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Active and passive sensing of collective atomic coherence in a superradiant laser
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We study the nondemolition mapping of collective quantum coherence onto a cavity light field in a superradiant,
cold-atom 87Rb Raman laser. We show theoretically that the fundamental precision of the mapping is near
the standard quantum limit on phase estimation for a coherent spin state, �φ = 1/

√
N , where N is the

number of atoms. The associated characteristic measurement time scale τW ∝ 1/N is collectively enhanced.
The nondemolition nature of the measurement is characterized by only 0.5 photon recoils deposited per atom
due to optical repumping in a time τW . We experimentally realize conditional Ramsey spectroscopy in our
superradiant Raman laser, compare the results to the predicted precision, and study the mapping in the presence
of decoherence, far from the steady-state conditions previously considered. Finally, we demonstrate a hybrid
mode of operation in which the laser is repeatedly toggled between active and passive sensing.
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I. INTRODUCTION

Superradiant lasers have the potential to be the most stable
optical frequency references to date, with broad impacts across
science and technology [1,2]. These frequency references
derive their stability from an ensemble of atoms spontaneously
synchronized by cavity-mediated interactions, achieving col-
lective coherence times greater than single-particle coherence
times [3]. Reliance on interparticle interactions makes super-
radiant lasing one of the growing number of examples of
collective phenomena being explored for enhancing precision
measurements [4–11].

The superradiant laser’s defining feature is the storage of
the coherence of the laser system in the gain medium. The
coherence is mapped onto the cavity field through superradiant
emission [Fig. 1(a)]. This conceptual Bloch sphere [12] model
of the laser has been the key to understanding not only the laser
spectrum [3], but also the output field stability properties [13]
and ability to use the laser as a sensor of magnetic fields
[14]. In a Raman laser configuration, the mapping can be
dynamically controlled through the use of an externally applied
dressing laser. The storage and recovery of phase information
in the atomic ensemble is analogous to quantum memories for
quantum communication [15–20].

In this paper, we present an analysis of the nondemolition
mapping of the coherence in a self-synchronized ensemble of
atoms onto a cavity field through superradiant emission that
relies on fundamentally collective effects with no single-atom
analog. We link the well-known Schawlow-Townes laser
linewidth limit [21] to the information gained about the atomic
system through the mapping, which sets the fundamental
limit to potential superradiant sensors, and study spontaneous
synchronization in the presence of decoherence far from
steady-state conditions. Theoretically, the output light provides
sufficient information to continuously track the evolving
phase of the atomic coherence φ with a precision within a
factor of 2 of the standard quantum limit (SQL) on phase
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resolution for a coherent spin state. The coherence readout
rate is collectively enhanced by a factor of N compared to
single-particle fluorescence readout. Each measurement also
prepares the coherence for the next measurement, while only
imparting 1/2 photon recoils per atom in the characteristic
measurement time.

Our theoretical analysis is compared to experimental
data from our proof-of-principle experimental system using
87Rb [Figs. 1(b) and 1(c)] [3]. The results culminate in a
hybrid sensor that combines active sensing of the collective
atomic phase during superradiant emission with passive phase
measurements using Ramsey-like evolution times. We show
the sensor can repeat many measurement cycles in a single
experimental trial due to the nondemolition nature of the
superradiant mapping.

II. THEORY OF THE OPTIMAL ESTIMATOR

Our theory considers an ideal cold-atom Raman laser.
Examples of cold-atom Raman lasers include Refs. [22–25].
The ideal laser we consider here operates deep into the
bad-cavity, or superradiant, regime [26,27], where the cavity
power decay rate κ greatly exceeds all other relevant decay
and scattering rates. The laser utilizes N atoms trapped in a
one-dimensional (1D) optical lattice that is formed inside the
optical cavity that also mediates the long-range interactions
between atoms that drive spontaneous synchronization of the
atomic dipoles.

The optical Raman dressing laser induces a decay rate
γ from |↑〉 to |↓〉 [Fig. 1(c)]. The dressing laser is detuned
from an optically excited intermediate state |i〉, and the rate
a single atom scatters photons from the dressing laser into
the resonant cavity mode is �c = Cγ , where C is the single-
particle cavity cooperativity parameter of cavity quantum
electrodynamics (QED) [28]. The collective cooperativity
satisfies the necessary condition for superradiance NC � 1.
Single-particle optical repumping proceeds at an optimum
repumping rate w ≈ wpk = N�c/2 [1].

