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Controlling single-photon transport in waveguides with finite cross section
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We study the transverse-size effect of a quasi-one-dimensional rectangular waveguide on the single-photon
scattering on a two-level system. We calculate the transmission and reflection coefficients for single incident
photons using the scattering formalism based on the Lippmann-Schwinger equation. When the transverse size of
the waveguide is larger than a critical size, we find that the transverse mode will be involved in the single-photon
scattering. Including the coupling to a higher traverse mode, we find that the photon in the lowest channel will
be lost into the other channel, corresponding to the other transverse modes, when the input energy is larger than
the maximum bound-state energy. Three kinds of resonance phenomena are predicted: single-photon resonance,
photonic Feshbach resonance, and cutoff (minimum) frequency resonance. At these resonances, the input photon
is completely reflected.
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I. INTRODUCTION

Current optical communications use electronic switching
and thus are limited to electronic speeds of a few gigahertz. To
reach much higher speeds, various proposals have been made
including optical networks [1], as well as using all-optical
routers [2] and switches [3–8]. Also, quantum optical networks
were motivated by quantum information (communication),
using elements with quantum coherence (such as superposition
and entanglement) of photons. Thus the elemental device can
be implemented as a generalized cavity QED system: a photon
confined to a one-dimensional (1D) waveguide, and controlled
by a quantum switch, made of a two (or more) energy-level
systems [3–23].

There have been numerous theoretical [3–8,24] and experi-
mental [25,26] studies for such a quantum switch, which could
be realized in various physical systems, e.g., a transmission
line [6,27–30] coupled to a charge qubit [31–35] and a defect
cavity waveguide coupled to a quantum dot [36–38]. Most
theoretical studies on these systems are excessively idealized,
because the experimental system is never one dimensional.

In order to consider more realistic systems, here we study
the finite cross-section effect of the waveguide on the single-
photon transport controlled by a two-level system (TLS).
We consider the waveguide as a quasi-1D system with a
rectangular cross-section. It is well known that if a photon
could be perfectly transported in a quasi-1D waveguide,
its frequency must be larger than the cutoff frequency of
a certain transverse mode. Moreover, to avoid the loss of
the photon incident in the lowest transverse mode due to
scattering into other modes, people need to make the cross
section of the waveguide as small as possible. However,
the cross section of realistic waveguides cannot be infinitely
small, and a waveguide with a finite cross section would
allow the photon transit from one transverse mode to another.
Furthermore, if the incident photon frequency is far from the
cutoff frequency, such as x ray [39,40], then the different

transverse modes would be so close that the incident photon
would be inevitably coupled to higher transverse modes.
This consideration motivates us to study the incident photon
transport in one mode while coupled to another (higher) mode.

We solve the Lippmann-Schwinger equation for calculating
the reflection and transmission coefficients of a single photon
scattered by a TLS. Since the exact dispersion relation of a
photon in a waveguide with finite cross section is more like a
quadratic one near the cutoff frequency, quite different from
the linear regime, we approximate the exact dispersion relation
by a quadratic function of the wave vector of the photon by
expanding it to second order in the wave vector. In such a
quadratic waveguide, we find that there is a bound state and
two quasibound states for each scattering channel defined by
a certain transverse mode. We note that this bound state does
not exist in the usual linear waveguides.

There are three kinds of resonance phenomena, which
correspond to the complete reflection of the photon incident in
a given channel. One occurs at the single-photon resonance,
namely the incident photon energy is resonant with the TLS
without coupling to the higher transverse mode. Once the
incident photon couples to the higher transverse mode, this
resonance phenomenon is replaced by a photonic Feshbach
resonance, namely a complete reflection occurs when the
incident energy of the photon equals the bound-state energy
of the higher transverse mode. The third type of resonance
always occurs at the minimum frequency of the quadratic
waveguide, whether or not the singe photon is coupled to a
higher transverse mode. This resonance phenomenon is called
cutoff-frequency resonance. We also notice that the transverse
mode will lead to an incident photon loss as a result of
scattering into other higher channels. We also compare in detail
the results obtained by the linear and quadratic dispersion
relations, respectively.

This paper is organized as follows. In Sec. II, we describe
the system and the effective Hamiltonian, including two
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transverse modes. We also derive the second-order dispersion
relation. Then, we calculate the single-photon transport in
the higher transverse mode without coupling to the incident
mode in Sec. III. We find a bound state and two quasi-
bound states [5,41,42] by utilizing the quadratic dispersion
relation. In Sec. IV, we obtain the single-photon reflection
and transmission coefficients with coupling to the higher
transverse mode through the Lippmann-Schwinger equation.
The transverse effect in both linear and quadratic waveguides
are discussed in Sec. V. Finally, we present our conclusions in
Sec. VI.

