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Lossy quantum-optical metrology with squeezed states
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We study the precise phase estimation using squeezed states in the presence of photon loss. Our exact quantum
Fisher information calculation shows significant enhancement even though the loss is very large and sets a
benchmark for experimental realization. We show that if we blindly use the existing parity measurement scheme
[Anisimov et al., Phys. Rev. Lett. 104, 103602 (2010)] for the ideal case, the result will be even worse than the
classical case given very small loss. Using our formulas, we can optimize the measurement result by making
loss-dependent phase shift and choosing appropriate squeezed states (average photon number of squeezed states).
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I. INTRODUCTION

Many important tasks in scientific research involve physical
processes related to phase estimation. It is therefore crucial to
study the limit of precision in phase estimation, which is a
main task of quantum metrology. By finding measurements
that optimally resolve neighboring quantum states, Braunstein
and Caves [1] proposed a metric on density operator space
and a generalized uncertainty principle. These lead to an
error bound δφ � 1/

√
νFQ while estimating a phase φ.

Here FQ is called the quantum Fisher information (QFI)
of the probe state used and ν is the number of identical
measurements repeated. Employing quantum entanglement,
quantum metrology promises higher precision limit in phase
estimation [2], the Heisenberg limit (HL) 1/n, rather than the
standard quantum limit (SQL) 1/

√
n (n is the particle number

involved).
Imperfections in practical realizations can weaken or

destroy advantages of quantum metrology [3–6]. Various upper
bounds and numerical analysis [3,5,7] of QFI with noises have
been studied. Moreover, the real-world noise can make the
measurement task more complicated and intractable as well.
For instance, as we find in this paper, if we blindly use the
existing parity measurement scheme [8] for the ideal case, the
result is worse than even classical methods given very small
losses.

In this paper, we study precise phase estimation using
squeezed states with photon loss. We first analyze the en-
tangled two-mode case with exact QFI for lossy channels
calculated via the fidelity approach. Much more precise
mastery over lossy quantum-optical metrology for squeezed
states is therefore achieved, which still shows significant
quantum enhancement. We then analyze the loss-dependent
result of the parity measurement. We show that predetection
phase shift should be done and that intensity of the initial
two-mode squeezed state (TMSV) should be chosen in order
to optimize the result given the channel loss. With our
optimization in taking predetection phase shift and choosing
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intensity of TMSV according to the channel loss, there are still
considerable advantages in quantum metrology than in SQL
even under lossy channel.

II. EXACT QFI FORMULA WITH PHOTON LOSS

The two-arm interferometric quantum metrology is shown
in Fig. 1. Schematically, TMSV light passes through a Mach-
Zehnder interferometer (MZI) and measurement is performed
at the output ports. The MZI consists of two 50:50 beam
splitters and a phase shifter in one arm. The channel loss can
be modeled by virtual beam splitters with ancillary modes of
the environment. Fictitious beam splitters with transmissivity
η1,η2 are assumed to produce photon losses here. The loss
indeed accompanies phase accumulation simultaneously. But
this can be equivalently simulated by separate and commuta-
tive phase shifting and photon loss. This can be easily seen
from the Kraus operator form of the fictitious beam splitter
in the dispersive arm. Without any loss of generality, we can
place the phase shifter before the beam splitters.

A Gaussian state can be represented by the covariance
matrix [9]. Suppose the covariance matrix of the initial state
is γ0 and the environment (which is vacuum) is Ie. The
total covariance matrix is γ0 ⊕ Ie. The state after photon
loss and phase shifting is characterized by (see Theorem 2
in Appendix A)

γ = MlossMφ(γ0 ⊕ Ie)MT
φ MT

loss =
(

γ ′ γS

γ T
S γE

)
, (1)

where Mloss/φ represents the linear transformation ma-
trix of field operators caused by the virtual beam
splitters or the phase shifter, in particular, Mloss/φ =
(⊕4

j=1K)M ′
loss/φ(⊕4

j=1K
−1), where K = ( 1 1

i −i )/
√

2. Matrix
M ′

loss corresponds to the transformations âi → √
ηiâi −√

1 − ηi êi , êi → √
1 − ηiâi + √

ηi êi and their Hermite con-
jugations, where notations âi ,êi are the ith (i = 1,2) arm’s and
its environment mode’s annihilation operators, respectively.
Similarly, matrix M ′

