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Analog to electromagnetically induced transparency and Autler-Townes effect
demonstrated with photoinduced coupled waveguides

Charles Ciret,1,2,* Massimo Alonzo,1,2 Virginie Coda,1,2 Andon A. Rangelov,3 and Germano Montemezzani1,2
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It is shown that light transfer between two evanescently coupled optical waveguides can be interrupted
when strong interaction with a third waveguide is induced. In the strong-interaction regime the transfer can
be reactivated upon proper detuning of the waveguide propagation constants. These phenomena can be easily
understood using the analog of Autler-Townes splitting and electromagnetically induced transparency from
atomic physics. Experimental demonstration is provided using photoinduced reconfigurable waveguides.

DOI: 10.1103/PhysRevA.88.013840 PACS number(s): 42.79.Gn, 42.50.Xa, 42.50.Gy, 42.65.Hw

I. INTRODUCTION

The analogies between wave optics and quantum mechanics
are as old as quantum mechanics itself; they served as a
source of understanding and development of quantum physics
in the pioneering works of de Broglie [1] and Schrödinger
[2]. After the full development of quantum mechanics, the
analogies have been going in the opposite direction: some
of the very well known techniques from coherent quantum
control of atoms and molecules found analogs in the realm of
optical physics. Examples include the analogies found for Rabi
oscillations [3], Landau-Zener tunneling [4–8], and stimulated
Raman adiabatic passage (STIRAP) [9–14]. The number
of quantum-optical analogies appearing in the literature is
still growing rapidly, as described recently in a comprehen-
sive review with a special focus on the use of waveguide
structures [15].

Another important quantum effect that holds a direct
analogy with classical optical systems is electromagnetically
induced transparency (EIT) [16–18]. Different EIT-like op-
tical systems have been demonstrated or proposed on the
basis of coupled-ring-resonator resonant cavities [19–21], of
electrically controlled periodically poled lithium niobate [22],
and of metamaterials [23]. Possible applications for photonic
switches [24] or photonic logic [25] inspired by EIT have also
been proposed.

In the present work we demonstrate theoretically and
experimentally that an even much simpler optical system,
composed uniquely of three evanescently coupled straight
waveguides, can behave in a way which is analogous to
EIT. Moreover, by properly mutually detuning the propagation
constants in the waveguides, we demonstrate that a waveguide
array can display functionalities analogous to the Autler-
Townes effect [26] (ac Stark effect). Section II gives the
theoretical background and explains the relationship between
the waveguide structure and a coupled three-level quantum
system in atomic physics. Section III presents and discusses
the experiments performed by means of photoinduced re-
configurable and tunable waveguide structures [27] in a
photorefractive material. The experimental results are shown
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to be in very good agreement with the theory and confirm the
expectations.

II. APPROACH AND THEORETICAL BACKGROUND

The optical system used to demonstrate the equivalence
with the EIT and the Autler-Townes effect is shown in
Fig. 1 and consists of three closely spaced planar-type optical
waveguides. Initially, light is injected into input waveguide
1 (WG 1). We suppose that, if desired, the refractive index
contrast of this waveguide could be changed with respect to
the one of the other two waveguides, which leads to a change
of the longitudinal propagation constant of the guided wave
by an amount Δβ with respect to the common propagation
constant β0 in waveguides 2 and 3 [Fig. 1(b)]. In the paraxial
approximation the propagation of a monochromatic light beam
in this kind of structure can be described in the framework of
the coupled-mode theory (CMT) for which the problem is
treated in a discrete way by involving the evanescent coupling
between nearest neighbors [28,29]. The corresponding evolu-
tion of the wave amplitudes can be described by a set of three
coupled differential equations (in matrix form) [15],

i
dA(z)

dz
= H(z)A(z), (1)

which has the form of a Schrödinger equation and where the
vector A = (A1(z),A2(z),A3(z))T contains the amplitudes of
the fundamental mode in the individual waveguides.

