behind these calculations
in Sec. VIII and in Sec. IX we examine the results, paying
particular attention to whether or not there is an optimal value
for the atom-light coupling parameter β = NU0/κ . We also
present results illustrating the dependence of the SNR on
other system parameters such as the number of atoms and the
intracavity lattice depth. We summarize our results and give
some further perspective in Sec. X. We have also provided
three appendixes that give details omitted from the main text:
The first derives an approximation wherein the cavity field is
assumed to be in a coherent state and the atomic fluctuations
about the mean field are treated as independent oscillators, the
second discusses the effects that BOs have on cavity cooling,
and the third discusses our approach to calculating two-time
correlation functions.
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II. HAMILTONIAN AND EQUATIONS OF MOTION

Our system consists of a gas of N bosonic atoms inside a
vertically oriented Fabry-Perot optical cavity. A single cavity
mode of frequency ωc is coherently pumped by a laser with
frequency ωp that is detuned from both the atomic and the
cavity resonance frequencies. This sets up a standing wave
mode along the cavity axis of the form cos(kcz), where kc =
ωc/c. The relevant frequency relations are characterized by the
two detunings

�c ≡ ωp − ωc, (2a)

�a ≡ ωp − ωa, (2b)

where ωa is the atomic transition frequency. In the disper-
sive regime, the occupation of the excited atomic state is
vanishingly small and it can be adiabatically eliminated. A
one-dimensional Hamiltonian for the atom-cavity system in
the dispersive regime can then be written as [42,43]

Ĥ = −h̄�câ
†â + ih̄η(â† − â)

+
∫

dz 	̂†
[
− h̄2

2M

∂2

∂z2
+ h̄U0â

†â cos2(kcz) − Fz

]
	̂,

(3)

where 	̂(z,t) and â(t) are the field operators for the atoms
and the cavity photons which obey the equal time bosonic
commutation relations [	̂(x,t),	̂†(x ′,t)] = δ(x − x ′), and
[â(t),â†(t)] = 1, respectively. The single-atom dispersive light
shift has been denoted by U0 ≡ g2

0/�a .
The Hamiltonian has been written in a frame rotating with

the pump laser frequency ωp, and this leads to the appearance
of the two detunings. The first term is just the free evolution
of the cavity mode. The second term represents the laser
coherently pumping the cavity at rate η, and the third term
describes the atomic part of the Hamiltonian. The first two
terms of the atomic part represent the kinetic energy and a
light-induced potential energy. This latter term can either be
understood as the atom moving in a periodic potential with
average amplitude h̄U0〈â†â〉 or, if combined with the first
term in the Hamiltonian, as a shift in the resonance frequency
of the cavity due to the coupling between the atom and the
field. The third term in the atomic part provides the external
force that drives the BOs. We assume this force arises from the
vertical orientation (z increases in the downward direction) of
the cavity and is given by F = Mg.

We have not included direct atom-atom interactions in
the Hamiltonian (3) because under realistic experimental
conditions they are three orders of magnitude smaller than
the recoil energy ER ≡ h̄2k2

c /(2M), which characterizes the
single-particle energy (kinetic and potential) of an atom in an
optical lattice. Consider, for example, the mean-field interac-
tion energy per particle Eint/N = (2πh̄2asN/M)

∫ |(r)|4d3r

for a cloud of N = 5 × 104 87Rb atoms trapped in a 178-μm-
long cavity [28]. Here as = 5.3 nm is the s-wave scattering
length. We take the normalized three-dimensional (3D) wave
function (r) to be the product of a ground band Bloch wave
that extends 178 μm along z and a Gaussian 25 μm wide in
the transverse plane. Then, evaluating the Bloch wave for a lat-
tice which is 3ER deep and made from 780 nm light (456 wells
are occupied), we find the ratio Eint/N : ER = 1.1 × 10−3.

The interactions can be tuned to smaller values still using
a Feshbach resonance: The experiment [44] increased the
dephasing time of BOs from a few oscillations to 20 000
using this technique. The fact that the atoms all interact with a
common light field whose magnitude is modified by the sum
of their individual couplings gives rise to a nonlinearity (the
classical backaction referred to above) that is in some ways
analogous to that due to direct interactions [32,45], but in other
ways differs and can lead to novel behavior [42,43,46].

Natural units for the length and energy in cavity QED are
given by 1/kc and the recoil energy ER, respectively. From here
on we scale all lengths by 1/kc and consequently define x ≡
kcz. We scale frequencies by the recoil frequency ωR ≡ ER/h̄

and time by 1/ωR and retain the same symbols for the scaled
variables. The Heisenberg-Langevin equations of motion for
the light and atomic field operators in the scaled variables
are [42]

i
dâ

dt
=

[
−�c +

∫
dx 	̂†(x,t)	̂(x,t)U0 cos2(x) − iκ

]
â

+ iη + i
√

2κξ̂ (t), (4a)

i
∂	̂

∂t
=

[
− ∂2

∂x2
+ U0â

†â cos2(x) − f x

]
	̂, (4b)

where f ≡ F/(h̄kcωR) = ωB/(πωR) is the dimensionless
form for the external force. The operator ξ̂ (t) is the Langevin
term and is assumed to be Gaussian white noise with the only
nonzero correlation being

〈ξ̂ (t)ξ̂ †(t ′)〉 = δ(t − t ′). (4c)

Mathematically, the Langevin noise terms are necessary in
order to preserve the commutation relation [â(t),â†(t)] = 1 in
an open system. Physically, their origin is vacuum fluctuations
of the electromagnetic field that are transmitted into the cavity
via the mirrors and they thus only appear in the equations
for the light field. Nevertheless, the noise is conveyed to the
atomic dynamics by the atom-light coupling.

III. MEAN-FIELD DYNAMICS: THEORY

The approach we follow in this paper is based upon a
separation of the field operators into mean-field and quantum
parts:

â(t) = α(t) + δâ(t), (5a)

	̂(x,t) =
√

Nϕ(x,t) + δ	̂(x,t). (5b)

In the mean-field approximation the light is assumed to be in
a classical state with amplitude α(t) = 〈â(t)〉, where |α(t)|2
corresponds to the average number of photons in the cavity,
and the atoms are assumed to all share the same single-
particle wave function ϕ(x,t) = 〈	̂(x,t)〉/√N . The equations
of motion for the mean-field amplitudes α(t) and ϕ(x,t) are

i
dα(t)

dt
= [−�c + NU0〈cos2(x)〉 − iκ]α(t) + iη, (6a)

i
∂ϕ(x,t)

∂t
=

[
− ∂2

∂x2
+ |α(t)|2U0 cos2(x) − f x

]
ϕ(x,t),

(6b)

013848-3



B. PRASANNA VENKATESH AND D. H. J. O’DELL PHYSICAL REVIEW A 88, 013848 (2013)

0 2 4 6 8 10

3

3.5

4

4.5

5

5.5

6

Time t (units of TB)

s(
t)

(u
ni

ts
of

ω
R
)

 

 
NU0/κ = 1
NU0/κ = 3
NU0/κ = 5

FIG. 2. (Color online) Intracavity optical lattice depth s(t) ≡
U0|α(t)|2 in units of the atomic recoil frequency ωR plotted as a
function of time. The curves, which are each for a different value of
the collective atom-cavity coupling parameter NU0/κ , were obtained
by solving the mean-field equations of motion Eqs. (6a) and (6b)
and illustrate the fact that the change in lattice depth over one
BO increases with NU0/κ . In order to maintain a minimum lattice
depth of 3ER as NU0/κ was increased by changing U0 = {1,3,5}u0,
where u0 = 7 × 10−3ωR, we also changed the pumping strength as
η = {30.7,24.2,24.3}κ , giving mean photon numbers {458,172,117},
respectively. The other parameter values used in this plot are �c =
−0.75 κ , κ = 345 ωR, and N = 5 × 104. For all the plots in this paper
the force is such that the Bloch frequency has the value ωB = ωR/4.

where the second equation has the form of a Schrödinger
equation. The expectation value

〈cos2(x)〉(t) =
∫

dx|ϕ(x,t)|2 cos2(x) (6c)

that appears in the first of these equations provides the time-
dependent coupling between the atomic probability density
and the cavity mode function. Multiplying this integral is
the collective atom-cavity coupling parameter NU0. When
measured in units of the cavity linewidth we denote this
parameter by β:

β ≡ NU0/κ. (7)

We illustrate the effect that β has on the mean-field dynamics
in Figs. 2 and 3 below.

In Ref. [32] we studied the influence the classical backac-
tion nonlinearity has upon the band structure of atom-cavity
systems. The band structure is given by the steady-state
solutions [α̇ = 0, ϕ(x,t) = ϕ(x) exp(−iμt/h̄)] of the coupled
equations of motion (6a) and (6b) in the absence of the
external force f . It is straightforward to see that, despite the
nonlinearity, exact solutions of the steady-state problem are
given by Mathieu functions (like in the linear problem of a
quantum particle in a fixed cosine potential). Mathieu functions
are Bloch waves and so can be labeled by a band index b and
quasimomentum q [47],

ϕq,b(x) = eiqxUq,b(x), (8)

where Uq,b(x + π ) = Uq,b(x) has the same period as the
lattice. In the reduced zone picture q is restricted to lie in
the first Brillouin zone −1 < q � 1. Substituting the Bloch
wave solution into the equations of motion yields the
steady-state equations

αss = iη

�c − NU0〈cos2(x)〉 + iκ
, (9a)

μq,b Uq,b(x) =
[(

−i
∂

∂x
+ q

)2

+ |αss |2U0 cos2(x)

]
Uq,b(x),

(9b)

where the subscript ss denotes “steady state.” Solving these
equations one obtains a band structure analogous to that in the

(a) Lattice depth as a function of time.
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(b) Fourier transform in time of lattice depth.

0 2 4 6 8 10
3

3.5

4

4.5

5

5.5

6

6.5

s(
t)

(u
ni

ts
of

ω
R
)

Time t (units of TB)

FIG. 3. The lattice depth s(t) in units of the atomic recoil frequency ωR is shown in (a) and its Fourier transform s(ω) is given in (b).
We have increased the atom-cavity coupling from Fig. 2 to NU0/κ = 7.75. At this larger value some fast fluctuations on top of the slow BO
become visible. Their frequency is dominated by a harmonic at 10 ωB , as can be seen in the inset.
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linear case but with the striking difference that the nonlinearity
can lead to swallowtail loops in the bands. It is important to
appreciate that this band structure is not for the atoms alone, but
for the combined atom-cavity system. For example, the eigen-
value μ is actually a chemical potential rather than the band
energy (for the underlying energy functional with the light
adiabatically eliminated, see [32]), and another difference from
the linear case is that the lattice depth s = U0|αss |2 is not fixed,
but instead depends on the values of {b,q}. So, for example,
the lattice depth changes during a BO as q is swept along the
band.