II. MODEL

The setup under consideration is a waveguide-QED system
(see Fig. 1) consisting of a quasi-1D rectangular waveguide
with inner dimensions Lx and Ly and a two-level atom.
The waveguide supports quantum fields of transverse electric
waves TEmn, which are described by the annihilation (creation)
operators a

(†)
m,n,k . Here the natural numbers m and n are,

respectively, the transverse quantum numbers in the x and
y directions, while the continuous variable k denotes the
wavevector along the z axis. The eigenmode function of the
electric fields in the waveguide can be expressed as [43]

ũ
(x)
m,n,k(r) = −iεk

2nπ

kcutLy

cos

(
mπ

Lx

x

)
sin

(
nπ

Ly

y

)
eikz,

(1)

ũ
(y)
m,n,k(r) = iεk

2mπ

kcutLx

sin

(
mπ

Lx

x

)
cos

(
nπ

Ly

y

)
eikz,

where we introduce the cutoff wave number

kcut = √
(mπ/Lx)2 + (nπ/Ly)2, (2)

and the electric field per photon εk = √
h̄ωm,n,k/(2ε0Vk), with

frequency

ωm,n,k = c

√
(mπ/Lx)2 + (nπ/Ly)2 + k2, (3)

and the effective volume Vk = LxLy2π/|k| of a segment (with
length 2π/|k|) of the waveguide. The parameter ε0 is the
vacuum permittivity and c is the speed of light in vacuum.

e

g
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FIG. 1. (Color online) Schematic diagram for single-photon
transport in a quasi-one-dimensional waveguide coupled to a TLS
with transition frequency ω0. The cross-section size of the waveguide
is Lx (Ly) along the x (y) direction.

When a two-level atom is placed in the waveguide, it will
couple to these quantum fields via the dipole interaction.
Denoting the ground and excited states of the atom as |g〉
(with energy 0) and |e〉 (with energy ω0), we can define the
atomic transition operators as σ+ = |e〉〈g| and σ− = |g〉〈e|,
and then the Hamiltonian (with h̄ = 1) of the waveguide-QED
system reads

H = ω0|e〉〈e| +
∫ +∞

−∞
dk

∑
m,n

ωm,n,ka
†
m,n,kam,n,k

+
∫ +∞

−∞
dk

∑
m,n

(gm,n,kσ+am,n,k + H.c.). (4)

Here, the coupling strength is gm,n,k = −d (x)
e,gũ

(x)
m,n,k(r0) −

d
(y)
e,gũ

(y)
m,n,k(r0).

Keeping the coupling between photons and atoms gm,n,k

nonzero requires mn �= 0. If m = 0, namely the coupling along
y direction is zero, then the transverse mode quantum number
n should be nonzero, namely n = 1,2,3, . . . ; otherwise, if
n = 0, namely the coupling along x direction is zero, then
the transverse mode quantum number m should be nonzero,
namely m = 1,2,3, . . . . When the transverse sizes satisfy
Lx = Ly , then the modes TE10 and TE01, bearing the same
cutoff frequencies, are degenerate. To mainly show our idea,
namely the effect induced by transverse size of the waveguide,
we will choose two modes with different cutoff frequencies.
The relation ωcut

m,n ≡ ckcut gives the exact cutoff frequency ωcut
m,n

for the transverse mode (m,n).
As a result of g0,0,k = 0, we do not consider the TE00 mode

with ω0,0,k = c|k|. To reduce the energy distribution in the
transverse mode of the transport photon, we assume that the
photons are in the lowest transverse mode TE01, which is
the main transport channel we will consider here. However,
the transverse mode TE11 with a little higher energy is very
close to the lowest transverse mode TE01 for a finite cross
section of the waveguide, while other transverse modes are far
away from TE01. Therefore, the finite cross-section effect of
the quasi-1D waveguide on photon transport can be mainly
characterized by the two transverse modes TE01 and TE11.
Then the Hamiltonian (4) reduces to