The matrix H describes the interaction between the waveg-
uide modes. For the case where WG 2 and WG 3 are identical
(propagation constants β2 = β3 ≡ β0) and differ from WG 1
(propagation constant β1 = β0 + Δβ) we have [28,29]

H(z) =
⎛
⎝ 0 C1,2e

iΔβz 0
C2,1e

−iΔβz 0 C2,3

0 C2,3 0

⎞
⎠ . (2)

Note that in general the coupling constants for the two different
waveguides are unequal (C1,2 �= C2,1) [29], while C2,3 = C3,2,
as seen in (2). The term Δβ reflects the propagation velocity
mismatch of the wave fronts in waveguides 1 and 2 and takes
the role of a detuning.
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FIG. 1. (Color online) Waveguide configuration for the analogy
(a) with EIT, where the distance d between WGs 2 and 3 is variable,
and (b) with Autler-Townes effect. In (a) the three waveguides are
identical, while in (b) the index contrast of WG 1 differs from that of
WG 2 and WG 3, leading to a different longitudinal propagation
constant. (c) The equivalent discrete three-level quantum system
coupled by coherent fields at or near resonance. �1,2 and �2,3 are
the Rabi frequencies.

Equations (1) and (2) can be brought in a more convenient
symmetric and z-independent form by performing the nonuni-
tary transformation A′

1(z) = √
C2,1/C1,2 exp(−iΔβz)A1(z),

A′
2(z) = A2(z), A′

3(z) = A3(z), which leads to

i
d

dz

⎛
⎝A′

1(z)
A′

2(z)
A′

3(z)

⎞
⎠ =

⎛
⎝Δβ Cs 0

Cs 0 Cp

0 Cp 0

⎞
⎠

⎛
⎝A′

1(z)
A′

2(z)
A′

3(z)

⎞
⎠ , (3)

where Cs ≡ √
C1,2C2,1 is the geometrical average of the

coupling constants between waveguides 1 and 2 in Fig. 1 and
Cp ≡ C2,3 = C3,2 is the coupling constant between waveg-
uides 2 and 3. If we map the longitudinal z dependence into
time dependence, Eq. (3) is identical to the time-dependent
Schrödinger equation for the three-state � system depicted in
Fig. 1(c) [30], the role of Δβ being taken by the detuning Δ. In
this picture the coupling constant Cs is analogous to the Rabi
frequency �s ≡ �1,2 for the signal field that couples states
�1 and �2, while Cp is associated with the Rabi frequency
�p ≡ �2,3 for the pump field that couples states �2 and �3.

In the case where the coupling constant Cp between WGs
2 and 3 is much stronger than the averaged coupling constant
Cs between WGs 1 and 2, it is natural to diagonalize the
strong-coupling portion of the matrix in (3), which leads to an
effective two-waveguide system. By defining the new basis

B =
(

A′
1,

A′
2 + A′

3√
2

,
A′

2 − A′
3√

2

)T

(4)

Eq. (3) is rewritten as

i
d

dz

⎛
⎝B1(z)

B2(z)
B3(z)

⎞
⎠ =

⎛
⎜⎝

Δβ Cs/
√

2 Cs/
√

2

Cs/
√

2 Cp 0

Cs/
√

2 0 −Cp

⎞
⎟⎠

⎛
⎝B1(z)

B2(z)
B3(z)

⎞
⎠ .

(5)

Since, as mentioned above, the three-waveguide system is
formally analogous to a three-state � system, it should be
able to display phenomena equivalent to EIT [16–18,31] and
the Autler-Townes effect [26], as discussed next with the help
of Eqs. (3) and (5).