φ corresponds to transformations â1 →
e−iφ â1 and its Hermite conjugation. Tracing the environment,
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FIG. 1. (Color online) Setup for quantum metrology with MZI.
BS1, BS2: 50:50 beam splitters. There are losses for light beams in
each path; η1,η2 represent transmissivity of light beams. φ is a phase
shifter which takes the amount of phase shift ±φ to creation and
annihilation operators of the incident light mode.

the covariance matrix of the reduced density operator for the
system we considered is just γ ′ = γ ′(φ).

If the initial state is a TMSV, i.e.,

γ0 =

⎛
⎜⎜⎜⎝

cosh r 0 sinh r 0

0 cosh r 0 − sinh r

sinh r 0 cosh r 0

0 − sinh r 0 cosh r

⎞
⎟⎟⎟⎠ ,

the final state can be calculated using (1). And it is character-
ized by

γ ′(φ) =

⎛
⎜⎜⎜⎝

d1 0 a cos φ −a sin φ

0 d1 −a sin φ −a cos φ

a cos φ −a sin φ d2 0

−a sin φ −a cos φ 0 d2

⎞
⎟⎟⎟⎠ ,

(2)

where d1 = 1 + 2η1 sinh2 r , d2 = 1 + 2η2 sinh2 r , a =√
η1η2 sinh 2r , and r is the squeeze parameter.

From Eq. (2) we can calculate the QFI for lossy channels
with the method provided in Refs. [10,11] (see Appendix A).
The result turns out to be

FQ = 2n(n + 2)η1η2

2 + n(η1 + η2 − 2η1η2)
, (3)

where n = 2 sinh2 r is the average photon number of the
initial ideal TMSV state. Obviously, when η1 = η2 = 1, this
is reduced to the ideal case, FQ = n(n + 2). We shall call it
“modified HL.” For equal losses in both arms (η1 = η2 = η)
and one-arm losses (η1 = η, η2 = 1), the QFIs are n(n+2)η2

1+n(1−η)η

and 2ηn(n+2)
n(1−η)+2 , respectively. The latter is more practical since

losses are mostly generated during phase shift operation.
Figure 2 shows the comparison between (3) and several

different characterizations of the usefulness of states. See the
caption under Fig. 2 for a detailed description. Here we can
see our exact formula of QFI (3) (corresponds to “quantum
limit” 1/

√
FQ in Fig. 2) for lossy scenarios of the above

two particular cases is in agreement with the general upper
bounds in Ref. [5]. The general upper bound [5] of QFI for
optical interferometry gives scaling 1/

√
n for n � η/(1 − η)

and 1/n for n � η/(1 − η). Despite the same physical model,
the intuitive upper bound of QFI [12] generally acts worse than
our exact QFIs as depicted. This implies the importance of our
exact QFI study. As for the performance of the TMSV state, the
QFIs of the two lossy scenarios approach their classical limits
in very large loss limits (η → 0). Notably, our formula shows
that the TMSV state beats the SQL even in the presence of
large losses (η = 0.6 for two-arm losses, η = 0.4 for one-arm
losses). This implies that squeezed states together with a
cleverly designed measurement scheme can show quantum
enhancement under a very lossy channel.
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FIG. 2. (Color online) (Left) Estimation precision δφ vs average photon number n. Lowest (dashed black) line: modified HL. Uppermost
(dashed black) line: SQL. Thick solid green line and thin solid blue line: quantum limits 1√

FQ

for two-arm-equal-loss (η1 = η2 = 0.8) and

one-arm-loss (η1 = 0.8, η2 = 1) models, respectively. Dot-dashed red line: [12]. (Right) Estimation precision δφ vs transmissivity η. Lower
horizontal dashed black line: modified HL. Upper horizontal dashed black line: SQL. Thick solid green line and thin solid blue line: quantum
limits 1√