The external force f breaks the spatial periodicity and
means that Bloch waves are replaced by Wannier-Stark states
as the stationary solutions of the equations of motion (in
fact, in finite systems the Wannier-Stark states are resonances
rather than true eigenstates [48]). The spatial periodicity can
be restored by applying the unitary transformation ϕ̄(x,t) =
exp(−if tx)ϕ(x,t), which removes the f x term appearing
in the Hamiltonian in the Schrödinger equation (6b) and
introduces a shift f t into the momentum operator

H = − ∂2

∂x2
+ s(t) cos2(x) − f x

−→ H̄ =
(

−i
∂

∂x
+ f t

)2

+ s(t) cos2(x). (10)

We denote the frame resulting from this transformation as
the transformed frame (TF), and the original frame as the
laboratory frame (LF).

Let us now consider the dynamics under the influence of
the force term. We take the initial atomic state ϕ̄(x,t = 0) =
ϕ(x,t = 0) to be a Bloch state in the ground band with
quasimomentum q = q0. In the adiabatic approximation the
atoms remain in the ground band but the force causes
the quasimomentum to sweep periodically through the first
Brillouin zone in accordance with the Bloch acceleration
theorem

q(t) = q0 + f t, (11)

as can be seen by comparing Eqs. (9b) and (10). In fact, a
careful analysis [49] shows that Eq. (11) holds even when
adiabaticity is broken and interband transitions are allowed
providing these transitions are “vertical”; i.e., they conserve q.

This standard approach to BOs remains valid even when
the lattice depth is modulated in time, as takes place in
cavities, because amplitude modulation does not break the
spatial periodicity of the potential and so cannot change q [15].
We therefore find that at any later time t , the exact atomic mean
field can be expressed as

ϕ(x,t) = exp [i(q0 + f t)x]U(t). (12)

In general, U(t) is in a superposition of bands and so is no
longer the steady-state solution of Eqs. (9a) and (9b), although
it does retain its Bloch form. The advantage of the TF is that
the quasimomentum is frozen at its initial value and we have

ϕ̄(x,t) = exp [iq0x]U(t) (13)

so that it is only the spatially periodic functionU(t) that evolves
in time. From the point of view of numerical computation

this allows us to work with a basis of periodic functions (we
normalize our wave functions over one period of the lattice).
At any given time a relatively small number of basis functions
can accurately describe the atomic mean-field state and this
greatly reduces the numerical effort in the calculation of BOs.

By working in terms of Bloch waves, our approach
is predisposed towards treating wave functions which are
localized in momentum space rather than coordinate space.
This choice is sensible because momentum space is a natural
setting for BOs as is evident from Eq. (11). This is also in
line with existing experiments demonstrating cold-atom BOs
in free space optical lattices [2,6–9,12,13], where the initial
state is generally a fairly narrow wave packet in momentum
space. In this paper we therefore restrict ourselves to states
that are completely localized in quasimomentum (δ-function
wave packet).

IV. MEAN-FIELD DYNAMICS: RESULTS

We now present our numerical results for the mean-field
dynamics. The initial state at time t = 0 is taken to have
quasimomentum q = 0 and be given by the solutions αss

and U0,0(x) of the mean-field steady-state equations [Eqs. (9a)
and (9b)] for atoms in the ground band. This state is propagated
in time using the mean-field equations of motion [Eqs. (6a)
and (6b)]. The reasons for our choices for the parameter values
{U0,N,η,�c,κ} are explained at the end of this section.

Under the action of the external force the atoms begin
performing BOs, which for atoms in extended Bloch states
gives rise to a breathing motion of the atomic density
distribution on each lattice site [15]. The classical backaction
imprints an oscillation on the amplitude and phase of the light
field at the Bloch frequency ωB. In Fig. 2 we plot the time
dependence of the intracavity lattice depth s(t) = U0|α(t)|2
seen by atoms, which is proportional to the number of cavity
photons |α|2. The experimental signature of the BOs is the
photon current transmitted by the cavity, and this is given in
the mean-field approximation by κ|α(t)|2 and hence is directly
proportional to s(t).

The size of the backaction is controlled by the collective
coupling β = NU0/κ , as is apparent from the different curves
in Fig. 2. As β is increased the change in the lattice depth over
a Bloch period increases and hence the visibility or contrast of
the BOs as measured by a photon detector outside the cavity
increases also. We define the contrast ε as

ε ≡ (smax − smin)/(smax + smin). (14)

Each curve in Fig. 2 has a different pumping strength η in
order to maintain the same minimum lattice depth of 3ER.
If the lattice becomes too shallow interband transition rates
(e.g., due to Landau-Zener tunneling around the band edges)
become so high that the atoms effectively fall out of the lattice.
On the other hand, if the lattice becomes too deep the contrast
decreases (see Fig. 9(a) below and also Fig. 5 in [32]). A depth
of 3ER gives a reasonable compromise. Therefore, although
in the rest of this paper we examine the effects of changing the
various system parameters, we always maintain the minimum
lattice depth at 3ER [except in Figs. 9(a) and 14]. This also
allows us to make comparisons between the effects of different
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parameter values upon, e.g., the quantum fluctuations, while
keeping the atomic mean-field dynamics as similar as possible.

As the coupling β is increased other effects appear apart
from an increase in the contrast. These effects are visible in
Fig. 3 (see also Fig. 2 in [15]). In Fig. 3(a) we see that small-
amplitude fast oscillations of the lattice depth appear on top of
the basic BO. Referring to the Fourier transform of s(t) plotted
in Fig. 3(b), we see that the basic BO dynamics is governed
by the fundamental ωB and its low-lying harmonics, whereas
the fast oscillations are clustered around the tenth harmonic
(see inset) and include a continuum of frequencies with some
peaks at half harmonics. In this context it is important to bear
in mind that the band gaps change continuously in time as q is
swept through the Brillouin zone and so a range of frequencies
is to be expected.

The precision to which ωB can be measured in the scheme
proposed in this paper depends upon the contrast. From the
results shown in Fig. 2 it may therefore seem that in order
to make the most sensitive measurement possible one should
choose β to be as large as possible. However, this is false
for two reasons. One is the effect of quantum fluctuations
due to measurement backaction which is also controlled by β

and is the focus of Sec. VIII. Another reason, which enters
even at the mean-field level, is the possibility of bistability
in cavity photon number for large values of β (when the
pumping is sufficiently large). In [28] this bistability was
studied experimentally in a uniform unaccelerated condensate,
which in our language has a quasimomentum q = 0. In [32] we
studied this problem theoretically and generalized it to include
finite q: We showed that bistability arises from the appearance
of swallowtail loops in the bands. In the semiclassical
picture of a BO the quasimomentum scans adiabatically
through the entire band and so when it encounters a swallowtail
loop the system can follow a branch that suddenly terminates
at some later time, leading to fundamentally nonadiabatic
behavior [15,50]. Hence, in a scheme to measure BOs, it would
be better to be in a parameter regime where the cavity is not
bistable for any value of q. In Fig. 4 we plot the pump strength
required to maintain the lattice depth at a minimum value of
3ER as a function of β. The red (solid) and blue (dot-dashed)
lines enclose the values of η for which the steady-state photon
number in the cavity displays bistability for at least some
values of the quasimomentum. We see that for β values as
large as 25 (at the fixed detuning �c = −0.75κ) one can
avoid bistability and get large contrast in the lattice depth
evolution.

Having emphasized that our choice for the pumping
strength η is guided by the trade-off between contrast and
bistability according to Fig. 4, let us now explain how we
chose the rest of the system parameters used in the calculations.
There are three parameters we hold constant throughout this
paper. The first is the cavity damping rate κ = 345 ωR which
is the value realized in the experiment [28]. As a guide to
the magnitude of the atomic recoil frequency ωR used as
the frequency unit, we note that for 87Rb atoms in 780-nm
light ωR = 2π × 3.8 kHz. The second constant parameter is
the Bloch frequency ωB = ωR/4. The gravitational force on
87Rb atoms in a 780-nm lattice provides a Bloch frequency
very close to this value. Finally, unless specified otherwise,
we keep the mean-field atom number fixed at N = 5 × 104
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η
/
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max η bistability
min η bistability
η for s(q = 0) = 3

FIG. 4. (Color online) Plot of pump strength (dashed black line)
required to maintain a minimum lattice depth of 3ER as a function
of NU0/κ . The red (solid) and blue (dash dotted) lines enclose the
values of η for which the steady-state photon number in the cavity
is bistable for any value of the quasimomentum of the atomic wave
function. One sees that for NU0/κ ∼ 25, the pump strength required
to maintain the lattice depth leads to bistability. Other parameters for
the plot are �c = −0.75 κ , κ = 345 ωR, N = 5 × 104.

and vary U0 in order to vary β. This last choice is motivated
by a scaling symmetry of the mean-field equations [Eqs. (6a)
and (6b)], which also holds for the quantum operator equations
[Eqs. (22a) and (22b)] below; solving the coupled equations
for the set of parameters {U0,N,η,�c,κ} is exactly the same
as solving them for {U0r,N/r,η/

√
r,�c,κ}, where r is some

positive scaling factor. In both the scaled and the unscaled
versions the lattice depth s(t) = U0|α(t)|2 is maintained at
the same value. Thus, each specific calculation one performs
represents a family of parameters. Our choice for N keeps the
atomic density dilute enough in a typically sized cavity that the
approximation of ignoring collisional atom-atom interactions
remains valid. There is some latitude in the choice of �c, but
the contrast one obtains at a given value of β is larger for �c

closer to the cavity resonance. On the other hand, one also has
to make sure that the effective cavity detuning,

�eff
c ≡ �c − NU0〈cos2(x)〉, (15)

is less than zero so that we are in the cavity cooling regime
for the fluctuations [40] (see Sec. VI). We set �c = −0.75κ

since we find that it maximizes the contrast for the coupling
value of NU0/κ = 1. We examine the effect of changing the
number of atoms N and the minimum lattice depth when we
examine the SNR in Sec. VIII.

