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Exploring the effect of fractional degeneracy and the emergence of ray-wave duality in solid-state
lasers with off-axis pumping
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We employ the inhomogeneous Helmholtz equation to explore the influence of the fractional degeneracy and
the pump distribution on the resonant lasing mode. Theoretical analyses clearly reveal the relationship between
the fractional degeneracy and the emergence of the ray-wave duality. Furthermore, we perform thorough laser
experiments to confirm the theoretical exploration that the resonant modes near the degenerate cavities are well
localized on the ray trajectories under the condition of the off-axis pumping. We also exploit the derived wave
functions to calculate the resonant strengths that can noticeably manifest the enhancements of the output powers
in the degenerate cavities.
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I. INTRODUCTION

Herriott et al. [1] in 1964 extended the analysis of paraxial
electron beams [2] to show that an off-axis incident laser beam
can be reflected in the two-mirror resonator forth and back to
form a multipass ray orbit under the reentrant condition. To
fulfill the reentrant condition, the cavity configuration requires
satisfying the fractional degeneracy of �fT /�fL = P/Q,
where P and Q are coprime integers, �fL is the longitudinal
mode spacing, and �fT is the transverse mode spacing. The
optical resonator satisfying the fractional degeneracy is usually
called the degenerate cavity. In the early days, the Herriott-type
multipass cavity has been used in diverse experiments, such
as optical delay lines [3], absorption spectroscopy [4], Raman
conversion [5–8], and high-power laser systems [9]. Recently,
it has been experimentally found [10–17] that the lasing
modes in off-axis pumped solid-state lasers have a preference
to be localized on the periodic ray trajectories when the
cavity lengths are somewhat close to the degenerate cavities.
Furthermore, the variation of the output power with the cavity
length was observed to exhibit significant fluctuations for the
laser under the off-axis pumping. In particular, the output
powers are found to be drastically increased in the vicinities
of degenerate cavities [12,13]. Although several experimental
data have been reported, so far there is no theoretical model to
explore the effect of fractional degeneracy and the emergence
of ray-wave duality near the degenerate cavities.

Over the past two decades, spatial structures of high-
order modes generated from laser resonators have received
much interest because of the similarity between Schrödinger
and Helmholtz equations [18–21]. Numerous modern laser
systems have been developed as analogous systems to visualize
various quantum phenomena [22–25]. In mesoscopic quantum
systems [26–32], the emergence of classical periodic orbits has
been found to be tightly associated with the level degeneracy
as well as the conductance fluctuation. Therefore, it is believed
that exploring the emergence of ray-wave duality and the effect
of fractional degeneracy in optical resonators can provide
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valuable insights, not only into laser physics but also into
mesoscopic quantum phenomena.

In this work we originally exploit the inhomogeneous
Helmholtz equation to perform a theoretical analysis for
manifesting the influence of the fractional degeneracy and the
pump distribution on the resonant lasing mode. Theoretical
analyses and numerical calculations reveal that the lasing
modes near the degenerate cavities turn out to be prominently
localized on the ray trajectories under the condition of the
off-axis pumping, especially for a large off-axis displacement.
In experiments, we use a microchip laser with the off-axis
pumping scheme to thoroughly measure the output power and
the lasing pattern as a function of the cavity length for different
off-axis displacements. Experimental results reveal that the
emergence of the peaks in the output power variation with
the cavity length is directly associated with the degenerate
cavities. We further confirm that the spatial structures of
the lasing modes near degenerate cavities can be excellently
reconstructed with the theoretical resonant mode. Moreover,
we employ the norm of the theoretical resonant mode to
calculate the resonant strengths that are found to be in good
agreement with the experimental results concerning the output
power enhancements in the degenerate cavities.

Although the laser patterns in broad aperture lasers have
been actively investigated for a long time, nearly all studies
were mainly restricted to the single-longitudinal mode limit
[33–36]. One special case is that the longitudinal-transverse
mode degeneracy in the confocal cavity has been used as
a trick to mimic the single-longitudinal mode situation to
observe the transverse patterns and solitons experimentally
[37,38]. It is believed that extending the studies to the general
multilongitudinal mode case is an important step in light of
pattern formation in broad aperture lasers.