FQ

for two-arm-equal-loss and one-arm-loss models, respectively. Thick dashed green line and thin dashed blue line: classical limits [3]

1√
nη

for two-arm-equal-loss and 1+√
η

2
√

nη
for one-arm-loss models, respectively. Dot-dashed red line: [12].
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III. MEASUREMENT SCHEME

Our purpose here is to show a useful measurement scheme
to exploit the quantum advantage described in Sec. II. In
spite of the fact that QFI very well quantifies the potential
advantage of a certain state in quantum metrology, note that
not every detection method is able to achieve this advantage,
especially in noisy scenarios. In terms of our probe state and
evolution setup, similar to [8], we make use of the so-called
parity measurement, which can be applied to precise phase
estimation for a wide range of photonic states [13]. In fact,
photon loss may occur both inside the interferometer and at
the measurement stage. The effect of photons lost in detection
varies with the specific realization of parity measurement. And
loss inside the interferometer affects the QFI, i.e., the actual
potence of a state in quantum metrology. Therefore, we deal
only with photon loss inside the interferometer in order to
comprehend the advantage of the TMSV state and a possible
suitable measurement scheme.

In our scheme, we need the parity measurement �̂ =
exp(−iπâ

†
1â1) (we specify a1 as the mode we measure). Inter-

estingly, highly reliable photon number resolving detectors
are not necessary for parity measurement. Actually, parity
measurement can be done without photon number resolving
detectors [14,15]. The value of the Wigner function at the
origin is the same with the parity of one mode field [14]:
〈�̂〉 = π

2 W (0,0). Quantum tomography techniques provide
a means to reconstruct the Wigner function of a radiation
field. Since W (0,0) is the only thing we need for the phase
estimation, one can use balanced homodyne detection [15] to
demonstrate our scheme. Detailed discussion about the setups
and mathematical derivations are given in Ref. [15].

We denote the state evolution in MZI as |	f 〉 =
ÛlossyMZI |ψTMSV〉a1,a2

⊗ |0,0〉e1,e2
, where ÛlossyMZI =

ÛBSÛlossÛφÛBS. So the expectation value of parity
measurement at the output mode is 〈�̂〉φ = 〈	f |�̂|	f 〉.
Using an exponential operator reordering method [16] (see
Appendix B) henceforward, we can calculate the ÛlossyMZI

operator and expectation values of observables. Thus, we
obtain

〈�̂〉φ =
√

2

nω + 2
, (4)

where ω = 2η1η2(n + 2) cos2 φ + (η1 + η2)(2 − η1 − η2).
Explicitly, the variance of phase estimation quantifying
quantum enhancement is

�φ2 = 〈�̂2〉φ − 〈�̂〉2
φ

(∂ 〈�̂〉φ /∂φ)2
= ω(nω + 2)2

2η2
1η

2
2n(n + 2)2 sin2 2φ

. (5)

Equations (4) and (5) reduce to the ideal case in

Ref. [8] when η1 = η2 = 1: ˜〈�̂〉φ = 1√
1+n(n+2) cos2 φ

, �̃φ =
1+n(n+2) cos2 φ

| sin φ|√n(n+2)
. This ideal �̃φ is monotonic to φ if φ ∈ [0,π/2],

i.e., the best precision is achieved when φ = π/2. When there
are photon losses, our Eq. (5) shows that φ is no longer
monotonic with respect to φ. Actually, in such a case, the
relationship �φ = �φ(n,η1,η2,φ) is rather complicated. (1)
It depends on the values of n,η1,η2. (2) Equation (5) can give
us an optimal point phase value φo = φo(n,η1,η2) numerically.
This means that, if the unknown phase shift is small, or, if
we have the knowledge of a small range for the unknown
phase shift, then we can first take a suitable phase shift
according to the known values of n,η1,η2 so as to achieve
the highest precision in given conditions. That is to say,
instead of exploiting quantum enhancement around φ = π/2,
we can attain the minimal �φ if we adjust the phase to be
near to this φo and then measure it. (See the next paragraph
for details.) (3) Without this “optimal measurement point”
amendment, the result of phase estimation through ordinary
parity measurement will be poor; normally, no enhancement
can be achieved. [This is not shown in Fig. 3 (right) since it
behaves poorly].