V. QUANTUM DYNAMICS: THEORY

The approach we take to quantum dynamics is based
upon a linearization about the mean-field solution, retaining
the quantum operators δâ and δ	̂ only to first order in the
equations of motion. This corresponds to the Bogoliubov level
of approximation [51,52], suitably generalized to describe
coupled atomic and light fields. A new feature of our problem

013848-6



BLOCH OSCILLATIONS OF COLD ATOMS IN A CAVITY: . . . PHYSICAL REVIEW A 88, 013848 (2013)

in comparison to previous linearization-based treatments of
cavity-QED systems, e.g., [39,41,53], is that our mean field
is time dependent because of the BOs. This means that the
fluctuation modes, which must be orthogonal to the mean-field
mode, also evolve in time (not just their occupations).

Linearizing about the mean-field solution may appear to be
an innocent strategy, but, as is well known from the theory
of Bose-Einstein condensation, care must be taken with such
U(1) symmetry-breaking approaches because they introduce
a macroscopic (mean-field) wave function with a particular
global phase at the cost of particle-number conservation
[54]. In particular, when performing a linearization about the
condensate there is always a trivial fluctuation mode parallel
to it with zero frequency (the “zero mode”) which corresponds
to unphysical fluctuations of the global phase. These issues are
even more acute when the condensate is time dependent and
the boundary between condensate and fluctuation is further
blurred [55].

The zero mode problem can be handled by only including
fluctuations that are at all times orthogonal to the mean field.
We achieve this by applying the projector P̂ (t) [55,56]

P̂ (t) = I − |ϕ(t)〉〈ϕ(t)| (16)

so that

δ	̂⊥(x,t) ≡ P̂ (t) δ	̂(x,t)

=
∫

dy[δ(x − y) − ϕ(x,t)ϕ∗(y,t)]δ	̂(y,t). (17)

One consequence of this is that the commutator between
atomic fluctuations is given by [57]

[δ	̂⊥(x,t),δ	̂†
⊥(y,t)] = 〈x|P̂ (t)|y〉

= δ(x − y) − ϕ(x,t)ϕ∗(y,t). (18)

Unlike the usual bosonic commutator for the fluctuation field
¯δ	̂, this is time dependent.

Next, we transform the atomic fluctuation operator from
the LF to the TF

¯δ	̂(x,t) = δ	̂(x,t)e−if tx, (19)

which simplifies the calculation for the same reasons as
mentioned in Sec. III for the mean field. Since only “vertical”
fluctuations between bands can occur, both the fluctuations

and the mean field have the same quasimomentum (which in
the TF is frozen at its initial value), and so we can expand the
fluctuations and mean field in the same basis,

ϕ̄(x,t) =
∑

n

cn(t)ei2nx, (20)

¯δ	̂⊥(x,t) =
∑

n

δĉn(t)ei2nx. (21)

This makes the numerics a little easier. Note that we have
set the initial quasimomentum in these equations to q0 = 0
without loss of generality. Meanwhile, back in the LF, the
quasimomentum evolves according to the Bloch acceleration
theorem given by Eq. (11).

We can now write the coupled equations of motion for the
cavity and atomic fluctuation operators in the TF as

i
d

dt
δâ(t) = A(t)δâ(t) +

√
NU0α(t)

∫
dx cos2(x)

× [ϕ̄∗(x,t) ¯δ	̂⊥(x,t) + ϕ̄(x,t) ¯δ	̂
†
⊥(x,t)]

+ i
√

2κξ̂ (t), (22a)

i
∂

∂t

¯δ	̂⊥(x,t) = H̄(t) ¯δ	̂⊥(x,t) +
√

NU0P̂ (t) cos2(x)ϕ̄(x,t)

× [α∗(t)δâ(t) + α(t)δâ†(t)], (22b)

where A(t) ≡ −�c + NU0〈cos2(x)〉(t) − iκ . The structure of
these equations is such that without the Langevin term ξ̂ (t) the
operators δâ and ¯δ	̂⊥ would be fixed at their initial values and
so the quantum parts of the fields would remain zero for all
time. The Langevin fluctuations appear as an inhomogeneous
term in the cavity field equation and act as a source that drives
the evolution of δâ, which in turn drives the evolution of ¯δ	̂⊥
via the atom-cavity coupling.

As pointed out in [41], the dynamics of the complex valued
operators in the above equations can be solved either by
separating out their real and imaginary parts (optomechanics
approach) or by simultaneously solving the equations for
the Hermitian conjugates of the operators (the Bogoliubov–
de Gennes approach). We choose the latter. Collecting the
fluctuations into the column vector R̂(t) = (δâ δâ† ¯δ	̂⊥ ¯δ	̂

†
⊥)T

and the noise operators that act as source terms into the column
vector Ẑ(t) = √

2κ(ξ̂ ξ̂ † 0 0)T , where T denotes transposition,
we obtain the operator matrix equation

i
∂

∂t
R̂ = MR̂(t) + iẐ(t), (23a)

with

M(t) =

⎡
⎢⎢⎢⎢⎣

A 0
√

NU0αV ∗ √
NU0αV

0 −A∗ −√
NU0α

∗V ∗ −√
NU0α

∗V√
NU0α

∗W (x)
√

NU0αW (x) P̂ H̄(t) 0

−√
NU0α

∗W †(x) −√
NU0αW †(x) 0 −P̂ † H̄(t)

⎤
⎥⎥⎥⎥⎦, (23b)

where we have introduced the operators

V · g(x) ≡
∫

dx ϕ̄(x,t) cos2(x)g(x), (23c)

W (x) ≡ P̂ (t) cos2(x)ϕ̄(x,t); (23d)
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i.e., V is an integral operator that acts on a function g(x).
Since they fall on the off diagonals, the terms involving V

and W couple the cavity and atom fluctuations. Observe,
however, that in the linear approximation used here the atomic
fluctuation operators ¯δ	̂⊥(x,t) are not directly coupled to the
cavity fluctuation operators δâ(t) because this would lead to
terms which are of second order. Rather, the coupling between
the two sets of quantum fields is mediated by the mean fields
α(t) and ϕ̄(x,t).

The matrix M(t) is non-normal; i.e., it does not commute
with its Hermitian adjoint and its left and right eigenvectors are
not the same. However, it does have the following symmetry
property: A linear transformation T that swaps the first
and second, and simultaneously, the third and fourth rows,
produces a matrix which is proportional to the complex
conjugate of the original [40],

T .M.T = −M∗. (24)

This symmetry, which is a general feature of Bogoliubov–de
Gennes-type equations [11], implies that the eigenvalues (and
the associated eigenvectors) occur in pairs of the form ±ωn +
iγn, i.e., with the same imaginary parts but with real parts
of opposite sign. We explore the spectrum of the fluctuation
matrix M further in the Sec. VI. We also note that when written
in matrix form the role of the projection operator becomes clear
since one can immediately see that the vectors (0 0 ϕ̄(x,t) 0)T

and (0 0 0 ϕ̄∗(x,t))T span the zero eigenvalue subspace of the
matrix M and the trivial fluctuations live in this subspace.

The time evolution of the fluctuation operators is given
by solving Eq. (23a). However, measurable observables are
given by expectation values and correlation functions of these
operators rather than by the operators themselves. To this end
we consider the covariance matrix C(t) associated with the
vector R̂,

Cjk(t) ≡ 〈R̂j R̂k〉(t). (25)

Particular cases of Cjk(t) (or more precisely, its sum) include
the total number of photonic and atomic fluctuations,

δn(t) = 〈δâ†(t)δâ(t)〉, (26)

δN (t) =
∫

dx〈 ¯δ	̂
†
⊥(x,t) ¯δ	̂⊥(x,t)〉. (27)

The latter correspond to the number of atoms excited out of
the mean-field component (i.e., the atomic depletion).

To obtain the time evolution of the covariance matrix,
consider the formal solution to Eqs. (23) [58],

R̂(t) = G(t,0)R̂(0) + G(t,0)
∫ t

0
G−1(τ,0)Ẑ(τ )dτ, (28)

where G(t) is a matrix satisfying

Ġ(t,0) = −iM(t)G(t,0); G(0,0) = I. (29)

We drop the dependence of G on the initial time for notational
convenience in what follows. Inserting this formal solution in
Eq. (25) we find

C(t) = G(t)C(0)GT (t) + G(t)�(t)GT (t), (30)

�(t) ≡
∫ t

0

∫ t

0
G−1(τ )〈Ẑ(τ )Ẑ(τ ′)〉[G−1(τ ′)]T dτdτ ′. (31)

Using the property of the Langevin noise terms given in
Eq. (4c), we can simplify �(t) as

�(t) =
∫ t

0
G−1(τ )D[G−1(τ )]T dτ, (32a)

Djk ≡ 2κδj1δk2. (32b)

Our main numerical task is thus to solve the matrix differential
equation given by Eq. (29). In addition, the matrix elements of
M(t) have to be computed from the mean fields {α(t),ϕ̄(x,t)}
obtained by solving the coupled equations (6a) and (6b).
These latter equations are simply a set of ordinary differential
equations that we solve using an adaptive time-step Runge-
Kutta scheme. We then solve the matrix differential equation
for G(t) using the same time grid as the mean-field solution.
For the matrix differential equation, and the associated solution
for the covariance matrix C(t), we can again use a Runge-Kutta
algorithm or exponentiate the fluctuation matrix M(t) over the
(small) time-step intervals [59].

As a check on the results we can use the fact that the
elements of the covariance matrix C(t) have to obey the
commutator relations Eq. (18) for the operators making up
R̂(t). For example, when the atomic operator is expanded as
in Eq. (20), the expectation value of the commutator relation
Eq. (18) gives

〈δĉnδĉ
†
m〉 − 〈δĉ†mδĉn〉 = δnm − 〈n|ϕ̄(t)〉〈ϕ̄(t)|m〉. (33)

The left-hand side of this equation gives the difference
between certain entries of the covariance matrix and we can
calculate its expected value (the right-hand side) from the
mean-field solution. The degree of agreement between the two
sides provides a measure of the accuracy of the fluctuation
calculation. In general, we find that the accuracy can be
increased by taking smaller time steps.

In closing this section we would like to point out that
the mean-field solution already includes Landau-Zener type
tunneling that causes the coherent excitation of higher bands.
By contrast, the effect of Langevin fluctuations ξ is to incoher-
ently populate different bands. Within the linear approximation
used here, the depletion of the atomic mean field by quantum
excitations is not self-consistent; i.e., the mean field is always
normalized to N atoms, whatever the number of depleted
atoms δN . The linearized equations are valid only when
δN � N , as expected from a Bogoliubov-type approach.