Let us first consider the case of three resonant waveguides
shown in Fig. 1(a) for which Δβ = 0. If WG 3 is far away from
WG 2, the coupling constant Cp is weak, Cp � Cs , and the
problem reduces to the one of a directional coupler, for which
the light amplitude oscillates sinusoidally between WGs 1 and
2. If the distance between WGs 1 and 2 and refractive index
contrasts are chosen such that the length L of the waveguides
corresponds to one coupling length, L = Lc = π/(2Cs), all
the light injected in WG 1 exists in WG 2, so that WG 1 can
be considered to be completely opaque to the radiation. This is
equivalent to applying a π pulse to an atomic two-level system
coupled by a coherent resonant field. The situation changes
completely if the coupling Cp is increased by approaching
WG 3 towards WG 2 (with the distance between WG 1 and
WG 2 being unchanged). In the limiting case where Cp � Cs ,
WGs 2 and 3 form a dressed state that prevents the transfer
of light from the input WG 1 to WG 2, and WG 1 becomes
completely transparent. We can understand the trapping of
light in waveguide 1 with the following arguments: the light
has two ways of reaching the second waveguide: either directly
from WG 1 or via the path WG 1–WG 2–WG 3–WG 2. The
latter has comparable probability to the former since Cp is
large. Since each transfer from one waveguide to another is
associated with a π/2 phase shift, the amplitudes for these
paths exhibit strong destructive interference, and the light
is trapped in WG 1. This is true despite the fact that the
waveguide length still corresponds to one coupling length
between WGs 1 and 2. This phenomenon is analogous to the
quantum EIT effect that can be observed in the three-state
atomic system of Fig. 1(c) when states �2 and �3 are coupled
by a strong resonant field. The above arguments are illustrated
in Fig. 2, which shows the square of the amplitudes |A′

j (z)|2
(proportional to the peak intensities in the center of waveguide
j ) for the case Cp � Cs [Fig. 2(a)] and for the case Cp = 5Cs

[Fig. 2(b)]. The latter case corresponds approximately to the
conditions used for the experimental demonstration in the
EIT regime discussed in the next section. Note that the slight
oscillations observed in Fig. 2(b) disappear completely if the
ratio Cp/Cs is increased further (thin red line).

In the case where the transfer of light out of waveguide
1 is inhibited due to the dressed state of WGs 2 and 3,
this transfer can be reactivated by detuning the propagation
constant in WG 1 by a proper amount Δβ [Fig. 1(b)]. In
fact there are two specific values of Δβ for which two
of the three diagonal elements in the Hamiltonian matrix
of Eq. (5) become equal. For these values, Δβ = ±Cp,
propagation in WG 1 becomes resonant with the one either
of the mixed state B2 or of state B3, which are associated with
the fundamental symmetric and antisymmetric supermodes
of waveguides 2 and 3, respectively. In essence this resonant
coupling is the manifestation of Autler-Townes splitting [26]
in our waveguide coupling system. Figure 3(a) illustrates the
calculated evolution of the normalized intensities in the three
waveguides under the conditions of Fig. 2(b) (Cp = 5Cs , thick
lines) but for Δβ = Cp. Clearly, WG 1 is no longer transparent,
and the transfer of light to WGs 2 and 3 is again efficient. As
in the previous case, the small oscillations in the evolution
disappear if the coupling between states 2 and 3 is increased
further (thin lines). It is worth noticing that, as seen in Fig. 3(a),
for a normalized distance equal to 1 (z = Lc) the transfer is
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FIG. 2. (Color online) Normalized intensities |A′
j (z)|2 as a func-

tion of the distance z normalized to the coupling length, as obtained by
integration of Eq. (3) for Δβ = 0. (a) is for a large distance between
WGs 2 and 3 so that Cp � Cs and corresponds to a directional
coupler composed by WGs 1 and 2. For (b) the distance between
WGs 2 and 3 is reduced so that Cp = 5Cs (thick lines), and WG 1
becomes transparent, in analogy to the EIT effect. The thin solid line
in (b) is for the limit of a stronger coupling between WGs 2 and 3,
Cp = 100Cs .