H = H0 + V (5)

with the free Hamiltonian H0 of the photon and the two-level
atom

H0 = Hw + ω0|e〉〈e|, (6)

where

Hw =
∫ +∞

−∞
dk(ωa,ka

†
kak + ωb,kb

†
kbk), (7)

and the interaction Hamiltonian V between the photon and the
atom

V =
∫ +∞

−∞
dkσ+(g1kak + g2kbk) + H.c. (8)
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by defining TE01 as the a mode, and TE11 as the b mode,
that is

ak ≡ a0,1,k, bk ≡ a1,1,k, (9)

g0,1,k = 2id (x)
e,g

√
h̄ωak

2ε0Vk

sin

(
π

Lx

y0

)
≡ g1k, (10)

g1,1,k = id (x)
e,g

√
h̄ωbk

ε0Vk

cos

(
π

Lx

x0

)
sin

(
π

Lx

y0

)
≡ g2k, (11)

and

ωa,k ≡ ω0,1,k, ωb,k ≡ ω1,1,k, (12)

ωcut
a ≡ ωcut

0,1, ωcut
b ≡ ωcut

1,1. (13)

In many works related to 1D waveguides, the dispersion
relation of the photon is approximated up to the first order
of the photon wave vector [11,13–15,18–23]. However, the
exact dispersion relation (3) near the cutoff frequency is more
like a quadratic one, so we expand the frequency ωa,k around
(k0,ω0) with ω0 = ωa,k0 = c

√
π2L−2

y + k2
0, and ωb,k around

(k′
0,ω0) with ω0 = ωb,k′

0
= c

√
π2L−2

x + π2L−2
y + k′2

0 , up to
second order in k. After introducing p = k − k0 (for ωa,k),
and p = k − k′

0 (for ωb,k), the two dispersion relations can be
rewritten as

ωs,p � ω0 + vs1p + vs2p
2 (s = a,b), (14)

with the first- and the second-order coefficients given by

va1 = cδ/ω0, va2 = ω0v
2
a1

2δ2
− va1

2ω0
, (15)

vb1 = |va1|
√

2δ2 − ω2
0

/
δ, vb2 = 2va2. (16)

Here, we have introduced ω ≡ cπ/Lx and δ =
±√

ω2
0 − ω2, which is proportional to the size Lx of the

cross section. The ± sign represents the sign of k0 (k′
0).

The approximated quadratic dispersion relation (14) shifts
the cutoff frequency from ωcut

s (exact) to ωmin
s = (4vs2ω0 −

v2
s1)/(4vs2) (approximated). Here s = a, b.

We assume the photons are entering from the left end of the
waveguide in the a mode; thus for the right-moving photons,
k0,k

′
0 > 0, and δ takes the “+”sign, while for the left-moving

photons, k0,k
′
0 < 0, and δ takes the “−”sign. Therefore, the

dispersion relations (14) can be rewritten as

ωs,k �
{

ω0 + |vs1| k + vs2k
2, k0, k′

0 > 0,

ω0 − |vs1|k + vs2k
2, k0, k′

0 < 0,
(17)

for s = a,b. We note that the terms in the dispersion relation
(14) that depend on the photon wave vector p describe the
frequency detuning of the photon from the atom. Later on, we
will use the dispersion relations (14) in our derivations.

III. SCATTERING AND BOUND STATES IN THE
SINGLE b MODE

Since the photon scattering process in the so-called b mode
may contribute to the photon transport in the a mode, we
first consider the photon scattering in a single b mode. We
inject the photon in the b mode with the atom only coupled
to the transverse-mode b mode (g1 = 0). By employing the
Lippmann-Schwinger equation, we calculate the scattering
state of the photon in the b mode. The bound state is also
obtained by the poles of the T matrix [44].

Under the above consideration, the Hamiltonian is directly
obtained by setting g1 = 0 and ωa,k = 0 in the Hamiltonian
(5) Hb = Hb

0 + V b, which includes the free Hamiltonian

Hb
0 = Hb

w + ω0|e〉〈e|, (18)

with Hb
w = ∫ +∞

−∞ dk ωb,kb
†
kbk , and the interaction part

V b =
∫ +∞

−∞
dk(g2kσ+bk + H.c.). (19)

We assume the single photon is initially input from the left end
of the waveguide in the b mode b

†
k|∅〉 with energy ωb,k , while

the atom is in the ground state |g〉, then the scattering state is
given by the Lippmann-Schwinger equation [44,45]

|ϕ(+)
bk 〉 = b

†
k|∅〉|g〉 + 1

ωb,k + i0+ − Hb
0

V b|ϕ(+)
bk 〉. (20)