VI. SPECTRUM OF ELEMENTARY EXCITATIONS

Before presenting the results of the combined mean-field
and quantum dynamics (see the next section), we first examine
the excitation spectrum of the atom-cavity system. The
excitation spectrum gives insight into the dynamics and heating
effects and will also be of use in explaining resonances that
affect the SNR of the Bloch frequency measurement, a topic
we discuss in Sec. IX.

We first note that there are two distinct types of excitation
and, hence, spectra. The coupled atom-cavity band structure
discussed in Sec. III refers to mean-field excitations which are
labeled by a band index and a quasimomentum. They involve
every atom and photon responding identically since, by the
nature of the mean-field approximation, they are assumed
to be described by a single wave function ϕ(x,t) and the
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coherent amplitude α(t), respectively. On top of these, there are
also elementary excitations or quasiparticles whose energies
are the complex eigenvalues ±ωn + iγn of the matrix M(t)
given in Eq. (23b). A clear description of the difference
between the mean-field and the quasiparticle spectra for a
BEC in a (noncavity) optical lattice can be found in [60] and
references therein. In the atom-cavity system the quasiparticles
correspond to single quanta of the combined fields and are thus
polaritons. The fact that they come in pairs can be interpreted
as an analog of particles and antiparticles [11].

Whereas the mean-field band structure is always real, the
quasiparticle energies have an imaginary part which comes
from the leaking of the cavity field out of the cavity. If
γn < 0, we have dynamical stability and |γn| can be interpreted
as the lifetime of the quasiparticle. This damping effect
has potentially very important applications in cavity-assisted
cooling [39,61]. If, on the other hand, γn > 0 we have
dynamical instability and heating.

In general, the elementary excitations have a band structure
all of their own; i.e., the solutions of the Bogoliubov–de
Gennes equations take the form of Bloch waves with a band
index and quasimomentum that can differ from that of the
mean-field solution about which we are linearizing. However,
as discussed in Sec. III, here we allow only excitations that
preserve the quasimomentum (vertical transitions), and thus
our quasiparticles have the same quasimomentum as their
parent mean-field solution. Some examples of the quasiparticle
band structure are plotted in Fig. 5 [see also Fig. 12(a) in
Appendix B].

The eigenvectors of M can be classified into three
kinds: cavitylike modes, hybridized atom-cavity modes, and
marginally stable modes [40]. The cavitylike modes (depicted
by the green dash-dotted lines in Fig. 5) are close to being
pure cavity field modes with only a small atomic component.

Hence, their eigenvalues have a real part with magnitude close
to the effective detuning �eff

c = �c − NU0〈cos2(x)〉, and an
imaginary part approximately equal to −κ . The hybridized
modes (depicted by the red solid and blue dashed lines in
Fig. 5) have some atomic and some cavity field properties,
whereas the marginally stable modes are purely atomic in
nature with zero cavity component. As we demonstrate below,
the marginally stable modes occur at the points q = 0 and
q = ±1, i.e., at the band center and edges, and their name
derives from the fact that their imaginary part is zero.

The properties of the hybridized and marginally stable
modes are determined by the sign of �eff

c . When �eff
c < 0

we find γn < 0 and we are on the cooling side of the effective
resonance. On the contrary, when �eff

c > 0 we find γn > 0 and
we are on the heating side. A calculation of the dynamics on
the heating side is not stable since the linearization will fail
after a short time due to the exponentially growing number
of quasiparticles. Thus, the calculation of the spectra serves a
very useful purpose: It guides our choice of �c so as to ensure
that we are always on the cooling side of the resonance.

In Fig. 5(a) the red (solid) and blue (dashed) lines give the
magnitudes of the real parts of the frequencies of the two lowest
quasiparticle eigenmodes as a function of quasimomentum.
The magnitudes of the imaginary parts are plotted in Fig. 5(b).
Notice that the imaginary part of one of the modes goes to zero
at the band edges (red solid line) and the other goes to zero
at the band center (blue dashed line). This implies that these
excitations are only marginally stable at those specific values
of the quasimomentum. The vanishing of the imaginary part of
the frequencies at these points can be understood as follows: A
Bloch wave with q = 0 (q = 1) is even (odd) about the center
of a single cell [0,π ] of the cos2(x) potential. Since the atomic
mean-field solution ϕ̄(x) is a Bloch wave it has well-defined
parity at these points. The same is also true for the atomic part
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(a) Real part of the quasiparticle spectrum as
a function of quasimomentum.

(b) Imaginary part of the quasiparticle spectrum as
a function of quasimomentum.

FIG. 5. (Color online) Low-lying levels in the quasiparticle spectrum (elementary excitations). The frequency of the nth level is generally
complex ωn + iγn. The parameters used in the plots are U0 = 0.01 ωR, κ = 345 ωR, �c = −0.75 κ , and N = 5 × 104. The red (solid) and blue
(dotted) lines correspond to hybridized atom-cavity modes and generally have nonzero imaginary parts except at certain special points such as
at the band center and edges where they can become marginally stable and decouple from the cavity. The green (dash dotted) line corresponds
to a cavitylike mode; i.e., the real part of its frequency is close to the effective detuning frequency �eff

c (q), and the imaginary part is close to −κ .
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of quasiparticle eigenmodes ¯δ	̂⊥(x) [and of course ¯δ	̂
†
⊥(x)]

of the fluctuation matrix M for these are also Bloch waves. In
this case the integral

∫
dxϕ̄∗(x) cos2(x) ¯δ	̂⊥(x) will sometimes

vanish identically because the integrand can contain functions
with opposite parity. Examination of the fluctuation matrix
M given in Eq. (23b) shows that it is exactly this integral
that controls the weight of the cavity part of the quasiparticle
eigenmodes, and so at q = 0,±1 we can have undamped
quasiparticles with γ = 0. For other values of quasimomentum
the mean-field wave function has no particular parity and there
are no marginal modes.

VII. QUANTUM DYNAMICS: RESULTS

In this section we present results from the numerical
solution of the quantum equations of motion. We assume that
at t = 0 the fluctuation fields corresponding to δâ and ¯δ	̂⊥ are
in their vacuum states and expand the atomic part in the basis
given in Eq. (21). This allows us to construct the covariance
matrix Eq. (25) C(t = 0), which we then evolve to later times
using Eq. (29). In order to perform this task we need the fluctu-
ation matrix M(t) as a function of time, which in turn requires
the mean-field solution {ϕ̄(x,t),α(t)} as input. We therefore
solve the mean-field dynamics on the same discretized time
grid in parallel with the computation of Eq. (29).

Once we have computed C(t), we can use it to calculate
the physical quantities of interest, such as the number of
atomic excitations δN(t), as defined in Eq. (27). This should
not be confused with the number of quasiparticles, which are
generally made up of both atomic and cavity field components.

If it were not for the Langevin noise, the evolution would
be perfectly coherent and δN would be zero. However,
the presence of Langevin noise in the electromagnetic field
generates atomic excitations via the atom-cavity coupling. In
Fig. 6 we plot the fraction δN (t)/N as a function of time
for five Bloch periods for two different coupling values. The
red (solid) curves are given by a full solution of the quantum
equations, whereas the black (dashed) curves are made with
a coherent state approximation for the cavity field, which is
outlined below and discussed in more detail in Appendix A.
The gradient of the curves in Fig. 6 gives the heating rate and
we note from Fig. 6(b) that the coherent state approximation
slightly underestimates the true heating rate for atoms. The
behavior of δN(t)/N over longer times (40 Bloch periods)
is shown in Fig. 7(a) and the equivalent quantity for the
photons is shown in Fig. 7(b). We see that while the number
of photons excited out of the mean-field saturates due to the
damping by photon loss from the cavity, the atoms maintain a
finite heating rate over all times we have investigated. This is
perhaps surprising because we are on the cooling side of the
resonance [see Eq. (15)] all the time (despite the modulations
in the effective cavity detuning due to the BOs). In the inset
in Fig. 7(a) we show the case without BOs, and as can be
seen, we recover the cooling. The presence of BOs clearly
counteracts the cooling to some degree and prevents δN (t)/N
from reaching a steady state. This residual heating effect is
analyzed in detail in Appendix B, but it turns out to be due
to the transport of quasiparticles to higher energy states by
Landau-Zener transitions that are driven by the BOs. A finite
heating rate implies that at long propagation times the validity
of our linearized approach will break down because δN/N will
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(a) Excited atom fraction versus time for
NU0/κ = 0.1.
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(b) Excited atom fraction versus time for
NU0/κ = 1.

FIG. 6. (Color online) Growth of the excited atom fraction over five BO periods for (a) weak and (b) moderately strong atom-cavity
coupling. The red (solid) curves are given by solving the full quantum problem in the form of Eq. (29), whereas the black (dashed) curves are
the result of treating the atomic modes as independent oscillators plus assuming that the quantum fluctuations in the light come purely from
vacuum shot noise, i.e., the coherent state approximation. The mean-field dynamics for (b) is given by the red (solid) curve in Fig. 2. The atom
heating rate in these figures oscillates because it is lower at the Brillouin zone edges than at the center. Referring to Fig. 5 we see that at the
zone edges the quasiparticle mode with the smallest real part (red solid curve) becomes marginally stable, i.e. the cavity light field part and the
atomic part decouple.
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FIG. 7. (Color online) Plots of (a) atomic and (b) photonic fluctuation occupation number over 40 BOs calculated using a numerical solution
of Eq. (29). The inset in (a) shows δN/N as a function of time for the case without an external force, and hence without BOs, whereas the
main body of (a) shows the results with an external force: δN/N quickly reaches a steady state in the former but not in the latter case. In (b)
the lowest curve (red) is for β = 1, the middle curve (blue) is for β = 3, and the highest curve (green) is for β = 5. The inset in (b) shows a
closeup of the photonic fluctuation number as a function of time for β = 1. It can be seen how after a transient period the photonic fluctuation
number oscillates at the Bloch period, thereby mirroring the mean-field dynamics.

no longer be small. However, for all the times and coupling
strengths considered in this paper we have δN/N < 1/100.