The above discussion shows that, in practical experiment
settings with photon losses, we have to make a biased
measurement in order to achieve the best precision. Say, we
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FIG. 3. (Color online) (Left) Optimal measurement point φo vs average photon number n and transmissivity η. (Right) Phase estimation
error �φ vs average photon number n for one-arm losses (η = 99%). Purple (uppermost) line: classical limit [3]. Blue (lowest) line: quantum
limit of exact QFI. Green (middle) line: optimal phase measurement error via parity detection.
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first calculate the optimal phase φo by Eq. (5), given n,η1,η2. If
the phase φ to be measured is small, we then add an additional
phase shift of ϕ = φo. More generally, if the unknown phase
φ is in a small range centered at φ̃, we shall add an additional
phase shift ϕ = φo − φ̃. After parity measurement, we obtain
ϕ and then deduce φ. As can be easily shown, the precision
of φ is equal to that of ϕ. Therefore, by taking an additional
phase shift, we can achieve a precise result of φ even though
there are channel losses.

Since losses are mostly generated by phase shifting, we fo-
cus on the case of η1 = η, η2 = 1 henceforward. Interestingly,
now this φo is monotonic to n and η separately, as shown in
Fig. 3 (left). The performance of parity measurement at an op-
timal measurement point with losses in the dispersive arm has
been calculated. Compared with our exact lossy QFI and the
classical limit 1+√

η

2
√

nη
for coherent state [3], significant quantum

enhancement is achieved in the η = 0.99 case as shown in
Fig. 3 (right). To our knowledge of contemporary optical tech-
nology in laboratories, this is doable for a proof-of-principle
demonstration. In addition, our lossy QFI bound in Sec. II
cannot be totally achieved through our parity measurement
scheme. Fixing total photon number N = 200 (see the next
paragraph), we also calculate the performance of the scheme
for cases of η = 0.99,0.98,0.97,0.96 as shown in Fig. 4.

As for the situation closer to real experimental setups, we in
general repeat an identical experiment many times to reduce
error classically. So we divide our N -photon resource into
ν identical states. n = N/ν is just interpreted as the average
photon number in the above discussion. Therefore the more
general formula of phase estimation error is δφ(n,η,φ) =
�φ(n,η,φ)√

N/n
. With N fixed, the optimization of phase measurement

point is similar to (5). However, as shown in Fig. 4, when η
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FIG. 4. (Color online) Repeated-experiment phase error δφ vs av-
erage photon number n for one-arm losses [η = 99%,98%,97%,96%
from (a) to (d), N = 200 fixed]. Red horizontal line: classical limit [3].
Blue (lowest) line: quantum limit of exact QFI. Green (middle) line:
optimal phase measurement error via parity detection.

and N are fixed, there turns out to be an optimal average
photon number no that increases with η to attain minimal error
δφ. So the averaged photon number in the initial TMSV state
is not the larger the better, which means, interestingly, that
the squeezing is not the higher the better in order to get the
largest quantum enhancement in phase estimation under lossy
channel. There exists an optimal value for squeezing given
total photon resource and channel loss.

Calculation shows that the measurement scheme here
will almost completely lose its quantum advantage when
η goes to 90%. This means that the scheme presented in
Sec. III does not fully realize the quantum enhancement
shown by QFI calculation in Sec. II. Note that this does
not conflict with the result of largest loss given in Sec. II.
QFI provides the mathematically allowed result for quantum
metrology. The scheme used here is a demonstration of an
experimentally achievable quantum advantage rather than the
one mathematically derived within the QFI framework [1],
which seems to be far beyond currently existing technologies.