Here, the input state b
†
k|∅〉|g〉 is the eigenstate of the free

Hamiltonian Hb
0 with eigenenergy ωb,k ,

Hb
0 b

†
k|∅〉|g〉 = ωb,kb

†
k|∅〉|g〉, (21)

and |ϕ(+)
bk 〉 is the eigenstate of the total Hamiltonian Hb with

the same eigenenergy ωb,k .
We assume that the solution of the scattering state |ϕ(+)

bk 〉 is
in the form

|ϕ(+)
bk 〉 = |φb,k〉|g〉 + βb,k|∅〉|e〉. (22)

Here, |φb,k〉 is the single-photon state after being scattered,
and βb,k is the probability amplitude for the atom to be in
its excited state. Substituting this solution into Eq. (20), the
scattering state is obtained,

|ϕ(+)
bk 〉 = b

†
k|∅〉|g〉 + βb,k|∅〉|e〉 + G0

bw(ωb,k + i0+)βbk

×
∫ +∞

−∞
dk′g∗

2k′b
†
k′ |∅〉|g〉, (23)

where G0
bw(z) = (z − Hb

w)−1 is the free Green operator for the
b-mode photon, and

βbk = g2k

ωb,k + i0+ − ω0 − �b(ωb,k)
, (24)

with the self-energy defined by

�b(E) ≡
∫ +∞

−∞
dk

|g2k|2
E + i0+ − ωb,k

(25)

≈ − iγbvb1√
v2

b1 + 4vb2(E − ω0)
. (26)
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Here, if we directly substitute the exact coupling expression
(11) into Eq. (25), the divergence of self-energy �b occurs.
In obtaining the result (26), we have assumed g2k to be
independent of k, namely g2k = g2. This assumption is
equivalent to the Markov approximation [46].

It follows from Eq. (26) that, when E � (4vb2)−1(4vb2ω0 −
v2

b1) = ωmin
bk , �b(E) is purely imaginary, while E < ωmin

bk ,
�b(E) is real. Using the scattering state, the T -matrix elements
are given by

tk′k(ωb,k) = 〈g|〈∅|bk′V b|ϕ(+)
bk 〉 = βbkg

∗
2k′ . (27)

The bound state can be obtained by solving the tran-
scendental equation [tk′k(Ebs)]−1 = 0. We directly obtain the
bound-state-energy transcendental equation,

Ebs = ω0 − iγbvb1√
v2

b1 + 4vb2(Ebs − ω0)
, (28)

by using the result (26). Here we have defined the decay rate
for the atom induced by the b-mode γb = 2π |g2|2/vb1. Later
on, we use γb to denote the coupling strength g2.

It follows from this result (28) that if vb2 → 0, which
corresponds to a linear waveguide, the bound-state-energy
solution is

Ebs = ω0 − i|γb|. (29)

The fact that there is no real solution means that there is no
bound state in the linear waveguide. However, for the quadratic
waveguide, the transcendental equation (28) gives one real
solution

Ebs = 
F
a + ω0, (30)

with


F
a ≡ u2

b − ubv
2
b1 + v4

b1

12ubvb2
. (31)

This real solution denotes a bound state. Two complex
solutions,

Ebs =
[

(−1 + i
√

3)ub − 2v2
b1

+ (−1 − i
√

3)
v4

b1

ub

+ 24vb2ω0

]
(24vb2)−1 (32)

and

Ebs =
[

(−1 − i
√

3)ub − 2v2
b1

+ (−1 + i
√

3)
v4

b1

ub

+ 24vb2ω0

]
(24vb2)−1, (33)

correspond to two quasibound states. Each of these is a
metastable state that decays on a very long time scale and
appears to be a localized bound state in real space [41,42]. The
parameters therein are defined by

u3
b = lb,

(34)
lb = −v6

b1 − 216v2
b1v

2
b2γ

2
b

+ 12
√

3
√

v4
b1v

2
b2γ

2
b

(
v4

b1 + 108v2
b2γ

2
b

)
.

We note that lb is always real, thus there are three values for
ub = l

1/3
b ,l

1/3
b ei 2π

3 , and l
1/3
b ei 4π

3 . However, we can choose ub to
be real. Then there is always a real solution (30) for Eq. (28),
which describes a bound state with energy (30). In addition,
when the detuning 
ak ≡ ωak − ω0 satisfies


ak = 
F
a (35)

or, equivalently,

k =
−va1 ±

√
v2

a1 + 4va2
F
a

2va2
≡ kF, (36)

the input photon energy ωak is resonant with the bound state
in the b mode. This is the Feshbach resonance. Moreover,

lim
γb→0


F
a = − v2

b1

4vb2
= 
F

max. (37)

This maximum value 
F
max of 
F

a versus the coupling strength
γb between the transverse mode and the TLS denotes the
maximum value of the bound-state energy in this transverse
mode Emax

bs = 
F
max + ω0.