In order to gain further insight into the dynamics, let us
develop a semianalytic model that we can compare against the
exact results: It will allow us to see when atom-light corre-
lations are important. The model makes two approximations.
First we treat each eigenstate of the instantaneous mean-field
Hamiltonian Eq. (10) as an independent oscillator mode
uncoupled from the other modes, and second we approximate
the state of the light inside the cavity as a coherent state.
Coherent states have a noise spectrum that corresponds to the
vacuum and so neglect correlations with the atoms. In fact, the
second approximation follows naturally from the first, as we
show in Appendix A. The results of the approximate model
are the black dashed curves in Fig. 6. The agreement with
the exact results at weak coupling (β = 0.1) is excellent, but
begins to break down over time at stronger coupling (β = 1),
thereby revealing the dynamic generation of correlations. In
fact, as mentioned in the Introduction, the heating rate of a
cloud of cold atoms inside a cavity has been measured by
Murch et al. [31], and they found it to be consistent with the
predictions of vacuum noise. The new feature in our problem is
that the effective cavity drive detuning �eff

c (t), which appears
in the phase terms in Eq. (35), is Bloch periodic due to the
mean-field dynamics.

To motivate the coherent state approximation, consider the
exact solution to the first-order inhomogeneous differential
equation for cavity field fluctuations Eq. (22a), which can be
formally written as

δâ(t) = e−i
∫ t

0 dt ′A(t ′)
∫ t

0
dt ′ei

∫ t ′
0 dt ′′A(t ′′)

× [
√

2κξ̂ (t ′) − i
√

NU0α(t ′)X̂(t ′)], (34)

where X̂(t) ≡ ∫
dx ϕ̄∗(x,t) cos2(x) ¯δ	̂⊥(t) + H.c., and A(t) =

−�eff
c (t) − iκ , as above. We see that the cavity field fluctuation

has two distinct contributions: The first term depends on
the Langevin noise which accounts for vacuum fluctuations,
while the second term depends on the state of the atoms. The
coherent-state approximation consists of dropping the latter
term in favor of the former to give

δâ(t) ≈
√

2κ

∫ t

0
dt ′e[i�eff

c (t)−κ](t−t ′)ξ̂ (t ′). (35)

In writing δâ(t) in this way we have taken advantage of the fact
that the cavity decay rate κ is much faster than the frequency ωB

at which �eff
c (t) evolves, and so the integrand is appreciable

only for times t − t ′ � κ−1 during which �eff
c is a constant

and can be evaluated at time t . The regime of validity of
the coherent state approximation can be estimated from its
derivation which requires r ≡ √

NU0|α(t)|/√2κ � 1. Note
that r2 = βs(t)/2. In our earlier discussion (Sec. IV) of
desirable parameters, we stipulated a minimum lattice depth
of s(t) ∼ 3 ωR, which implies that the validity of the coherent
state approximation here is contingent upon β � 1; i.e., this
is a weak coupling approximation.

The assumption of uncorrelated vacuum noise is a standard
one in the field of cavity optomechanics [30,62–65]. The
paradigmatic example is a cavity with one end mirror attached
to a spring or cantilever, i.e., a harmonic oscillator driven
by radiation pressure. Although ultracold atoms in a very
shallow lattice in a cavity can be mapped onto this system
[28,31,41,66,67], that is not the case here because the atomic
Bloch states do not map faithfully onto a single harmonic
oscillator. Nonetheless, we have obtained our approximate
model by applying a similar philosophy by mapping onto a
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collection of independent oscillators (the eigenstates of H).
The coherent state approximation for the atomic excitation
occupation δN (t) that is plotted as the black (dashed) curves
in Fig. 6 is the sum over the occupation numbers of these
independent oscillator modes δN(t) = ∑

j δNj (t). The details
of the mapping are presented in Appendix A and here we
only sketch out the main idea, which is to consider the noise
as a perturbation to the oscillator dynamics and then use
Fermi’s golden rule to calculate the noise-induced transition
rates among each oscillator’s states. This leads to a rate
equation describing the occupation number dynamics for each
oscillator [63],

d〈δNj 〉
dt

= (�uj − �dj )〈δNj 〉 + �uj , (36)

which is Eq. (A9) in Appendix A. In this expression �uj

and �dj are the transition rates “up” and “down” for the
j th oscillator and they are proportional to SFF (−ωj ) and
SFF (ωj ), respectively, where SFF (ω) is the spectral density
of force fluctuations (shot-noise power spectrum). Thus, each
oscillator is driven and damped by vacuum noise, with the
rates of driving and damping being time dependent (due to the
mean-field BO dynamics).

In the next two sections we examine the effects of the
fluctuations upon a precision measurement, i.e., how the
fluctuations put a limit on how large a value of β can be
chosen for a precision measurement.

VIII. SIGNAL-TO-NOISE RATIO: THEORY

We now explore how the inclusion of quantum noise affects
the precision measurement proposal in [15]. Recall the basic
idea shown schematically in Fig. 1: A cloud of cold atoms
undergoes BOs (e.g., due to gravity) inside a Fabry-Perot
cavity, and the light field transmitted through the cavity is
measured in order to determine the Bloch frequency. In order
to quantify the measurement performance we compute the
SNR using standard input-output theory [68].

Let us consider a double-sided cavity with mirrors with
matched reflectivities providing equal amplitude damping
rates of κ/2. The quantum part of the input fields for both
the top (driving side) and the bottom (detection side) mirrors
is given by the electromagnetic vacuum. Since we are not going
to consider classical fluctuations of the driving laser we do not
include a classical laser field contribution in the input field, but
introduce it via the Hamiltonian in Eq. (3). In our consideration
of system dynamics in earlier sections we implicitly assumed
a single-sided cavity giving an amplitude damping rate of
κ , and associated with this decay is a Langevin noise term√

2κξ̂ (t). In a double-sided cavity we have two independent
noise terms of the form

√
κ{ξ̂t (t),ξ̂b(t)}. It can be shown

that the dynamics of the intracavity system (both mean-field
and fluctuations) are independent of whether we assume a
double-sided or single-sided cavity as long as we divide the
net damping equally among the two mirrors (provided they
have matched reflectivities). The transmitted light field is the
output field at the bottom mirror which is related to the input
field at the bottom mirror as

âout(t) = −âin(t) + √
κâ(t) = −ξ̂b(t) + √

κâ(t), (37)

where âin and âout in this equation refer to the fields at the
bottom mirror. The transmitted photon current is given by the
operator Îout(t) = â

†
out(t)âout(t), where again âout refers to the

field leaving the bottom mirror.
An experimentally straightforward method for measuring

the Bloch frequency consists of recording the transmitted
photon current using a photodetector. It is useful to consider
the Fourier transform of the data [69],

N̂ (ω,T ) =
∫ T

0
dt cos(ωt)Îout(t), (38)

and define the SNR for the measurement as

SNR ≡ |〈N̂ (ω,T )〉|2
�N2(ω,T )

, (39)

where �N2(ω,T ) ≡ 〈(N̂ − 〈N̂〉)2〉. Thus, the SNR is the ratio
of the spectral density of the photon current to its variance and
provides one measure of the sensitivity of the scheme.

Let us first evaluate the SNR for a classical cavity field
â(t) = α(t). In this case one finds that the signal amplitude
and variance are given by

〈N̂ (ω,T )〉 = κ

∫ T

0
dt cos(ωt)|α(t)|2, (40)

�N2(ω,T ) = κ

∫ T

0
dt cos2(ωt)|α(t)|2 . (41)

In order to obtain an approximate magnitude for the SNR
we further assume that the detection rate goes as ≈R(1 +
ε cos[ωBt]) [15], where ε is the contrast parameter defined in
Eq. (14). Setting the classical photon current κ|α(t)|2 in the
above formulas equal to this detection rate gives

SNR(ωB,T ) ≈ ε2RT

2
. (42)

Despite appearances, this result does include quantum noise
to a certain degree because without the Langevin operators
the variance given in Eq. (41) would have been zero, i.e.,
even when the cavity field is classical the output field
contains a quantum part âout = √

κα(t) − ξ̂b(t). Thus, the
above calculation includes detector shot noise, also known
as measurement imprecision [64], but neglects the effect
of quantum fluctuations on the coupled dynamics inside
the cavity, i.e., quantum measurement backaction. Note that
this is a different approximation from the coherent state
approximation used in Sec. VII, where quantum fluctuations
were included in the cavity dynamics by using a Glauber
coherent state, i.e., a state with vacuum noise, for the cavity
field, albeit one whose fluctuations are unaffected by the
presence of the atoms.

The SNR given by Eq. (42) predicts that the sensitivity of the
scheme can be increased indefinitely by increasing the mean
total number of photons collected RT and also the contrast ε.
The former effect is the standard one expected from the general
theory of measurements with uncorrelated fluctuations. The
latter is intuitively plausible too, but, however, cannot be
the whole truth because, as stated above, it neglects the
effect of measurement backaction upon the dynamics which
is expected to become important at larger values of β. When
fluctuations are included â(t) = α(t) + δâ(t), and the mean
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FIG. 8. (Color online) Plots of the SNR as a function of (a) coupling strength β and (b) integration time T for different values of β. In (a)
the SNR was computed for an integration time of 10 Bloch periods (TB ) and the red (dots) curve gives the mean-field dynamics plus detector
shot-noise result, while the black (crosses) curve includes measurement backaction, i.e., the effect of quantum fluctuations upon the coupled
atom-cavity dynamics. In (b) the red (solid) and blue (dotted) curves lie almost on top of each other and correspond to values of β just before
the first dip in the SNR shown in Fig. 8(a), whereas the green (dash-dotted) curve corresponds to a value of β in the dip. For all plots the
minimum lattice depth was 3ER. Other parameters are the typical ones mentioned in the text.

signal amplitude is given by

〈N̂ (ω,T )〉 = κ

∫ T

0
dt cos(ωt)[|α(t)|2 + 〈δâ†(t)δâ(t)〉]. (43)

In fact, this is not so very different from the mean-field photon
number given by Eq. (40) because we are by design working
in a regime where the mean-field dominates the fluctuations.
However, the same is not true of the signal variance. The
expression for the signal variance including fluctuations is
cumbersome and is presented in Eq. (C1) in Appendix C.
For present purposes it is enough to note that it includes a
collection of terms that depend on integrals over two-time
correlations of the photon fluctuations. These two-time
correlations are challenging to evaluate numerically not only
because the fluctuations occur on time scales κ−1 much
shorter than the BOs, but also because they require the storage
and manipulation of data at two times. Furthermore, the
continuous driving by the BOs means that the correlations are
not stationary in time; i.e., they do not just depend on t1 − t2,
and this forces us to calculate the SNR in parallel to the system
dynamics starting at t = 0. Unfortunately, due to limited
computing power, we have only been able to track the SNR
over ten Bloch periods, which is certainly shorter than the
coherence time of the BOs for the parameters we use. An actual
experiment would, of course, not suffer from this limitation
and would benefit from running until the BO coherence time
is reached. The main steps of our algorithm for calculating
the two time correlations are provided in Appendix C.