not complete. However, the theory predicts a complete transfer
for a propagation distance by a factor

√
2 longer. This is

easily understood by considering the factor 1/
√

2 imposed
on the coupling constant Cs by the diagonalization of the
strong-coupling portion of the Hamiltonian matrix in (5).
Finally, we represent in Fig. 3(b) the spectrum of the light
transfer ratio from WG 1 to the other two waveguides as a
function of the detuning Δβ. The point at Δβ = 0 corresponds
to the case of EIT discussed above, while the two peaks give
the two Autler-Townes resonances at Δβ = ±Cp. Again, the
two calculated peak values for the light transfer at the two
resonances reach only roughly 80% since they are taken at a
distance z = Lc (as in the experiments below) rather than at
z = √

2Lc.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

Experimental demonstrations of the optical analogies to
the EIT and Autler-Townes effect have been performed
using the waveguide structures represented in Figs. 1(a)
and 1(b). The coupled waveguides have been realized by
photoinduction using our experimental platform based on
lateral illumination described in detail in [27]. This technique
has been successfully exploited for photoinducing waveguides
confined in one or two dimensions [32]. More recently, it
was used for demonstrating an optical analog to the STIRAP
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FIG. 3. (Color online) (a) Normalized intensities |A′
j (z)|2 as a

function of the distance z normalized to the coupling length as
obtained by integration of Eq. (3) or (5) for Δβ = Cp . The thick
lines are for Cp = 5Cs , and the thin lines are for Cp = 100Cs .
(b) Dependence of the loss from WG 1 due to coupling towards WGs
2 and 3 as a function of Δβ for Cp = 5Cs and z = Lc = π/(2Cs).
The points at Δβ = ±Cp give the two Autler-Townes resonances.

effect [27] and realizing a new concept for broadband beam
splitters based on adiabatic passage [14]. With this technique,
the image of the desired structure is imprinted onto a 532-nm
cw control beam using a reflection-type spatial light modulator
(SLM) based on nematic liquid crystals. The structured control
beam is then imaged by two crossed cylindrical lenses on
a 23-mm-long, weakly Ce doped Sr0.61Ba0.39Nb2O6 (SBN)
crystal. This illumination, combined with a bias electric field
E0 applied parallel to the crystallographic c axis of SBN,
enables a photorefractive process leading to a redistribution
of charges in the crystal. The result of this redistribution is
a local change of the refractive index via the Pockels effect.
The design of the refractive index contrast is mastered by
adjusting the static field E0 and the shape and intensity of
the control beam. Therefore an easy reconfiguration of the
structures can be made by changing the image sent to the
SLM and/or the intensity of the control beam. This is used to
modify the distance d between WGs 2 and 3 to demonstrate the
EIT-like behavior and to modify the longitudinal propagation
constant β1 in WG 1 to demonstrate the optical analog to the
Autler-Townes effect. Indeed, as illustrated in Fig. 1(b), by
changing the gray level of the image of WG 1 sent to the
SLM, the corresponding control beam intensity is changed
and so is β1 and the related refractive index contrast of WG 1.
Finally, the photoinduced structure is probed by a low-power
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FIG. 4. Output probe beam intensity images and profiles
(a) for a two-waveguide directional coupler and for the case of three
waveguides with (b) d = 36 μm and (c) d = 2.4 μm. The case in (c)
corresponds to the EIT-like behavior of the three coupled WGs.

633-nm He-Ne laser beam coupled to WG 1 at the input face of
the crystal. Its intensity after propagation through the crystal
(output face) is imaged on a CCD camera. The change of
the propagation constant β upon change of the gray level for
the control light has been calibrated experimentally using a
Mach-Zehnder interferometer on this probe wave.