IV. CONCLUDING REMARK

In summary, we have presented an explicit formula for
quantum Fisher information for phase estimation with a
two-mode squeezed state under lossy channels. We presented
detailed results on how to optimize the quantum enhancement
in phase estimation given channel loss. The measurement
scheme in Sec. III does not fully reach the allowed quantum
metrology advantage as calculated by QFI in Sec. II. This
leaves an interesting problem for future study of further
improving the quantum enhancement through seeking new
feasible measurement schemes.
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APPENDIX A: PROOF OF EQ. (3): EXACT QFI
FOR LOSSY CHANNELS

The calculation of quantum Fisher information relies on the
relation between the Bures distance and QFI [1]:

FQ = 4[dsBures(ρ̂φ,ρ̂φ+dφ)]2/dφ2, (A1)

where dsBures(ρ̂φ,ρ̂φ+dφ) = √
2[1 − F (ρ̂φ,ρ̂φ+dφ)].

Therefore, in order to calculate the QFI we need the
expression for the Bures fidelity for two Gaussian states, which
has been given in Ref. [11] as the main result. Specifically, it
can be expressed as the following theorem in our two-mode
case:

Theorem 1. For two-mode states expressed in the form

ρ̂φ = exp
[ − 1

2αT Nφα
]
, (A2)
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where α = (â†
1,â1,â

†
2,â2)T , and Nφ is a 4 × 4 symmetric matrix

whose elements can be dependent on φ, the Bures fidelity
between two states can be expressed as

F (ρ̂φ,ρ̂φ+dφ) =
∣∣ det

(
e−Nφ�−1 − I

)
det

(
e−Nφ+dφ�−1 − I

)∣∣1/2

det
[√

e−Nφ�−1/2e−Nφ+dφ�−1
e−Nφ�−1/2 − I

] ,

(A3)

where

� =

⎛
⎜⎜⎜⎝

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

⎞
⎟⎟⎟⎠ .

Therefore, to calculate the Bures fidelity, the only thing
we need to derive is the expression for Nφ . In the following,
Nφ will be derived from the covariance matrix γ ′(φ) of the
final state. To make it concise, we shall use the following
theorem [9]:

Theorem 2. Define � = (x̂1,p̂1, . . . ,x̂n,p̂n)T . If the density
operator for covariance matrix γ0 is exp[− 1

2�T N0�], then the
density operator for covariance matrix γ = MT γ0M is ρ =

exp[− 1
2�T MT N0M

−1T
�], given M a complex symplectic

matrix.
Proof. Suppose ρ = Ŝρ0Ŝ

†. Then the characteristic function
for ρ is tr[exp(i�T ξ )Ŝρ0Ŝ

†] = tr[Ŝ† exp(i�T ξ )Ŝρ0] =
tr{exp[i�T M(Ŝ†)ξ ]ρ0}, where ξ = (ξ1,ξ2, . . . ,ξ2n) and
Ŝ†�T Ŝ = �T M(Ŝ†). Hence the covariance matrix
for ρ is MT (Ŝ†)γ0M(Ŝ†). On the other hand, we
have already assumed γ = MT γ0M; this shows that
M(Ŝ†) = M . Also, we have assumed the form of
ρ = Ŝρ0Ŝ

† and ρ0 = exp[− 1
2�T N0�]. This gives rise to

ρ = exp[− 1
2�T M(Ŝ)N0M

T (Ŝ)�] if Ŝ�T Ŝ† = �T M(Ŝ). The
uitarity condition ŜŜ† = 1 requests M(Ŝ) = M−1(Ŝ†) = M−1.
Therefore ρ = exp[− 1

2�T M−1N0M
−1T

�]. This completes
the proof. �

In our case, covariance matrix of the final state is γ ′(φ)
as given in Eq. (2). Diagonalizing matrix γ ′(φ), we have the
following form for γ ′(φ):