The ensemble of atoms can be represented by a Bloch
vector 	J whose azimuthal phase φ(t) evolves in time at a
rate set by φ̇(t) = E(t)/h̄, where E(t) is the instantaneous
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FIG. 1. (Color online) (a) Superradiant emission mapping the
collective atomic coherence, represented by a Bloch vector 	J with
phase φ and equatorial projection J⊥, onto the phasor representing
the emitted light field defined by a phase ψ and amplitude A. (b) The
experimental setup. 87Rb atoms are trapped in a 1D optical lattice
(dashed, orange) within an optical cavity. Optical repumping light is
applied perpendicular to the cavity axis. The emitted light is detected
in heterodyne, then demodulated using a direct digital synthesis
frequency reference to obtain both field quadratures I (t) and Q(t) and
calculate the light’s amplitude A and phase ψ . (c) An energy-level
diagram of a superradiant Raman laser. The Raman dressing laser
detuned from an intermediate state |i〉 induces optical decay at
rate γ between ground hyperfine states |↑〉 and |↓〉. The atoms are
incoherently repumped back to |↑〉 at rate w. When the dressing
and repumping lasers are off, the atoms remain in a superposition
of |↑〉 and |↓〉, and the quantum phase φ(t) that evolves at fhf . (d)
Example data from a Ramsey-like sequence in a superradiant laser.
Superradiant emission continuously maps φ(t) onto ψ(t). We measure
a differential light phase ψ(T ) − ψ(0) over a free evolution time T .

energy difference separating |↑〉 and |↓〉, and h̄ is the
reduced Planck constant. Depending on the sensitivity of E(t)
to environmental conditions, precise measurements of φ(t)
correspond to measurements of the environment or time [29].

The quantum phase φ(t) is not directly measurable and
must be mapped onto an observable quantity. Bad-cavity active
oscillators, such as masers or superradiant lasers, continuously
map the collective phase φ(t) onto the observable phase ψ(t) of
an electromagnetic cavity field, because the rapidly decaying
cavity field is slaved to the atomic coherence [13]. Ignoring
vacuum noise, the complex electric field phasor is given by
A(t)eiψ(t) ∝ J⊥(t)eiφ(t), where J⊥(t) is the projection of the
Bloch vector onto the x-y plane and A(t) is the amplitude of the
electric field phasor. Measuring the cavity field is equivalent
to a continuous nondestructive measurement of the evolving
atomic coherence.

The precision of the φ(t) to ψ(t) mapping is limited by
fundamental quantum noise from Schawlow-Townes phase
diffusion of the atomic phase and photon shot noise on
the measurement of the light phase. Measuring ψ(t) longer
reduces photon shot noise, but diffusion of the atomic phase
means later data is less correlated with the initial atomic phase

we wish to estimate. Employing a Kalman filter [30] analysis,
we find that the optimal estimate φe(t) of the phase φ(t) is an
exponentially weighted average of ψ(t) with a weighting time
constant

τW = 1√
qN�c

, (1)

assuming w = wpk (see Appendix A). Here q is the photon
detection efficiency. A single-pole, low-pass filter can be used
to implement such a running weighted average.

The mean-squared error of the optimal estimator is

σ 2
e = 〈[φe(t) − φ(t)]2〉 = 2√

qN
. (2)

When q = 1, the error is only a factor of 2 from the SQL
on phase variance for a coherent spin state of N unentangled
atoms (�φSQL)2 = 1/N and is at the SQL, 2(�φSQL)2, for the
steady-state J⊥ = N

2
√

2
projection during superradiance at the

optimum repumping rate wpk. Also, the impact of imperfect
detection efficiency (q < 1) is mitigated by the scaling as
1/

√
q compared to the expected increase from increased

photon shot noise alone, which would scale as 1/q.
The measurement is nondestructive in that an atom experi-

ences only 0.5/
√

q photon recoils on average during the char-
acteristic measurement time τW . This degree of recoil heating
compares favorably with other sample-preserving [31–34]
and coherence-preserving [5,6,8,35] probing techniques with
precision at the SQL.

This active superradiant mapping provides a continuous
measurement of the atomic phase, in contrast to the standard
technique for mapping a quantum phase onto the observable
difference in state populations, as is done in passive Ramsey
spectroscopy [36] with atomic fountain and optical lattice
clocks, for example [37,38]. In Ramsey spectroscopy, the
atoms accumulate a quantum phase φ(t) during free evolution
periods after which φ(t) is mapped onto the atomic state
populations. The state population is measured through fluo-
rescence detection, which destroys the coherence and often
destroys the ensemble [39], though the loss of the sample is
not fundamental [31–34,40,41]. Passive Ramsey spectroscopy
has the benefit of being free from perturbations necessarily
introduced in the active mapping that disturb the accuracy of
the measurement. By implementing dynamic control of the
superradiant mapping, a passive Ramsey-like sequence can
be realized in a superradiant laser, combining both active and
passive sensing into a single hybrid system [14].