II. THEORETICAL MODEL OF RESONANT
LASING MODES

Without loss of generality, we consider a laser cavity
forming by a gain medium, a concave spherical mirror,
and a plane output coupler. For convenience, we use the
effective optical length of the ABCD matrix to characterize
the propagation property of the eigenmode inside the cavity.
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The eigenmodes ψn,m,l and the eigenvalues kn,m,l for a laser
cavity can be solved from the Helmholtz equation:(∇2 + k2

n,m,l

)
ψn,m,l(x,y,z) = 0, (1)

Under the paraxial approximation, the eiegnmodes for the
cavity with a concave mirror at z = −L and a plane mirror at
z = 0 can be expressed as the Hermite-Gaussian (HG) modes:

ψ
(HG)
n,m,l(x,y,z) =

√
2/L �n,m(x,y,z)

× sin[kn,m,l z̃ − (m + n + 1) tan−1(z/zR)],

(2)

where

�n,m(x,y,z) = 1√
2m+n−1πm!n!

1

w(z)
Hn

[√
2x

w(z)

]
Hm

[√
2y

w(z)

]

× exp

[
−x2 + y2

w(z)2

]
. (3)

Hn(•) is the Hermite polynomials of order n, kn,m,l =
2πfn,m,l/c, fn,m,l is the eigenmode frequency, zR =√

L(R − L) is the Rayleigh range, R is the radius of curvature
of the concave mirror, z̃ = z + [(x2 + y2)z]/[2(z2 + z2

R)],
w(z) = wo

√
1 + (z/zR)2, wo = √

λzR/π is the beam radius
at the waist, and λ is the emission wavelength. The eigenmode
frequency of the spherical cavity can be given by fn,m,l =
[l�fL + (m + n + 1)�fT ], where l is the longitudinal mode
index, and m and n are the transverse mode indices. For the
concave-plano resonator, the transverse mode spacing �fT

is given by �fT = �fL[(1/π ) tan−1(L/zR)], where �fL =
c/2L′, L′ = L + [nc − (1/nc)]Lc, nc is the refractive index
of the gain medium, and Lc is the physical length of the
gain medium. As a consequence, the mode-spacing ratio
� = �fT /�fL = [(1/π ) tan−1(L/zR)] for a given value of
R can be varied in the range between 0 and 1/2 by changing
the cavity length within 0 < L < R. The spectrum fn,m,l for
a given R can be calculated as a function of the cavity length
L. Figure 1(a) depicts a portion of the calculated results for
the spectrum fn,m,l/�fL versus the ratio L/R in the range
of 5 � l � 15 and 0 � (m + n) � 10, where L = L′ is used
for convenience. It can be seen that the relative spectrum
fn,m,l/�fL versus the ratio L/R displays numerous degenera-
cies and frequency gaps at the cavity lengths corresponding
to the degenerate cavities with � = [(1/π ) tan−1(L/zR)] =
P/Q. In terms of the degenerate conditions of � = P/Q,
the relative spectrum can be expressed as fn,m,l/�fL = N/Q

with N = [lQ + (m + n + 1)P ]. For a given set of (P , Q), it
follows that the frequency levels are degenerate because there
may be many combinations of (n, m, l) satisfying the equation
N = [lQ + (m + n + 1)P ], resulting in frequency gaps in the
spectrum fn,m,l/�fL as N changes by unity. The accidental
degeneracy in the quantum spectra has been discussed to
play a crucial role in the relationship between quantum
shell structures and classical periodic orbits, especially in
the mesoscopic systems [27–32]. In the optical cavity, the
occurrence of the mode degeneracy can also be linked to the
appearance of the periodic ray paths. Figures 1(b) and 1(c)
show the periodic ray paths for the cases of � = 1/3 and
� = 6/19, respectively. In contrast, when � is not rational,
the path never closes and fills the space, as shown in Fig. 1(d).
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FIG. 1. (Color online) (a) A portion of the spectrum �fn,m,l/�L

as a function of the ratio L/R for the range of 5 � l � 15 and 0 �
(m + n) � 10. (b), (c) Periodic ray paths for the cases of � = 1/3
and � = 6/19, respectively. (d) A case of the path for � to be not
rational.