IV. PHOTON TRANSMISSION AND REFLECTION
IN THE a MODE WHILE THE ATOM IS COUPLED

TO THE b MODE

Now we consider the photon injected in the a mode with
the atom coupled to the a and b modes at the same time. We
calculate the scattering state of the a-mode photon. Using the
Lippmann-Schwinger equation, the scattering state is

|ψ (+)
k 〉 = a

†
k|∅〉|g〉 + 1

ωa,k + i0+ − H0
V |ψ (+)

k 〉. (38)

By a similar procedure to the last section, the scattering
state is obtained as

|ψ (+)
k 〉 = a

†
k|∅〉|g〉 + βk|∅〉|e〉 + G0

w(ωa,k + i0+)βk

×
∫ +∞

−∞
dk′(g∗

1k′a
†
k′ + g∗

2k′b
†
k′)|∅〉|g〉, (39)

where the similar free Green operator is G0
w(z) = (z − Hw)−1,

and the excited probability amplitude of the atom is

βk = g1k

ωa,k + i0+ − ω0 − �a(ωa,k) − �b(ωa,k)
(40)

with the self-energy for the a mode defined by

�a(E) ≡
∫ +∞

−∞
dk

|g1k|2
E + i0+ − ωa,k

(41)

� − iγava1√
v2

a1 + 4va2(E − ω0)
, (42)

and �b(E) defined by Eq. (25). Similarly, if we directly
substitute the exact coupling expression (10) into Eq. (41),
the divergence of self-energy �a also occurs. In obtaining the
result (42), we have also assumed g1k to be independent of k,
namely g1k = g1. Here, the decay rate induced by the a mode
γa = 2π |g1|2/va1 is introduced. Later on, we also use γa to
denote the coupling strength g1.
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By using the scattering state (39), we obtain the matrix
elements of the scattering operator S in k space,

Sk′,k = δ(k′ − k) − 2πiδ(ωak′ − ωak)tk′k(ωa,k + i0+), (43)

where the T -matrix elements are directly obtained as

tk′k(ωa,k + i0+) = 〈g|〈∅|ak′V |ψ (+)
k 〉 = βkg

∗
1k′, (44)

and the δ function here is defined as δ(x) = 1 at x = 0;
otherwise, δ(x) = 0.

Through the relation

Sk′,k = rδ(k + k′) + tδ(k − k′), (45)

we obtain the reflection amplitude

r(k) = −i
1

|2va2k + |va1||
γava1


ak − �a(ωa,k) − �b(ωa,k)
(46)

for the input single photon in the a mode. Note that, in
obtaining the result (46), we have discarded the term pro-
portional to δ̄[
ak − �a(ωa,k) − �b(ωa,k)] and the principle
value label P when using the formula 1/(x + i0+) = P/x −
iπδ̄(x). Here the Dirac δ function is defined as δ̄(x) = ∞
if x = 0; otherwise, δ̄(x) = 0. This procedure is reasonable
because the definition of detuning 
ak already restricts its
regime to 
ak � −v2

a1/(4va2) = 
min
ak , which contradicts the

basic condition 
ak < −v2
a1/(4va2), under which the δ term

δ̄[
ak − �a(ωa,k) − �b(ωa,k)] may contribute.
In terms of the detuning 
ak , the reflection amplitude is

r(
ak) = −i
1√

v2
a1 + 4va2
ak

× γava1


ak − �a(
ak + ω0) − �b(
ak + ω0)
. (47)

Then the reflection coefficient R = |r|2 can be directly
obtained.

The transmission amplitude t is directly obtained through
t = 1 + r and the transmitted coefficient is straightforwardly
obtained as T = |t |2. Interestingly, we find three resonance
points where the single-photon transmission amplitude is
zero: (1) t(
ak = 
F

a) = 0, where 
ak = 
F
a means that

the input single-photon energy is resonant with the bound-
state energy in the transverse mode ωak = Ebs , namely the
photonic Feshbach resonance; (2) t(
ak = 0,γb = 0) = 0, or
in terms of the wave vector t(k = kres,γb = 0) = 0, with
kres = 0, − va1/va2 for va1 > 0. This resonance is denoted as
single-photon resonance. (3) lim


ak→
min
ak

t(
ak) = 0. We call this

resonance the cutoff (minimum) frequency resonance. Under
these three resonances, the transmission T = 0.