We first describe the experiments that provide the analogy
of the waveguide structures to the EIT behavior. As discussed
theoretically in Sec. II, in this case the structure is composed
of three identical WGs [Fig. 1(a)] with no detuning (Δβ =
0), which corresponds in quantum physics to three atomic
levels mutually coupled by resonant coherent light fields [Δ =
0; see Fig. 1(c)]. In the experiments the WG width is equal
to 7.2 μm, and its length L is equal to the 23-mm crystal
length. The refractive index contrast of the three waveguides is
Δn = 9 × 10−5. The distance between WGs 1 and 2 is fixed at
13.2 μm, whereas the distance d between WGs 2 and 3 is being
varied. The distance between WGs 1 and 2 is chosen such that
WGs 1 and 2 form a directional coupler with L = Lc and
C1,2 = 0.6 cm−1. This means that in the absence of WG 3 all
the light injected in WG 1 at the input of the crystal should be
integrally transferred to WG 2 at the output.
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FIG. 5. (Color online) Experimental results demonstrating the
optical analogy to EIT. The intensity remaining in WG 1 is plotted
for different values of spacing d between WGs 2 and 3 while the
spacing between WGs 1 and 2 is kept constant and equal to 13.2 μm.

The experimental results are shown in Figs. 4 and 5. Figure 4
presents the probe beam intensity images and profiles at the
end of the propagation in the device for three different cases.
Figure 5 represents the intensity remaining in WG 1 at the
sample output as a function of d. If there is no WG 3 [Fig. 4(a)],
as expected, almost all the light injected in WG 1 is captured
by WG 2. If the third waveguide is added sufficiently far
apart [d = 36 μm; Fig. 4(b)], essentially no perturbation of
the propagation occurs, and the output profile is similar to that
in Fig. 4(a), in accordance with the theory [Fig. 2(a)]. When
d is decreased, coupling between WGs 2 and 3 starts to occur,
and some light is transferred back to WG 1, as shown in Fig. 5.
For these intermediate cases, the light is partly coupled in
WG 2 and in WG 3 while some light remains in WG 1. This
corresponds to a three-waveguide asymmetric coupler. Finally,
when d becomes sufficiently small [see Fig. 4(c) and the three
rightmost points on Fig. 5], almost all the light initially injected
in WG 1 remains in this WG at the end of the propagation, as
expected theoretically [Fig. 2(b)]. In other words, the presence
of WG 3 very close to WG 2 prevents the coupling between
WGs 1 and 2. This makes WG 1 transparent, in analogy to the
EIT effect.

The evolution of the light distribution among the waveg-
uides in the above cases can be better visualized by performing
numerical simulations using a beam propagation method
(BPM). Figure 6(a) shows the ratio of intensity which is
expected to remain in WG 1 as a function of d, as obtained
by BPM calculations under the experimental conditions. A
very good qualitative agreement with the experimental results
of Fig. 5 can be recognized. Figures 6(b) and 6(c) visualize
the corresponding evolution of the propagating wave intensity
in the two limiting cases, d = 36 μm and d = 2.4 μm,
respectively. In the first case WG 1 is lossy towards WG 2.
In contrast, for d = 2.4 μm the light remains confined in WG
1, as found experimentally. Note that for these conditions we
have Cp ≈ 3.4 cm−1. This value was estimated numerically
using BPM simulations by considering the spatial beating
of the wave amplitude between WG 2 and WG 3 when
only these waveguides are present. Furthermore, experimental
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FIG. 6. (Color online) (a) Intensity remaining in WG 1 as a
function of d calculated with BPM simulations. Simulation of the
probe beam intensity evolutions in z for (b) d = 36 μm and (b) for
d = 2.4 μm. Numerical parameters are taken in accordance with the
experimental ones.

verification by counting the observed numbers of beats during
the dynamic evolution of WGs 2 and 3 confirms the above
value within a 20% error margin.