As found in much of the literature [10–17], the lasing
modes in an off-axis pumping resonator are not always the
high-order HG modes; in particular, the lasing modes are
usually found to be concentrated on the ray trajectories
in the degenerate cavity. In principle, the resonant modes
of the laser system pumped by a localized source can be
solved from the inhomogeneous Helmholtz equation. While
the inhomogeneous Helmholtz equation is frequently used
to analyze the free-space propagation of the time-harmonic
wave in electrodynamics, we exploit this type of equation to
analyze the resonant lasing modes in the locally pumped laser
systems. Considering the pump source distribution F (x,y,z),
the inhomogeneous Helmholtz equation for deriving the
resonant modes is given by

(∇2 + k̃2)�(x,y,z) = ηcF (x,y,z), (4)

where k̃ = k + iα, k = 2π/λ is the wave number of the emis-
sion light, the factor ηc represents the conversion efficiency
for the excitation source, and α is a small loss parameter
including losses from the scattering, the absorption, and the
output coupling. The resonant lasing modes are basically
subject to the same boundary condition as the homogeneous
Helmholtz in Eq. (1) for HG eigenmodes. With the expansion
of eigenmodes, the lasing mode and the source distribution
can be expressed as the superposition of HG eigenmodes:

�(x,y,z) =
∑
n,m,l

an,m,lψ
(HG)
n,m,l(x,y,z) (5)

and

ηcF (x,y,z) =
∑
n,m,l

bn,m,lψ
(HG)
n,m,l(x,y,z). (6)

Substituting into the wave equation (4), the relationship
between the coefficients an,m,l and bn,m,l can be found to
be an,m,l = bn,m,l/(k̃2 − k2

n,m,l). Considering the condition of
α � k, the eigenmode expansion of the resonant mode can be
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FIG. 2. (Color online) Calculated wave patterns |�(x,y,z)|2 inside the laser cavities for various rational numbers of the mode-spacing
ratio �.

given by

�(x,y,z) =
∑
n,m,l

bn,m,l(
k2 − k2

n,m,l

) + 2iαk
ψ

(HG)
n,m,l(x,y,z). (7)

With the orthonormal property of eigenmodes, the coefficient
bn,m,l is given by

bn,m,l = ηc

∫ ∫ ∫
ψ

(HG)
n,m,l(x,y,z)F (x,y,z)dxdydz. (8)

In general, the distribution of the pump source F (x,y,z) in the
longitudinal z direction can be approximated to be uniform. On
the other hand, the transverse distribution of the pump source
F (x,y,z) is similar to a Gaussian distribution. Consequently,
the pump source F (x,y,z) for the off-axis pumping with a
transverse displacement �x in the x direction can be given by

F (x,y,z) = 2

πw2(z)Lc

exp

[
− (x − �x)2 + y2

w2(z)

]
, (9)

for |z − zc| � Lc/2, where zc is the location of the gain
medium. Since the longitudinal distribution of the pump
source is nearly uniform, the coefficient bn,m,l related to the
source term F (x,y,z) can be considered to be independent
of the index l in the neighborhood of the central index lo.
Consequently, the integral for determining the coefficient bn,m,l

can be approximately reduced as

bn,m,l = η

Lc

2

πw2(zc)

∫ ∫
�(HG)

n,m (x,y,zc)

× exp

[
− (x − �x)2 + y2

w2(zc)

]
dxdy, (10)

where η is a constant that includes the effective conversion
efficiency ηc and the overlap integral in the longitudinal

direction. Substituting Eqs. (3) and (9) into Eq. (10) and
using the generating function of the Hermite polynomials, the
coefficient bn,m,l can be evaluated to be

bn,m,l = η

Lc

√
2

πw2(zc)

[
(no)n/2

√
n!

e−no/2

]
δm,0, (11)

where no = [�x/w(zc)]2. Note that the value of the parameter
no signifies the magnitude of the off-axis displacement. Equa-
tion (11) also indicates that the maximum contribution in the
resonant mode comes from the eigenmode with the transverse
index n to be closest to the value no. For convenience,
we take the parameter no to be the integer closest to the
value of [�x/w(zc)]2. Moreover, the expression in the square
bracket of Eq. (11) is just the form of the square root of
the Poisson distribution. With the central limit theorem, the
Poisson distribution approaches the Gaussian distribution for
large value of no. Equation (11) can therefore be expressed
as [39]

bn,m,l = η

Lc

√
2

πw2(zc)

1√√
2πno

exp

[
− (n − no)2

4no

]
δm,0.