For comparison, we also obtain the reflection amplitude

r1 = −iγa


ak + i(γa + γb)
, (48)

and the transmission amplitude

t1 = 1 + r1 = 
ak + iγb


ak + i(γa + γb)
(49)

for linear waveguides and add a subscript “1” to denote that
this result only applies to linear waveguides. This result is in

agreement with Refs. [13,23] when γb = 0. Correspondingly,
the reflection and transmission coefficients are

R1 = |r1|2 = γ 2
a


2
1ak + (γa + γb)2

(50)

and

T1 = |t1|2 = 
2
1ak + γ 2

b


2
1ak + (γa + γb)2

. (51)

Here, 
1ak = va1k is the detuning of the single photon for the
a mode in the linear waveguide from the two-level atom.

For linear waveguides, it follows from Eq. (50) that the
transverse mode will reduce the reflection of the single photon.
For the transmission of the photon, the transverse mode will
increase the transmission of the single photon when γaγb >

2
2
ak; otherwise, it will decrease its transmission. In addition,

as a result of the transverse mode, i.e., γb �= 0, the single-
photon probability is not conserved in its input mode, that is
T1 + R1 < 1. The photon is scattered into the transverse mode
with probability

P1L ≡ 1 − R1 − T1 = 2γaγb


2
ak + (γa + γb)2

. (52)

This probability loss has a Lorentz shape centered at the
single-photon resonance 
ak = 0 with width γa + γb. Under
the resonance condition 
ak = 0 and identical coupling to
both scattering mode (a mode) and transverse mode (b mode),
namely, γa = γb, the loss probability reaches P1L = 0.5.

V. TRANSVERSE EFFECT IN LINEAR
AND QUADRATIC WAVEGUIDES

A. Transverse effect in linear waveguides

To show the transverse effect on single-photon transport,
we first consider its effect in linear waveguides. We plot
the transmission coefficient T1 and P1L versus detuning

1ak (= k with va1 = 1) under different transverse coupling
strengths γb/ω0 = 0, 0.01, and 0.1 in Figs. 2(a) and 2(c),
respectively, and versus the coupling strength γb under the
single-photon resonance condition 
1ak = 0 in Figs. 2(b) and
2(d), respectively.

It follows from Fig. 2(a) that, at the single-photon reso-
nance condition, the perfect reflection (T1 = 0) of the single
photon is damaged by the transverse mode, and the width
of the transmission energy band increases as the transverse-
mode coupling strength increases. When the transverse-mode
coupling strength is strong enough, the perfect reflection
becomes perfect transmission [Fig. 2(b)]. Furthermore, the
transverse mode forces the single photon to leave the input
mode if the input photon is near resonance with the atom.
Especially, exactly at the single-photon resonance, the loss
probability reaches its largest value. However, this largest
value at the single-photon resonance not always increases
as the transverse-mode coupling strength increases, as shown
in Fig. 2(d). It first increases rapidly to 0.5 at γb = γa , then
decreases gradually as the transverse-mode coupling strength
increases and finally reaches zero when γb is strong enough.

013836-5



JIN-FENG HUANG, TAO SHI, C. P. SUN, AND FRANCO NORI PHYSICAL REVIEW A 88, 013836 (2013)

FIG. 2. (Color online) Results for linear waveguides. (a) Trans-
mission coefficient T1 versus detuning 
1ak and (b) versus the
coupling strength γb between the transverse mode and the TLS at
the single-photon resonance 
1ak = 0. (c) The single-photon loss
probability P1L versus detuning 
1ak and (d) versus the coupling
strength γb between the transverse mode and the TLS at the single-
photon resonance 
1ak = 0. Other parameters are γa/ω0 = 0.01,
δ/ω0 = 0.8, and va1 = 1. All the parameters are in units of ω0.

B. Transverse effect in quadratic waveguides

Now we illustrate the transverse effect on the single-photon
transport properties in a quadratic waveguide. We plot the
transmission coefficient T versus wave vector k in Fig. 3 and
versus the detuning 
ak in Fig. 4(a), and the loss probability
P2L = 1 − T − R versus the detuning 
ak in Fig. 4(b).