IX. SIGNAL-TO-NOISE RATIO: RESULTS

We now show how the SNR depends on the various system
parameters. Due to the size of parameter space, this is not an

exhaustive study, but rather an ad hoc choice that nevertheless
we hope is experimentally relevant. We begin by looking at
the SNR as a function of the coupling parameter β = NU0/κ .
In Fig. 8(a) we plot the SNR evaluated at ωB for an integration
time of ten Bloch periods. We change β by increasing U0 but
also change η to maintain the same minimum lattice depth of
3ER throughout. The results without measurement backaction
(i.e., the dynamics in the cavity is purely mean field) are plotted
by the red (dots) curve, which monotonically increases until
about β = 12. The initial increase of the SNR with β is in
line with expectations based on Eq. (42). The turnover of the
red curve near β = 12 is in a sense an artifact that arises from
having evaluated our SNR at ωB: It so turns out from the
mean-field solution that for β > 12 the fraction of the power
in the fundamental of s(ω) begins to decline and is diverted
to higher harmonics. However, there is no real reason other
than simplicity to only consider SNR(ωB) (any harmonic of ωB

gives information about the applied force and inclusion of all of
them in the data analysis would extract the maximum possible
information from the measurement). The full calculation
including measurement backaction is plotted by the black
(crosses) curve. The first thing to notice is that measurement
backaction always lowers the SNR. Second, the full SNR
monotonically increases only until β ≈ 7, and thereafter
suffers from dramatic dips which we explain below as being
due to resonances with quasiparticle excitation energies. These
two observations are the main results of this paper. In Fig. 8(b)
we plot the SNR as function of the total integration time T

for three values of β, two before the first dip in the SNR and
one in it. This plot further illustrates that for β > 7 there is
a dramatic lowering of the SNR. The BO dynamics are also
clearly visible due to the fact that the contrast is periodically
growing and shrinking as the lattice depth grows and shrinks.
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FIG. 9. (Color online) Plots of the SNR as a function of (a) minimum lattice depth s(t = 0), and (b) atom number N . In both plots the
red (dots) curves were computed from mean-field theory plus detector shot noise, and the black (crosses) curves were computed including
quantum measurement backaction. For all points NU0/κ = 1 and the signal is integrated over ten Bloch periods. In (a) it is evident that the
SNR decreases in both cases for larger lattice depths. In (b) it is evident that the SNR increases linearly as a function of N in both cases.

In Figs. 9(a) and 9(b) we show how the SNR depends on
other parameters, namely the lattice depth and total number
of atoms. In particular, in Fig. 9(a) we plot the SNR as a
function of the minimum lattice depth in the cavity for the
coupling value NU0/κ = 1. The lattice depth is changed by
increasing η. The red (dots) curve gives the SNR calculated
using only mean-field dynamics plus the effect of shot noise
at the detector and justifies the comment made in Sect. IV
that for larger lattice depth the contrast decreases. The SNR
calculation including measurement backaction fluctuations is
given by the black (crosses) curve and has the same qualitative
behavior but is somewhat lower. Figure 9(b) plots the SNR
as a function of N , where for different values of N we keep
NU0/κ = 1 constant by scaling U0. We also scale the pump
strength η to maintain the same intracavity lattice depth s(t)
in all the cases. As we pointed out in Sec. IV, this method of
scaling the system variables leaves the form of the mean-field
and fluctuation equations unchanged. The only quantitative
change is that the mean-field cavity field solution α(t) is scaled
by the same

√
r factor as the pumping. This leads to a linear

scaling of the SNR as a function of N (with and without
fluctuations) as shown in the plot. It is interesting to note that
the rate of increase is different for the calculation including
fluctuations compared to that without. Clearly, there is a gain
in the SNR with N .

Finally, we explain the physical origin of the complicated
series of dips in the SNR when β > 7 that are seen in Fig. 8(a).
Consider the spectrum of quasiparticle excitations about the
adiabatic mean-field solution introduced in Sec. VI. For the
example shown in Fig. 5(a), the smallest excitation frequency
occurs at the band edge q = ±1 and the largest at q = 0.
As β is increased in the usual manner (holding the minimum
lattice depth constant), the q dependence of the quasiparticle
spectrum evolves, as shown for the quasiparticle mode ω1

in Fig. 10(a). Thus, the range of frequencies (i.e., across the

entire Brillouin zone) contained in ω1 also evolves with β and
is shown in Fig. 10(b). If the mean-field dynamics happens to
contain any frequencies that fall in this range there is clearly the
possibility of a resonance, exciting quasiparticles and lowering
the SNR. This is exactly what happens, as can be seen from
Fig. 11, which plots the total power in the harmonics of ωB that
fall in the frequency range covered by ω1. The two peaks in
Fig. 11 at β ≈ 8 and β ≈ 12 coincide exactly with the dips in
Fig. 8(a). Referring back to the inset in Fig. 3(b), which was de-
liberately evaluated at β = 7.75 for this very purpose, we can
see the part of the mean-field spectrum that falls in the range
spanned by ω1. In the absence of BOs the quasiparticle excita-
tion ω1 is very narrow, with a width given by the imaginary part
γ1 evaluated at q = 0. However, the BO dynamics effectively
broadens the resonance by orders of magnitude to that shown
in Fig. 10(b) and this has a dramatic effect on the SNR.

X. DISCUSSION AND CONCLUSIONS

In this paper we have extended our previous analysis
of BOs of ultracold atoms inside a cavity to include the
effects of quantum noise in the electromagnetic field. The
quantum noise originates from the open nature of the cavity
and can be interpreted as a form of quantum measurement
backaction because it perturbs the dynamics. The magnitude
of the backaction is controlled by the dimensionless atom-light
coupling parameter β = NU0/κ and we find that it can
strongly affect the sensitivity of a measurement of the BO
frequency ωB and therefore the determination of the magnitude
of the external force F driving them.

Our treatment is based upon the coupled Heisenberg
equations of motion for the atoms and light, which we
linearize about their mean-field solutions, i.e., a Bogoliubov
level approximation. We solve the time-dependent mean-field
level dynamics exactly and hence coherent effects such as
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FIG. 10. (Color online) Plots of the lowest quasiparticle excitation frequency ω1 about the adiabatic solution. In (a) this is given as a
function of quasimomentum for three different values of β: For small β (red dashed curve) the minimum of the frequency occurs at q = ±1,
but for larger values of β the minimum shifts in to smaller values of q. Since each quasiparticle excitation has an energy varying with q, in (b)
we plot the range of possible excitation frequencies contained in ω1 for all q as a function of β. The frequency units are the Bloch frequency ωB.

Landau-Zener tunneling between bands are fully taken into
account. A spectral decomposition of the mean-field solution
shows that it is dominated by ωB and its first few harmonics,
but as β is increased spectral power begins to spread to higher
frequencies.

Quantum noise is introduced via Langevin operators which
act as inhomogeneous source terms in the Heisenberg equa-
tions. These terms excite quasiparticles (quantized excitations
with a mixed atom-light character) out of the mean field. In
the standard situation [39,41,61] where there is no external
force, if the system is started off with no quasiparticles their
number initially grows in time but eventually saturates due to
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FIG. 11. The normalized power in the harmonics of ωB as
calculated from the Fourier transform of the mean-field solution
[see Fig. 3(b)] that lies in the frequency range of the lowest
quasiparticle excitation [see Fig. 10(b)].

competition between cooling and heating processes (provided
we are in the cooling regime �eff

c = �c − NU0〈cos2(x)〉 < 0
which means that the quasiparticle energy has a negative
imaginary part). By contrast, in this work we have found that
the presence of an external force, and hence BOs, profoundly
changes this behavior so that following some initial transients
the heating rate settles down to a constant value even when
we are nominally in the cooling regime. Nevertheless, for the
parameter regimes we tested the heating rate was modest and
the fraction of the atoms excited out of the coherent mean field
over the lifetime of the simulation was always less than 1%
even for quite strong coupling.

In order to gain some insight into the numerical calculations
we used Fermi’s golden rule to develop a semianalytic model
for the heating rate in terms of a simple rate equation for the
number of atomic excitations. In so doing we approximated
the cavity light field by a coherent state whose quantum
fluctuations are the same as those of the vacuum. This is a
common approximation in cavity optomechanics but ignores
the quantum correlations that build up between the atoms
and the light. Comparing this with the exact numerical results
for the number of atomic excitations, we infer that the field is
close to a coherent state for small β, but differs from it as β is
increased, as expected. Furthermore, this comparison allowed
us to see the dynamic generation of atom-light correlations.

The above calculations can be applied to the estimation of
the SNR for a continuous measurement of ωB. For example,
we find that the SNR decreases with intracavity lattice depth
and increases with the number of atoms. Our principal result,
however, concerns the dependence upon β. We find that the
SNR can be severely reduced due to resonances between the
quasiparticle spectrum and the Bloch oscillating mean field
for certain ranges of β. Indeed, the SNR behavior depicted in
Fig. 8 is much more complicated than that found in the standard
example of a quantum limited position measurement of a
harmonic oscillator, e.g., the end mirror of a resonant cavity
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[64]. In that system, the SNR is determined by the competition
between the “measurement imprecision” (detector shot noise),
which decreases with increasing measurement strength, and
the measurement backaction, which increases with increasing
measurement strength, and correlations between the two can
be ignored to a good approximation. This leads to a smooth
curve (see Fig. 5 on p. 1171 of the review [64]) with a single
maximum at the measurement strength where the two effects
are equal. This is where the measurement should be performed
for maximum sensitivity. By contrast, in our case we have a
cloud of atoms occupying Bloch states in an optical lattice
and thus our system does not correspond very well to a single
harmonic oscillator (except in the limit where the lattice is
extremely weak so that the atoms are predominantly in a
state which is uniform in space [28], but then Landau-Zener
tunneling will be so severe that the atoms will quickly fall out
of the lattice when the external force F is applied). Add to
this the fact that our system is driven by an external force and
so scans through the entire Bloch band in a time-dependent
fashion, leading to the possibility of resonances, and it is
not surprising that our resulting SNR in Fig. 8(a) does not
have a simple maximum as a function of β. However, we
can make the parameter-dependent statement that it seems
safest to choose β < 7, which lies below the point where the
resonances set in (and for β > 25 we find optical bistability
which will destroy the BOs [32]). The resonances occur in
the calculation only when quantum measurement backaction
is included and so provide a salutary example of when the
latter is important. Nevertheless, away from the resonances
the SNR for this continuous measurement is large and is in
pretty good agreement with an approximate calculation based
upon purely mean-field dynamics in the cavity plus detector
shot noise.