A single cycle of the hybrid sequence [Fig. 1(d)] consists
of running steady-state superradiance and estimating the light
phase ψ̄(0) just before temporarily shutting off the dressing
and repumping lasers at time t = 0, quenching the superradiant
emission. However, the collective Bloch vector continues to
precess at frequency fhf separating |↑〉 and |↓〉. At time
t = T , the repumping and dressing lasers are turned on, and
the phase of the light can then be estimated as ψ̄(T ) using
ψ(t) data at times t > T . The accumulated atomic phase
during the time period T is then �φ(T ) = φ(T ) − φ(0) =
ψ̄(T ) − ψ̄(0). The variance on �φ(T ) is 2σ 2

e because of
the measurement necessary to initialize the state at T = 0.
The initial measurement is unnecessary in traditional Ramsey
measurements with perfect state preparation.
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The fundamental limit on the estimation of the phase
difference �φ(T ) is a factor of 4 larger than for standard
interferometry techniques that use traditional Ramsey spec-
troscopy at the SQL. Still, little fundamental precision needs
to be sacrificed in future atomic sensors to utilize the proposed
mapping. The collective nature of superradiant emission also
results in a characteristic readout rate enhanced by a factor of
N compared to the readout rate in the single-atom limit.

III. EXPERIMENTAL DEMONSTRATION

We have implemented a proof-of-principle atomic sensor
using a cold-atom Raman laser on the clock transition of
the ground hyperfine states of 87Rb (|↑〉 = |F = 2,mF = 0〉
to |↓〉 = |F = 1,mF = 0〉). For our system, κ/2π = 11 MHz,
N = 106 atoms cooled to 40 μK, C = 8 × 10−3, and γ /2π ≈
1 Hz. The cavity finesse is F = 700. The dressing and
repumping lasers can be switched on and off within 100 ns,
much faster than the time scale on which atomic dynamics
occurs. We measure the phase ψ(t) and amplitude A(t) of
the emitted light via heterodyne detection with respect to
the dressing laser to remove phase noise on the emitted light
imposed by phase noise on the dressing laser. By splitting the
resulting rf signal and simultaneously demodulating the two
quadratures, we obtain both A(t) and ψ(t) simultaneously.
Example data of the passive sequence are shown in Fig. 1(d).
We estimate φ(0) [φ(T )] using linear fits to 0.5 ms of ψ(t)
data at times t < 0 (t > T ).

The standard deviation of the light phase difference ψ̄(T ) −
ψ̄(0) as T → 0 predicted by the optimal estimator φe for our
system is 12 ± 2 mrad, after accounting for finite quantum
efficiency (q = 0.03) and the multilevel structure of 87Rb. The
general expression for the superradiant emission rate,

Rd = R

(
N

2

)2 2w

N

(
1 − w

N�c

)
, (3)

accounts for w = wpk and repumping through the multiple
levels in the 87Rb hyperfine structure [3] with the correction
factor R. Here N = 9 × 105 atoms, �c = 0.05 s−1, R = 0.1,
and w = 0.2NCγ . The final result of R = 1 and w = wpk

is to reduce Rd by a factor of 0.28. The reduction in the
emission rate and the subsequent modification to the phase
diffusion increases σe by a factor of 2.4 compared to Eq. (2)
(see Appendix A).

The observed standard deviation is 70 ± 7 mrad, a factor
of 6 above the predicted noise. We assign the discrepancy
to the dispersive tuning of the cavity mode described in
Ref. [3], an effect present in our system, but not fundamental
to the physics of the sensor. Building on this work, we have
also demonstrated sensing of applied phase shifts using a
superradiant magnetometer [14].

The analysis of the optimal estimator does not consider the
impact of decoherence and dephasing in passive sensors with
superradiant readout. The process of superradiant emission
continually maintains the coherence of the ensemble, but when
the emission is turned off, the atoms decohere, decreasing J⊥
and A, as illustrated by Fig. 1(a). In addition to setting the
fundamental resolution of the atomic phase, the coherence
is vital to the reestablishment of superradiant emission after
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FIG. 2. (Color online) (a) Example time trace of the emitted
light amplitude with an evolution time T = 0.4 ms. A(0−) and
A(T +) are average amplitudes measured in the blue time windows
before and after the evolution time. The characteristic rise time t80 is
the time when the amplitude has returned to 80% of the steady-state
value. (b) Left: The decay of J⊥ as estimated by (blue squares) the
ratio A(T +)/A(0−) and (blue line) a fit to loss of contrast c(t) of
traditional Ramsey microwave spectroscopy. (b) Right: Measured
(red circles) and predicted (line) recovery time t80. The solid curve is
the prediction accounting for the low-pass filter that was applied to the
data. The band around the data indicates 1 standard deviation (s.d.)
on each side of the data point. We attribute the fluctuations observed
at short times to finite measurement precision. Each point is the
average of 20 trials. (c) Standard deviation of the phase accumulated
in time T as estimated by (diamonds) superradiant mapping and
(circle) population mapping. The lines are predictions based on the
observed loss of contrast c(T ).

the evolution time, so the impact of decoherence must be
understood for operation of future superradiant sensors.