Figure 3(a) shows that the single photon is perfectly
reflected at k = kres and k = kC ; otherwise, it is completely
transmitted without coupling to the transverse mode. However,
once the TLS is coupled to the transverse mode, the original
perfect-reflection points k = kres have been shifted to k = kF

with some probability loss at k = kres. When increasing the
coupling strength of the transverse mode, the two sides of the
perfect reflection peaks at k = kF move toward the center peak
at k = kC , while the probability loss at k = kF is reduced. We
also note that the center perfect-reflection peak at k = kC is
not dependent on the transverse-mode coupling; It is decoupled
from the transverse mode. This is because it is only determined
by the minimum detuning 
min

ak between the photon and the
TLS. Compared with the linear waveguide, this phenomenon
is more robust against the finite cross-section effect of the
waveguide. Also, there are two additional perfect-reflection
peaks. Between the peaks kF < k < kC (or kC < k < kF), there
is a perfect transmission band.

Figure 4 shows the single-photon transport properties in
terms of the input energy. Without coupling to the tranverse
mode, the single photon is perfectly reflected at 
ak = 
min

ak ,

ak = 0 (single-photon resonance). However, as a result of
the coupling to the transverse mode, the perfect reflection at
the single-photon resonance disappears but it is replaced by
another perfect reflection at 
ak = 
F

a , which denotes that the
input single-photon energy is resonant with the bound-state
energy in the transverse mode. This is the photonic Feshbach
resonance [17,47,48]. Moreover, the position of the perfect
reflection as a result of photonic Feshbach resonance moves

FIG. 3. (Color online) Results for quadratic waveguides: trans-
mission coefficient T and probability loss P2L versus wave vector k

when (a) γb/ω0 = 0, (b) γb/ω0 = 0.05, and (c) γb/ω0 = 0.15. Other
parameters are the same as in Fig. 2.

away from the single-photon resonance position. Figure 4(b)
shows that the photon loss probability only occurs in the regime

ak > 
F

max. This is because

lim

ak→
F

max

P2L = 0. (53)

When 
ak � 
F
max, the loss probability becomes zero P2L =

0. Therefore, when the single-photon input energy satisfies

min

ak � 
ak � 
F
max, the transverse mode cannot exert a

negative effect on the single-photon transport. We point out
that the features for T and P2L versus the b mode photon-atom
coupling γb at the single-photon resonance remain similar with
that in the linear waveguide [Figs. 2(b) and 2(d)].

To show this more explicitly, how the transverse mode
plays a role in the photonic Feshbach resonance, we plot
the photonic Feshbach resonance peak position 
F

a in Fig. 4
versus the transverse mode coupling strength γb in Fig. 5. As
the curve shows, 
F

a is nearly a linear curve and decreases
when increasing the transverse-mode coupling strength. This
phenomenon agrees with the properties of T shown in Fig. 4.
Since 
F

a is also a component of the bound-state energy
(30) in the transverse mode, except for a constant ω0, this
curve also shows the bound-state-energy dependence on the
transverse-mode coupling strength.
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FIG. 4. (Color online) Results for quadratic waveguides.
(a) Transmission coefficient T versus detuning 
ak in quadratic
waveguide. (b) The single-photon loss probability P2L versus de-
tuning 
ak . Other parameters are the same as in Fig. 2.

We also find the line shape for the photonic Feshbach
resonance is very close to Fano line shape [49], which is

FIG. 5. (Color online) Feschbach peak 
F
a versus the transverse-

mode coupling strength γb for waveguides in the quadratic regime.
Other parameters are the same as in Fig. 2.

FIG. 6. (Color online) Comparison between the quasi-Fano line
shape (red solid line) for transmission coefficient T around Feshbach
resonance and the Fano line shape (black dashed line) given by
Eq. (54). (a) q = 10−4, d = 10−3; (b) q = 10−4, d = 10−5/2. Other
parameters are the same as in Fig. 2.

compared with the Fano line in Fig. 6 by defining the Fano
function

f =
(

ak − 
F

a + q
)2(


ak − 
F
a

)2 + d2
. (54)

We call our line shape quasi-Fano line. Here, we would like to
point out that the similar resonance originated from a bound
state in higher transverse modes has also been discovered
in an electronic quasi-1D waveguide [50,51]. The resonance
line shape is Fano type for electrons in their results [51].
However, compared with the resonance found in Refs. [50,51]
for electrons, the similar resonance induced by the bound state
for photons we find occurs exactly at the bound-state energy,
while the resonance position for electrons acquires a shift in
electronic waveguides [50,51].