γ ′(φ) = MT DM, (A4)

where D = diag(r1,r1,r2,r2) with r1 = 1
2 (d1 +

d2)
√

4a2 + 1 + 1
2 (d1 − d2) and r2 = 1

2 (d1 + d2)
√

4a2 + 1 −
1
2 (d1 − d2), and

Mφ =

⎛
⎜⎜⎜⎜⎝

cosh r0 sin φ

2 −cosh r0 cos φ

2 sinh r0 sin φ

2 sinh r0 cos φ

2

cosh r0 sin φ

2 sinh r0 cos φ

2 sinh r0 cos φ

2 −sinh r0 sin φ

2

sinh r0 sin φ

2 sinh r0 cos φ

2 cosh r0 sin φ

2 −cosh r0 cos φ

2

sinh r0 cos φ

2 −sinh r0 sin φ

2 cosh r0 cos φ

2 cos r0 sin φ

2

⎞
⎟⎟⎟⎟⎠

is symplectic, where r0 satisfies coth 4r0 = − d1+d2
4a

. Define
ρ̂D as the density operator whose covariance matrix is the
diagonal matrix D. It is well known that the density operator
for diagonal covariance matrix D is a thermal state as ρ̂D =
e−(1/2)αT N0α with

N0 =

⎛
⎜⎜⎜⎜⎝

0 −ln( r1−1
r1+1 ) 0 0

−ln( r1−1
r1+1 ) 0 0 0

0 0 0 −ln( r2−1
r2+1 )

0 0 −ln( r2−1
r2+1 ) 0

⎞
⎟⎟⎟⎟⎠ .

Therefore the density operator for the final state ρ is

ρ̂ = Ŝρ̂DŜ† = Ŝe−(1/2)αT N0αŜ†

= Ŝe−(1/2)�T KN0K
T �Ŝ†

= e−(1/2)�T M−1KN0K
T M−1T

�.

Here

K = 1√
2

⎛
⎜⎝

1 1 0 0
i −i 0 0
0 0 1 1
0 0 i −i

⎞
⎟⎠

is the transform matrix from α to �, satisfying � = Kα.

Therefore ρ = e−(1/2)αT KT M−1KN0K
T M−1T

Kα . Comparing this

with Eq. (A2) we get

Nφ = KT M−1
φ KN0K

T M−1
φ

T
K. (A5)

With Nφ and Theorem 1 we can compute the Bures fidelity
and finally the QFI for the lossy channel, which is exactly
Eq. (3).

APPENDIX B: CALCULATION METHOD OF EQ. (4)

Instead of the characteristic function description of density
matrices, which is only convenient for the evaluation of the
first moment of photon number operator, here we make use
of the exponential quadratic operator and linear quantum
transformation method [16] to evaluate the expectation value
of observables. According to its definitions, the parity operator
is �̂ = (−1)â

†
1 â1 = e−iπâ

†
1 â1 . For our purpose, the evaluation

of the parity operator’s expectation value on the output state
〈�̂〉φ = 〈	f |�̂|	f 〉 can be formulated alternatively as

〈�̂〉φ = 〈0|Ûall|0〉 ,

where

Ûall = Ŝ†Û †
lossyMZI�̂ÛlossyMZIŜ,

(B1)
ÛlossyMZI = ÛBSÛlossÛφÛBS.
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Here Ŝ = exp (−ζ ∗â1â2 + ζ â
†
1â

†
2) is the two-mode squeeze

operator and |0〉 denotes the vacuum state of the large system
including the MZI and dissipative environment. Thus, our task
transmits to calculating the expectation value of operator Ûall

over vacuum. This can be done by directly using the conclusion
in Ref. [16], stated as Theorem 3 below.

Theorem 3. Given an n-mode exponential quadratic
operator Û , we define its matrix representation M(Û )
by Û�T Û−1 = �T M(Û ). Here � = (ĉ† ,ĉ)

T
with ĉ† =

(ĉ†1, . . . ,ĉ
†
n), ĉ = (ĉ1, . . . ,ĉn) and [ĉi ,ĉ

†
j ] = δij holds. Then the

expectation value 〈0|Û |0〉 = 1√
det C

, if M(Û ) = ( A D

B C ), where
A,B,C,D are all n × n matrices.

In our case, there are four modes in all, including the
two MZI modes a1,a2 and the two concomitant modes
e1,e2 of the dissipative environment. Accordingly, here �T =
(ê†1 ,ê

†
2 ,â

†
1 ,â

†
2 ,ê1 ,ê2 ,â1 ,â2). To apply Theorem 3, we only

need to find out the matrix representation of operator Ûall as
defined by Eq. (B1). It is easy to see

M(Ûall) = M(Ŝ†)M(Û †
lossyMZI)M(�̂)M(ÛlossyMZI)M(Ŝ),

M(ÛlossyMZI) = M(ÛBS)M(Ûloss)M(Ûφ)M(ÛBS). (B2)

Due to calculation detail, an unimportant global phase factor
may appear. Here we give the M matrices we made use of,
where θi = cos−1(

√
ηi) for i = 1,2.