Next, we demonstrate experimentally the Autler-Townes
functionalities of the three-waveguide system. Here the dis-
tance d is fixed at 2.4 μm. Therefore, if the WGs are not
detuned (Δβ = 0), we are facing the case of the EIT-like effect
discussed above. To demonstrate the Autler-Townes effect we
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FIG. 7. (Color online) Experimental demonstration of the Autler-
Townes effect illustrated by measuring the loss from WG 1 towards
WGs 2 and 3 vs the detuning Δβ of the first WG.
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Z

FIG. 8. Probe beam interferograms (a) in the absence of WGs
and for (b) the left and (c) the right resonances of Fig. 7, showing an
antisymmetric (symmetric) state for the left (right) resonance.

introduce a detuning of the longitudinal propagation constant
of WG 1 (β1 = β0 + Δβ). This is done by modifying the gray
level of the image used for creating WG 1, as explained above.
This is now analogous to an atomic � system where the first
two levels (�1 and �2) are weakly coupled by a coherent light
field slightly off resonance and where states �2 and �3 are
strongly coupled by a resonant light field.

Different structures are tested for various detunings Δβ.
The experimental results are summarized in Fig. 7, which,
similar to Fig. 3(b), gives the intensity loss from WG 1 towards
WGs 2 and 3 as a function of Δβ. The central point, for
which Δβ = 0, corresponds to EIT, and almost all the light
injected in WG 1 remains in this WG, as in Fig. 4(a). By
increasing |Δβ| the loss is maximized for two particular values
symmetric to the origin, where |Δβ| has been measured to be
3 ± 0.5 cm−1, which is in good agreement with the above
value of Cp. Therefore, in agreement with the theoretical
expectations, the two Autler-Townes resonances are found
for Δβ = ±Cp = ±C2,3. Note also that, experimentally, the
maximum loss is slightly less than 80%, as expected for
L = Lc and from the discussion in Sec. II.

Finally, to get an additional proof of the involved effects
we have investigated the form of the optical modes associated
with the two resonances in Fig. 7. This is done by observing
the superposition of the light exiting from WGs 2 and 3
with a plane wave on a Mach-Zehnder-type interferometer.
Figure 8(a) is obtained in the unperturbed crystal when there
are no waveguides and constitutes the reference. For the
left resonance in Fig. 7 (Δβ = −3 cm−1) the interferogram
reveals that the light fields in WGs 2 and 3 are mutually
out of phase [Fig. 8(b)] and correspond to an antisymmetric
state (supermode). In contrast, for the right resonance (Δβ =
+3 cm−1) we find a symmetric state, as seen in Fig. 8(c). This
corresponds to the expected symmetries of the two dressed
states [see Eq. (4)] and proves the power of optics for the
direct visualization of such states.

IV. CONCLUSION

We have investigated theoretically and demonstrated ex-
perimentally an optical analogy to the EIT and Autler-Townes
effect from quantum physics by using photoinduced coupled
waveguides. The experimental results are in good agreement
with the theoretical expectations and numerical simulations.
The waveguide structures have been realized using an
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experimental platform that permits easy modification of the
implemented photoinduced optical structures. We have first
used the adaptability of our experimental system to tune the
coupling between WGs 2 and 3, allowing us to steer the output
port of the signal injected in WG 1. This can be port 2 or port
1, with no modification of WGs 1 and 2, in analogy with EIT.
Furthermore, by detuning the propagation constant β1 in WG
1 with respect to the ones in WGs 2 and 3, we have directly
demonstrated an analogy to the Autler-Townes splitting. This
effect can potentially be used as a tunable mode converter.
For practical purposes the response time of the process
is presently limited by the photorefractive response speed
associated with the creation, modification, and reconfiguration
of the waveguides, which is rather slow (typically, a few

seconds) for the SBN crystal being used. However, this speed
can be increased by several orders of magnitude by using
faster photorefractive materials such as Sn2P2S6 [33] or by
taking advantage of the interband photorefractive effect [34].
Alternatively, in the case of sufficiently intense pulse light, the
mutual properties of the waveguides might be instantaneously
modified by means of the optical Kerr effect.
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