In comparison to previously studied cold-atom cavity-QED
systems, or even cavity optomechanical systems, a new feature
of our Bloch oscillating system is the time-dependence of the
mean field. Apart from the resonances discussed above, this
also has implications for the computational scheme we use to
calculate the results. For example, all the fluctuation modes
should be orthogonal to the mean-field mode, as well as to
each other, and hence they also evolve with time. Furthermore,
the two-time correlation functions that are needed to calculate
the signal variance that enters the SNR are not stationary in
time, meaning that a large amount of data must be stored. This
is especially true because the Bloch period is roughly three
orders of magnitude larger than the quantum fluctuation time
scale 1/κ and hence the calculation of the SNR over even
a few Bloch periods is quite intensive in the regime where
the coherent state approximation breaks down. In noncavity
BO experiments it has been shown that coherent dynamics
can run for thousands of Bloch periods [9]. In a continuous
measurement scheme, such as that proposed here, the quantum
measurement backaction reduces the coherence time but
unfortunately we have been unable to go much beyond ten
Bloch periods with our numerical computations of the SNR
and thereby find this coherence time for our scheme (we have,
however, given an estimate in [15] based upon the idea that
the spontaneous emission rate sets the upper limit on coherent
dynamics). Nonetheless, our short-time calculations illustrate
quantitatively that it may be advantageous to remain at small
β and integrate for longer times.
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APPENDIX A: COHERENT-STATE APPROXIMATION

In this Appendix we provide details of how the coherent
state approximation introduced in Sec. VII can be used to
derive a simple rate equation for the occupation numbers of
atomic fluctuation modes. Working in the TF, consider the
atomic fluctuation operator ¯δ	̂⊥(t). Rather than expanding
it in plane waves like in Eq. (21), let us instead expand in
the instantaneous eigenbasis νk(x,t) of the time-dependent
mean-field Hamiltonian H̄(t) [given in Eq. (10)],

¯δ	̂⊥(x,t) =
∑

k

νk(x,t)δb̂k(t), (A1)

where H̄(t)νk(x,t) = Ek(t)νk(x,t). (A2)

Substituting the decomposition Eq. (A1) into the equation of
motion Eq. (22b) we obtain

dδb̂j (t)

dt
= −iEj (t)δb̂j (t) −

∑
k

〈νj (t)| d

dt
|νk(t)〉δb̂k(t)

− i
√

NU0[α∗(t)δâ(t) + α(t)δâ†(t)]

×〈νj (t)|P̂ (t) cos2(x)|ϕ̄(t)〉. (A3)

We see that the dynamics of the δb̂j (t) are coupled among
themselves: This is obvious from the second term on the right-
hand side, but also occurs due to the third term as can be seen
from Eq. (34). In order to obtain a description in terms of
independent oscillators the contribution from these two terms
must vanish, and we now examine when this happens.

We begin with the second term (with the time derivative)
on the right-hand side of Eq. (A3). It can be shown that [70]

〈νj (t)| d

dt
|νk(t)〉 j =k= 1

Ek(t) − Ej (t)
〈νj (t)|dH̄(t)

dt
|νk(t)〉.

In general, contributions to the above overlap element are
suppressed for states well separated in energy due to the
denominator. Also, we show below that for k = j the element
vanishes. Hence, the dominant contribution comes from
adjacent levels, i.e., k = j ± 1, and is given by

〈νj (t)| d

dt
|νj±1(t)〉 = 1

Ej±1(t) − Ej (t)
〈νj (t)|dH̄(t)

dt
|νj±1(t)〉

= −2
ωB

π�±
〈νj |p̂|νj±1〉, (A4)

where the second line is obtained by taking a derivative of
the instantaneous Hamiltonian and realizing that, due to the
opposing relative parity of adjacent states, the term in the
overlap integral due to the potential is zero. The above term
can be neglected if the Bloch frequency is small compared to
the energy gap �±. To proceed further we assume that this is
the case but in the next appendix we see that this cannot be
guaranteed in general. Specifically, this approximation is most
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likely to break down at the times when the quasimomentum
comes close to the center or the edge of the Brillouin zone
where there are avoided crossings. Thus, this calculation will
be valid only for short times (since at longer times the system
will have repeatedly gone through such crossings) and/or at
parameter regimes where the gaps are large compared to Bloch
frequency.

Coming back to the case when k = j we have
〈νk(t)|νk(t)〉 = 1 and so

d

dt
[〈νk(t)|νk(t)〉] = 〈νk(t)| d

dt
|νk(t)〉 + H.c. = 0;

i.e., the derivative is purely imaginary. For the time-dependent
Hamiltonian H̄(t) the potential term cos2(x) has an inversion
symmetry about x = 0 and we can always choose the in-
stantaneous eigenbasis νk(x,t) to have real coefficients when
expanded over plane waves. As a result, the above term goes
to zero and the second term in Eq. (A3) can be excluded.

Turning now to the third term on the right-hand side of
Eq. (A3), we can see from Eq. (34) that it does not couple
the different modes δb̂j (t) if the light field fluctuations are
independent of the atomic fluctuations, i.e.,

δâ(t) ≈ d̂(t) ≡
√

2κ

∫ t

0
dτe−iA(t)(t−τ )ξ̂ (τ ), (A5)

which is exactly the coherent state approximation.
Having now seen the conditions under which the fluc-

tuations in the instantaneous eigenmodes of H̄(t) become
independent, let us assume that these conditions are fulfilled so
that the fluctuations obey the uncoupled equations of motion,

dδb̂j

dt
= −iEj δb̂j (t) − uj (t)F̂(t), (A6)

where

uj (t) = i
√

NU0〈νj (t)|P̂ (t) cos2(x)|ϕ̄(t)〉 (A7)

and F̂(t) = [α∗(t)d̂(t) + α(t)d̂†(t)]. (A8)

These equations describe the atomic fluctuation dynamics in
terms of a collection of independent oscillator modes that are
acted upon by the shot-noise force F̂(t). As described in [63],
we can now use Fermi’s golden rule to derive a rate equation for
each of the oscillator occupation numbers δNj (t) = 〈δb̂†j δb̂j 〉,

d〈δNj 〉
dt

= (�uj − �dj )〈δNj 〉 + �uj , (A9)

where the damping and diffusion rates are

�uj = |uj |2SFF (−ωj ); �dj = |uj |2SFF (ωj ).

These depend on the spectral density (power spectrum) of the
shot-noise force

SFF (ω) = 2κn̄(
�eff

c + ω
)2 + κ2

. (A10)

In the above expressions the shot-noise spectrum is eval-
uated at the shifted oscillator frequencies defined by
ωj = Ej (t) − μ(t) with the instantaneous chemical potential
μ(t) = 〈ϕ̄(t)|H̄(t)|ϕ̄(t)〉. This shifting helps in removing the
slow time dependence of the couplings uj (derived from
the mean-field BOs). Since the damping and diffusion rates

for the different oscillators are not the same, it is, in
general, not possible to write an equation similar in form to
Eq. (A9) for the total δN(t), and we have to settle instead for
δN(t) = ∑

j δNj (t).

APPENDIX B: ABSENCE OF CAVITY COOLING IN
THE PRESENCE OF BLOCH OSCILLATIONS

In this Appendix we analyze the long-time behavior of
the number of atomic fluctuations δN . We do this in order
to understand the apparent absence of a cavity cooling effect
in the results shown in Fig. 7(a). In the standard case where
there is no external force [40,41], cavity cooling occurs when
the effective detuning �eff

c ≡ �c − NU0〈cos2(x)〉 is negative.
This ensures that the quasiparticle energies have a negative
imaginary part γn < 0, which implies dynamical stability as
explained in Sec. VI. Under these circumstances δN reaches
a steady state and the heating rate vanishes as shown in the
inset in Fig. 7(a). This is, however, not what we see in the
presence of an external force as shown in the main body of
Fig. 7(a), where the heating rate settles down to a constant
nonzero value. The external force must therefore disrupt the
cooling mechanism, and in this appendix we see that indeed
the periodic driving due to the BOs drives the quasiparticles
to higher energy states, thereby heating the system.

The heating rate is given by the change in the occupation
numbers of the various quasiparticle states as a function
of time. These states are nothing but the instantaneous
eigenvectors of the fluctuation matrix M(t) introduced in
Sec. VI [40],

M(t) r (n)(t) = [ωn(t) + iγn(t)] r (n)(t), (B1)

and have a mixed atom-photon character. However, the
fluctuation matrix M(t) is non-normal and so its left and right
eigenvectors are not the same. The left eigenvectors l(n) are
defined as

M†(t) l(n)(t) = [ωn(t) − iγn(t)] l(n)(t). (B2)

The left eigenvectors can be used to define the quasiparticle
mode operator ρ̂n(t) corresponding to the nth mode as

ρ̂n(t) ≡ (l(n)(t),R̂(t)), (B3)

where the bracket on the right in the above equation denotes
a scalar product and R̂(t) = [δâ(t) δâ†(t) ¯δ	̂⊥(t) ¯δ	̂

†
⊥(t)]T is

the fluctuation operator in the basis of atoms and photons
[see Eq. (23a)]. We therefore see that the required quasiparticle
occupation numbers 〈ρ†

nρn〉(t) as a function of time can easily
be computed from the numerical solution of the covariance
matrix C(t) [Eq. (30)] once the eigenvectors l(n)(t) are ob-
tained. Before we look at the results, we should first comment
on the relation between the quasiparticle occupation number
and the atomic fluctuation number δN(t). As mentioned in
Sec. VI, quasiparticle modes come in three types and the
most relevant ones are the hybridized atom-light modes which
have the strongest atom-light coupling and tend to lie lowest
in the spectrum. Since the hybridized modes contain both
atomic and light components, their occupation number is not
exactly equal to the atomic fluctuation occupation number.
Nonetheless, in this system the atom-light entanglement is
not very large [41] and the total quasiparticle occupation

013848-17



B. PRASANNA VENKATESH AND D. H. J. O’DELL PHYSICAL REVIEW A 88, 013848 (2013)

0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

40

Time t (units of TB)

ω
n

(u
ni

ts
of

ω
R
)

(a) Real part of quasiparticle spectrum as a function
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FIG. 12. (Color online) Plots of (a) the real part of the quasiparticle energy spectrum and (b) the occupation number as a function of time.
The two plots are color coded equivalently. For example, the red (solid) lowest lying level in (a) has occupation number dynamics shown by the
red (solid) line in (b). Since the gaps in the spectrum in (a) are smaller than the Bloch frequency the level populations are partially exchanged
at the avoided crossings: The gaps become smaller higher up in the spectrum and indeed we see that the exchanges between higher lying states
are almost complete. The system parameters are the same as the case with NU0/κ = 1 in Fig. 2.

number closely tracks the atomic fluctuation number (as we
have verified). Moreover, to establish a connection with the
calculation in Appendix A, we note that for small NU0/κ

the atomic part of the hybridized quasiparticle modes are
very close to the higher band eigenstates of the instantaneous
mean-field Hamiltonian H̄(t). Thus, the mode occupation of
the oscillators in Appendix A can be roughly mapped to the
quasiparticle occupation numbers here.