Finally, we would like to estimate some parameters for the
conditions when the additional transverse mode is involved for
the study of single-photon transport. Usually, we can ignore the
influence of the b mode, when the a mode is close to resonance
of an atomic transition while the b mode is off resonance.
We now estimate the quantitative condition by assuming that
the effect of mode a is 100 times that of mode b. Namely, when

100 × g2

|ωbk − ω0| � g1

|ωak − ω0| (55)

or

Lx � c
(
√

2 − 1)π

ω0
≡ Lc, (56)

the transverse mode b cannot affect the single-photon
transport. To obtain Eq. (56), we have used
|ωcut

b − ωcut
a | � |ωbk − ωak| and g2 = g1. However, when the

transverse size Lx of the waveguide is larger than the critical
size Lc, Lx > Lc, the transverse mode should be taken into
account. For a 1D circuit system with ω0 � 10 GHz [26],
then Lc � 3.9 cm. For a 3D optical cavity system with
ω0 � 2.21 × 106 GHz [52], then Lc � 176.6 nm.
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In addition, when the photon frequency ∼ 109 GHz, such
as x rays [39,40], the TLS with transition energy 14.4 keV
(the nuclear transition of 57Fe), corresponding to ω0 � 3.48 ×
109 GHz, then the critical size becomes Lc � 1.12 Å. Exper-
imentally, this 1.12 Å looks too difficult. Therefore, it is very
necessary to consider the transverse-mode effect in the single-
photon transport in a waveguide with finite cross section. A
finite-cross-section waveguide is closer to our experimental
quantum coherent device design and fabrication. Taking
advantage of the finite-cross-section waveguide will ease the
stringent requirements on realizing quantum-coherent devices.

VI. CONCLUSIONS AND DISCUSSIONS

We studied the finite cross-sectional effect of the waveguide
on single-photon transport. To mainly characterize the finite
cross-section effect of the waveguide, we pick out one of the
numerous transverse modes, whose eigenfrequency is closest
to that of the transport mode. We consider the transport proper-
ties of a single photon in such a finite cross-section waveguide
by calculating the transmission, reflection coefficients, and the
single-photon loss probability. By using a quadratic dispersion
relation, we find a bound state and two quasibound states
[5,41,42] emerging in such a waveguide with a finite cross
section, which will not occur in the usual linear waveguide.
Moreover, when the input photon energy is resonant with the
bound-state energy in the transverse mode, the photon will be
completely reflected. This is the photonic Feshbach resonance.

In addition, the input photon is also completely reflected when
the input energy of it is at a single-photon resonance with the
TLS or at the cutoff frequency allowed by the approximated
quadratic waveguide. The photonic Feshbach resonance and
the cutoff frequency resonance phenomena do not occur in a
linear waveguide even in an infinitely idealized 1D waveguide.

Furthermore, as a result of transverse-mode coupling,
the photon will be lost when the input energy is above
the maximum bound-state energy regulated by the coupling
strength between the transverse mode and the TLS. Therefore,
only the input energy is below this maximum bound-state
energy; the single photon can safely pass through or be
completely reflected by the TLS instead of lost in some
other transverse mode even though in a finite cross-section
waveguide.
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[51] J. U. Nöckel and A. D. Stone, Phys. Rev. B 50, 17415 (1994).
[52] J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck,

A. Kuzmich, and H. J. Kimble, Science 303, 1992 (2004).

013836-9

http://dx.doi.org/10.1038/nature06124
http://dx.doi.org/10.1038/nature06124
http://dx.doi.org/10.1063/1.2155757
http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1088/0034-4885/74/10/104401
http://dx.doi.org/10.1088/0034-4885/74/10/104401
http://arXiv.org/abs/arXiv:cond-mat/0508729
http://dx.doi.org/10.1364/OL.29.002659
http://dx.doi.org/10.1103/PhysRevB.70.195313
http://dx.doi.org/10.1038/nature06234
http://dx.doi.org/10.1126/science.1187770
http://dx.doi.org/10.1038/nature10741
http://dx.doi.org/10.1038/nature10741
http://dx.doi.org/10.1103/PhysRevLett.99.210404
http://dx.doi.org/10.1103/PhysRevLett.99.210404
http://dx.doi.org/10.1143/PTP.119.187
http://dx.doi.org/10.1143/PTP.119.187
http://dx.doi.org/10.1119/1.11178
http://dx.doi.org/10.1103/PhysRevA.86.042707
http://dx.doi.org/10.1103/PhysRevA.86.042707
http://dx.doi.org/10.1103/PhysRevA.31.3761
http://dx.doi.org/10.1016/0003-4916(58)90007-1
http://dx.doi.org/10.1016/S0370-1573(99)00025-3
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRevB.47.10578
http://dx.doi.org/10.1103/PhysRevB.47.10578
http://dx.doi.org/10.1103/PhysRevB.50.17415
http://dx.doi.org/10.1126/science.1095232