(12)

Equation (12) clearly indicates that the maximum amplitude
for the coefficient bn,m,l occurs at the indices of n = no and
m = 0. With the property of the Gaussian distribution, the
effective range of mode index n can be limited as |n − no| � N

with N = 2
√

no. For a given wave number k, the longitudinal
index of the central eigenmode in the resonant mode can be
determined from the expression of k = π [lo + (no + 1)�]/L′.
Substituting Eq. (12) into Eq. (7) and in terms of no and lo,
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the resonant mode can be further derived as

�(x,y,z) = ηλL′

4π2Lc

√
2

πw2(zc)

1√√
2πno

⎧⎨
⎩

lo+J∑
l=lo−J

no+N∑
n=no−N

exp[−(n − no)2
/

4no]

[(lo − l) + (no − n)�] + iγ
ψ

(HG)
n,m,l(x,y,z)

⎫⎬
⎭ , (13)

where J is related to the effective range of mode in-
dex l and γ = αL′/π represents the inverse quality fac-
tor. The denominator in the coefficient of Eq. (13) in-
dicates that only the degenerate and nearly degenerate
eigenmodes play the main role in the formation of the
resonant mode. The nearly degenerate requirement leads
to the value of J to be the integer closest to N�.

For given values of the parameters no, k, α, and R, the
resonant mode �(x,y,z) can be calculated with Eq. (13) as a
function of the ratio �. Here we use the parameters of a typical
Nd-doped solid-state laser with R = 30 mm, α = 10−3 mm,
and λ = 1064 nm to calculate the resonant patterns |�(x,y,z)|2
for various degenerate cavities. The values of the parameter no

used in the calculation are in the range of 120–330 for different
� values. The calculated patterns |�(x,y,z)|2 are shown in
Fig. 2 for several rational numbers of the mode-spacing ratio �.
It can be seen that the wave patterns |�(x,y,z)|2 are excellently
localized on the ray trajectories. The promising manifestation
of the ray-wave duality not only confirms the significance of
the wave function in Eq. (13) but also validates the analysis
with the inhomogeneous Helmholtz equation in Eq. (4).

Since |an,m,l |2 is the relative probability of the resonant
mode �(x,y,z) in the eigenstate ψ

(HG)
n,m,l(x,y,z), we use the total

summation
∑

n,m,l |an,m,l |2 to evaluate the resonant strength.
With Eq. (13), the resonant strength can be expressed as

I (�x,L) =
(

ηλL′

4π2Lc

)2 2

πw2(zc)

1√
2πno

×
lo+J∑

l=lo−J

no+N∑
n=no−N

exp[−(n − no)2/2no]

[(lo − l) + (no − n)�]2 + γ 2
.

(14)

In the conventional theory, the output power is proportional to
the overlap efficiency between the pump region and the lasing
mode. In the present theory, the overlap integral is associated
with the coefficient bn,m,l in Eq. (8). The factor (k̃2 − k2

n,m,l)
in the expression of an,m,l = bn,m,l/(k̃2 − k2

n,m,l) determines
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FIG. 3. (Color online) Experimental setup for measuring the
dependence of the output power variation and the lasing patterns on
the cavity length in a concave-plano resonator with several off-axis
displacements.

the cavity modes that can effectively participate in the laser
radiation. To be brief, Eq. (14) not only includes the overlap
efficiency but also considers the influence of the efficient
number of participating modes on the laser emission. In the
following, we employ an off-axis end-pumped microchip laser
to systematically verify the present theoretical analysis by
means of measuring the lasing mode and the output power
under the variation of the cavity length.
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FIG. 4. (Color online) (a)–(d) Dependence of the output power
variation on the cavity length for the off-axis displacements of 0.5,
1.0, 1.5, and 2.0 mm, respectively. The experimental and theoretical
results are displayed as mirror images.
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Lz 0z

FIG. 5. (Color online) Measured transverse patterns inside the
cavity and the experimental far-field pattern for the cavity length near
� = 1/5.

III. EXPERIMENTAL VERIFICATION

In contemporary solid-state lasers, the off-axis pumping
scheme has been confirmed to be a promising method for the
production and manipulation of various transverse modes from
fundamental state to super high-order states [10–17]. Figure 3
depicts the experimental setup for exploring the dependence
of the output power variation on the cavity length in a
concave-plano resonator with several off-axis displacements.