In order to understand the occupation number dynamics,
consider first the real part of the quasiparticle spectrum plotted
in Fig. 12(a) as a function of time for NU0/κ = 1. The quasi-
particle energy bands have avoided crossings every half Bloch
period, which alternate between being with the band above and
below. On the scale of the plot, the gaps at the crossings are not
discernible but for the present parameters it turns out that even
the gap between the lowest two bands is smaller than the Bloch
frequency (recall that in this paper we have set ωB = 0.25ωR)
and the magnitude of the gaps gets smaller as we go higher
up in the spectrum. During the course of BOs these avoided
crossings are repeatedly traversed at the Bloch frequency and
consequently the occupation number dynamics at the avoided
crossings are increasingly nonadiabatic as we go up in the
spectrum due to Landau-Zener transitions. For example, in
Fig. 12(a) at t = TB/2 the green (dot-dashed) curve of the third
band approaches the blue (dashed) curve of the second band
and as a result the populations of the two levels are almost
completely exchanged as can be seen at the corresponding
time in Fig. 12(b). We therefore have the following picture:
The occupation number of a given quasiparticle band increases
either by direct scattering out of the mean field due to quantum
noise or by upcoming quasiparticles from the immediately
lower band by a Landau-Zener transition. The occupation
decreases due to quasiparticles scattering back into the mean
field [the Hermitian conjugate term to the excitation processes

in Eqs. (22a) and (22b)], or due to the finite lifetime of
quasiparticles associated with cavity decay at rate κ as
described by the A(t) term in Eq. (22a), or due to Landau-Zener
transitions to the next higher band. This has to be contrasted
with the dynamics without BOs where the quasimomentum
is fixed at q = 0 and the fluctuations occupy a stationary
quasiparticle ladder. Without Landau-Zener transitions there
is no directed transport of quasiparticles up the ladder and
cooling effects, due to the finite quasiparticle lifetime 1/γn,
have time to act.

In Fig. 7(a) notice that the linear behavior is established
at later times for larger NU0/κ . In order to understand why
this happens we explore the quasiparticle number dynamics
for NU0/κ = 5 in Fig. 13, i.e., a factor of 5 greater than in
Figs. 12(a) and 12(b). From the inset we can immediately
see that the two lowest quasiparticle bands are well isolated
(by more than ωB) from the rest of the ladder. As a result,
the occupation numbers in these modes evolve in an adiabatic
manner, in contrast to the situation for NU0/κ = 1. In fact,
over the times plotted in Fig. 13, the blue (dashed) band reaches
a steady average occupation number. However, the higher
quasiparticle energy levels represented, for instance, by the
green (dotted) and black (dot dashed) lines have smaller gaps
and behave akin to Fig. 12(b) because they are rapidly emptied
by Landau-Zener transitions. Another relevant observation
comes from Fig. 7(b), where we see that the fluctuation photon
number reaches its quasi-steady state around the same time as
the atomic fluctuation number begins to exhibit linear growth.
This can be understood now in the light of the above discussion
since the lowest quasiparticle modes are coupled most strongly
to the light field. The red (solid) band in the inset of Fig. 13
has two minima and demonstrates how for larger NU0/κ

the quasiparticle bands can be strongly modified from the
single-particle (linear) band structure.
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FIG. 13. (Color online) Plot of quasiparticle (qp) occupation
number as a function of time when NU0/κ = 5. The red (solid)
line corresponds to the qp band with the smallest energy, followed by
the blue (dashed), green (dot dashed), black (dotted), and magenta
(dash dotted) lines in ascending order. The inset shows the real part
of the qp energy measured in units of ωR as a function of time
over a single Bloch period TB for the lowest three bands. Since the
gap between the lowest two bands [red (solid) and blue (dashed)
lines] and the rest of the spectrum is larger than the Bloch frequency,
their dynamics is decoupled from the rest. System parameters are
as in Fig. 2.

We conclude this Appendix by examining another way to
control the band gaps in the quasiparticle spectrum and as a re-
sult the time taken for the linear increase behavior (denoted by
tl henceforth) to set in. In Fig. 14 we plot the atomic fluctuation
number as a function of time for β = NU0/κ = 1 and three
different initial mean-field lattice depth values that are set by
the pump strength. Since the initial atomic state has q = 0, the
initial lattice depth is the minimum lattice depth over theare set
by the pump strength. Since the initial atomic state has q = 0,
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FIG. 14. (Color online) Plot of the quasiparticle occupation
number as a function of time for different values of initial lattice
depth at the fixed coupling value β = NU0/κ = 1. The initial lattice
depths s(t = 0) are measured in the units of ωR and are obtained by
setting the pump-strength to η = {44.2,56.1}κ for the blue (dashed)
and green (dash-dotted) curves, respectively. The inset plots the time tl
at which the linear increase in the quasiparticle number is established
as a function of the initial lattice depth.

the initial lattice depth is the minimum lattice depth over the
Bloch period. Furthermore, we are at relatively small β, and
so the linear band picture holds good and one can anticipate
that tl increases with lattice depths due to the widening of band
gaps. In the inset in Fig. 14 we plot tl as a function of the initial
lattice depth for a range of values at NU0/κ = 1. As expected,
we see a general trend of increasing tl for larger lattice depths.
We have identified tl from the numerical simulation for atomic
fluctuation number by requiring that the average change in the
rate of increase of δN(t) over a Bloch period converge to three
significant figures.

APPENDIX C: TWO-TIME CORRELATION CALCULATION

When the intracavity light field is written as â(t) = α(t) + δâ(t), the signal variance is given by

〈�N̂2(ω,T )〉 = κ

{∫ T

0
cos2(ωt)[|α(t)|2 + 〈δâ†δâ(t)〉]dt

}
+ 2κ2 Re

[∫ T

0
dt1dt2 cos(ωt1) cos(ωt2)α(t1)α(t2)〈δâ†(t1)δâ†(t2)〉

]

+ κ2

[∫ T

0
dt1dt2 cos(ωt1) cos(ωt2)α∗(t1)α(t2)〈δâ(t1)δâ†(t2)〉

+
∫ T

0
dt1dt2α(t1)α∗(t2) cos(ωt1) cos(ωt2)〈δâ†(t1)δâ(t2)〉

]

− 2(κ)3/2 Re

[∫ T

0
dt1dt2α

∗(t1)α(t2) cos(ωt1) cos(ωt2)〈ξ̂b(t1)δâ†(t2)〉θ (t2 − t1)

]
. (C1)
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In this Appendix we provide details of how we numerically
compute the signal variance (and hence the SNR). The
important extra computational step compared to the covariance
matrix calculation in Eq. (29) is the evaluation of the
two-time correlations such as 〈δâ†(t1)δâ†(t2)〉. In the vector
notation for the fluctuations, the two-time correlations are
elements of the correlation matrix �(t1,t2) = 〈R̂(t1)R̂T (t2)〉.
The time evolution for the correlation matrix is given
by

i
d

dt
�(t,t0) = M(t)�(t,t0) + i〈Ẑ(t)R̂T (t0)〉. (C2)

Let us consider the case when t > t0. Then the last term
in above equation gives a correlation between the Langevin
operators at some future time t and the system fluctua-
tion operators at t0. Due to the δ-correlated nature of the
Langevin noise this term will be zero. This means that
Eq. (C2) becomes homogeneous and we can solve it with
the initial condition at t = t0, �(t0,t0) = C(t0). Also note that
the time evolution operator for the numerical evolution in
Eq. (C2) is the same as the one for the covariance matrix
[denoted by G(t) in Eq. (29)], which is an expression of
the quantum regression theorem [68]. A separate computa-
tion for t < t0 is not needed since they are related to the
elements of �(t,t0) with t > t0 by complex conjugation. For
example,

〈δâ†(t0)δâ(t)〉 = 〈δâ(t)δâ†(t0)〉∗.

We can evaluate the correlation 〈ξ̂b(t1)δâ†(t2)〉 using a similar
approach as above for the time evolution of the vector
〈ξ̂b(t1)R̂(t2)〉. In this case the initial condition for the evolution
is 〈ξ̂b(t0)δâ†(t0)〉 = √

κ/2. Since the evolution operators for
the correlation matrix and covariance matrix evolution are
the same the calculation can be performed without additional
computational cost. The main difficulty in computing the
signal variance arises from the fact that the two time correlation
functions are not stationary. As a result, in order to evaluate
the integrals in Eq. (C1) the correlation matrix needs to be
computed for all values of 0 < t1,t2 < T . This is the memory
intensive step in the computation and we simplify the situation
by performing the correlation matrix computation over a
coarser grid than the one used in the numerical solution of
Eq. (29). This is justified since we find typically the correlation
matrix elements do not change significantly over the very short
time steps chosen in the solution of Eq. (29). Moreover, for the
results presented in Sec. IX, we have taken care to check that
the numerical solutions converge to a value independent of the
size of the coarse grid. The necessity of evaluating two-time
correlators over a 2D time grid is the main limiting factor to the
maximum integration time for the SNR calculations. Another
point to bear in mind is that for β values larger than the ones
that we have presented here we have found that the size of
the coarse grid needs to be essentially matched with the size
of the finer computational grid over which Eq. (29) is solved.
As a result the calculation for strong coupling becomes very
memory intensive indeed.
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