M(�̂) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, M(Ŝ) = |ζ |

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 cosh(|ζ |) 0 0 0 0 −sinh(|ζ |)
0 0 0 cosh(|ζ |) 0 0 −sinh(|ζ |) 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 −sinh(|ζ |) 0 0 cosh(|ζ |) 0

0 0 −sinh(|ζ |) 0 0 0 0 cosh(|ζ |)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M(Ûφ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 e−iφ 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 eiφ 0

0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, M(ÛBS) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1√
2

i√
2

0 0 0 0

0 0 i√
2

1√
2

0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1√
2

− i√
2

0 0 0 0 0 0 − i√
2

1√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M(Ûloss) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(θ1) 0 i sin(θ1) 0 0 0 0 0

0 cos(θ2) 0 i sin(θ2) 0 0 0 0

i sin(θ1) 0 cos(θ1) 0 0 0 0 0

0 i sin(θ2) 0 cos(θ2) 0 0 0 0

0 0 0 0 cos(θ1) 0 −i sin(θ1) 0

0 0 0 0 0 cos(θ2) 0 −i sin(θ2)

0 0 0 0 −i sin(θ1) 0 cos(θ1) 0

0 0 0 0 0 −i sin(θ2) 0 cos(θ2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

With these, evaluation of the expectation value is straightforward; the result is given by Eq. (4).
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Q = 〈ψf |�(â†â)|ψf 〉 = η2n(n + 2) +

η(1 − η)n with |ψf 〉 being the TMSV state after photon loss,
for instance.

[13] C. C. Gerry and J. Mimih, Contemp. Phys. 51, 497
(2010).

[14] A. Royer, Phys. Rev. A 15, 449 (1977).
[15] William N. Plick, Petr M. Anisimov, Jonathan P. Dowling,

Hwang Lee, and Girish S. Agarwa, New J. Phys. 12, 113025
(2010).

[16] X. B. Wang, S. X. Yu, and Y. D. Zhang, J. Phys. A 27, 6563
(1994); X. B. Wang, Ph.D. dissertation, National University of
Singapore, 2001.

013838-7

http://dx.doi.org/10.1103/PhysRevLett.102.040403
http://dx.doi.org/10.1103/PhysRevA.80.013825
http://dx.doi.org/10.1103/PhysRevA.80.013825
http://dx.doi.org/10.1103/PhysRevLett.79.3865
http://dx.doi.org/10.1038/nphys1958
http://dx.doi.org/10.1038/nphys1958
http://dx.doi.org/10.1103/PhysRevA.83.063836
http://dx.doi.org/10.1103/PhysRevA.83.063836
http://dx.doi.org/10.1038/ncomms2067
http://dx.doi.org/10.1038/ncomms2067
http://dx.doi.org/10.1103/PhysRevLett.104.103602
http://dx.doi.org/10.1016/j.physrep.2007.04.005
http://dx.doi.org/10.1016/j.physrep.2007.04.005
http://dx.doi.org/10.1103/PhysRevA.61.022306
http://dx.doi.org/10.1103/PhysRevA.61.022306
http://dx.doi.org/10.1088/0305-4470/33/27/310
http://dx.doi.org/10.1088/0305-4470/33/27/310
http://dx.doi.org/10.1080/00107514.2010.509995
http://dx.doi.org/10.1080/00107514.2010.509995
http://dx.doi.org/10.1103/PhysRevA.15.449
http://dx.doi.org/10.1088/1367-2630/12/11/113025
http://dx.doi.org/10.1088/1367-2630/12/11/113025
http://dx.doi.org/10.1088/0305-4470/27/19/026
http://dx.doi.org/10.1088/0305-4470/27/19/026