The laser medium was an a-cut 2.0-at.% Nd3+:YVO4 crystal
with a length of 2 mm. Both sides of the Nd:YVO4 crystal
were coated for antireflection at 1064 nm (reflection <0.1%).
The gain medium was quite close to the concave mirror with
a separation of nearly 1 mm. The radius of curvature of
the concave mirror is R = 30 mm and the reflectivity is
99.8% at 1064 nm. The output coupler is a flat mirror with
a transmission of 2% at 1064 nm. The output coupler was
mounted on a translation stage driven with a step motor to
precisely control the cavity length in the range of 7–27 mm.
The pump source was an 809-nm fiber-coupled laser diode
with a core diameter of 100 μm, a numerical aperture of 0.16,
and a maximum output power of 3 W. A focusing lens with
a 20-mm focal length and 90% coupling efficiency was used
to reimage the pump beam into the laser crystal. The pump
radius was estimated to be approximately 25 μm. The off-axis
displacement �x could be varied in the range of 0–2.5 mm.
The output power was measured with the synchronization
of the variation of the cavity length under the control of a
microcomputer.

At a pump power of 1.5 W, the emission powers were
found to be on the order of 10 mW. Figures 4(a)–4(d) show the
experimental results for the variation of the output power with
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FIG. 6. (Color online) A series of experimental far-field patterns measured at the position of z = 20 cm for the different denigrate cavities.
Corresponding to experimental results, theoretical patterns are calculated with Eq. (13) and shown for comparison.
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the cavity length at four different off-axis displacements of 0.5,
1.0, 1.5, and 2.0 mm. The theoretical results corresponding to
the experimental observations were calculated with Eq. (14)
and the parameters of R = 30 mm, α = 10−3 mm, and
λ = 1064 nm. For comparison, the theoretical results are
also shown in Figs. 4(a)–4(d) with mirror images to the
experimental observations. The scaling factor for the height of
the calculated resonance strength is adjusted with the best fit
to the experimental data. It can be found that the experimental
output power variations agree very well with the relative values
of the resonance strength. As shown in Figs. 4(a)–4(d), the
enhancements of the output powers are in good agreement
with the appearances of the fractional degeneracies in which
the mode-spacing ratio � corresponds to a rational number
P/Q. It is also clear that the larger the off-axis displacement
�x is given, the more resonance peaks appear in the output
power variation on the cavity length. Since a larger off-axis
displacement leads to the generation of higher-order transverse
modes, it can be confirmed that the influence of the fractional
degeneracy on the output power enhancement significantly
increases with increasing the transverse order. In other words,
the generation of higher-order transverse modes plays an
important role in manifesting the lasing mode localized on
a more complicated periodic orbit. Increasing the pump power
by several times above threshold, the overall feature of the
enhancing part remains but the smoothly varying part becomes
higher.

To further verify the relationship between the fractional
degeneracy and the periodic ray trajectory, the lasing patterns
for each resonant peak in the output power variation were
recorded. We use the lens to reimage the transverse patterns at
the different longitudinal positions inside the cavity. Figure 5
shows the measured transverse patterns for the cavity length
near � = 1/5. The experimental patterns can be seen to be
well localized on the ray trajectories. Besides, the far-field
pattern shown in Fig. 5 clearly displays a characteristic of
multiple spots. Figure 6 shows a series of experimental far-field

patterns measured at the position of z = 20 cm for the different
cavity lengths that specifically correspond to the peaks of the
output power variation shown in Fig. 4. Theoretical far-field
patterns calculated with Eq. (13) are also shown in Fig. 6
for comparison. The good agreement between experimental
results and theoretical patterns not only confirms the physical
analysis but also validates the present theoretical model.
This use of the inhomogeneous Helmholtz equation explains
the appearance of the resonant modes localized on the ray
trajectories in laser systems.

IV. CONCLUSIONS

In summary, we have theoretically used the inhomogeneous
Helmholtz equation to explore the influence of the fractional
degeneracy and the pump distribution on the resonant lasing
mode. Theoretical analyses manifest that the fractional degen-
eracy leads to the lasing modes to be well localized on the
ray trajectories under the condition of the off-axis pumping,
especially for a large off-axis displacement. For verifying the
theoretical exploration, we have employed a microchip laser
with the off-axis pumping scheme to measure the output power
and the lasing pattern as a function of the cavity length for
different off-axis displacements. Experimental results confirm
that the emergence of the lasing modes with ray-wave duality is
directly associated with the degenerate cavities. We have also
verified that the transverse patterns of the lasing modes near
degenerate cavities can be remarkably reconstructed with the
theoretical model. Finally, the experimental results concerning
the output power enhancements in the degenerate cavities are
also well manifested with the resonant strengths calculated
with the theoretical resonant modes.
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