We use the experimental sequence in Fig. 2(a) to study
the decay of coherence. The amplitude of the emitted light
field just before turn off, at t = 0, is A(0−) and just after turn
on, at t = T , the amplitude is A(T +). When the evolution
time T is short, the superradiance promptly returns to A(0−),
but as the atomic coherence J⊥ decays during the evolution
time, A(T +) decreases proportionally. The decay of J⊥ in our
system is dominated by dephasing caused by inhomogeneous
ac Stark shifts from the optical lattice. The ratio of amplitudes
A(T +)/A(0−) shown in Fig. 2(b) is well described by a
fit to the decay of the contrast fringe c(T ) measured in
standard microwave Ramsey spectroscopy with population
readout [42].

The coherence lost during T is eventually restored as the
laser returns to the steady state. In Fig. 2(b), the time t80 at
which A(T + t80)/A(0−) = 0.8 is compared to a theoretical
prediction based on the observed atomic contrast c(T ).
The prediction is obtained using semiclassical optical Bloch
equations and is described in detail in Appendix B. At short
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times, little coherence is lost, and the laser quickly returns to
the steady state because the remaining coherence provides a
seed for superradiance.

Ideally, superradiant readout should last long enough to
completely restore the coherence and avoid depletion over
multiple measurement cycles. We predict an average recovery
time t80 < 2

N�C
, which is confirmed by our experimental

results in Fig. 2(b). Since the characteristic measurement
time τW > 1

N�C
, each readout will almost fully restore the

coherence for the next passive evolution measurement, as long
as at least a small fraction of the coherence remains.

The collective atomic coherence J⊥(T ) predominantly
seeds subsequent superradiance until J⊥(T ) becomes smaller
than the rms equatorial projection of the decohered atoms
J

(incoh)
⊥ ∼ √

N/2. Even for A(T +)/A(0−) ≈ 0.05, J⊥(T ) >√
N/2, as seen by the relatively small t80 [Fig. 2(b)]. When

J⊥(T ) < J
(incoh)
⊥ , the laser must start an essentially new

superradiant emission, resulting in large fluctuations in t80.
We observe fluctuations of 20 μs, on the same order as the
predicted fluctuations in the time to reach the peak intensity
of a superradiant pulse after preparation in the fully excited
state [43].

We expect the fundamental phase resolution of the sensor
to degrade from decoherence, because the signal, set by J⊥,
decays as c(T ), but the uncertainty from atom shot noise
remains fixed. We predict the measurement noise by adding
the background measurement noise in quadrature with the
fundamental noise limit for both superradiant and population
readout of a Ramsey sequence, 2σe/c(T ) and σe/c(T ),
respectively, shown as the lines in Fig. 2(c). Experimentally
measuring the standard deviation of ψ̄(T ) − ψ̄(0) vs T , we
see that even when c(T ) decays to ≈5% of the steady-state
value at T = 0.5 ms, little phase resolution has been lost. The
superradiant measurement noise at longer times is not at the
decoherence limit due to additional technical noise, confirmed
by the appearance of an equal amount of noise on the standard
Ramsey population readout as well.

The culmination of these results is a demonstration of the
nondestructive measurement technique in which we repeat on-
off sequences to create a hybrid active-passive phase reference,
shown in Fig. 3. The weight functions for the optimal estimate
of the phase before and after the evolution periods are shown
in Fig. 3(a). Each measurement both retains a large fraction
of the atoms (>95%, with the loss believed to result primarily
from light-assisted atomic collisions) and prepares the atomic
coherence for future measurement cycles, as shown by the
constant amplitude of the emission in Fig. 3(b). The free
evolution times would ideally have high accuracy, while the
active oscillation would have a much greater measurement
bandwidth, providing the strengths of both active and passive
phase references in a single device.

Furthermore, the duty cycle of the measurements could be
adjusted in real time for optimal overall phase stability and
accuracy given knowledge of the environment. Figures 3(a)
and 3(b) show two example experimental trials where only
the duty cycle has changed. Real-time adaptation might allow
future hybrid phase references to be employed outside of
the laboratory for both scientific and commercial applications
[44].

IV. CONCLUSION

In some aspects, our technique is similar to recently
demonstrated single-atom [32–34,40,41], sample-preserving
[31], and nondemolition [5,6,8,35] readout techniques for
neutral atoms where efficient collection of photons allows for
detection near the SQL while in principle imparting only a few
photon recoils per atom. Compared to fluorescence detection
with a high numerical aperture lens, here the solid angle
of the mode is small (�/4π = 8.9 × 10−4), providing low
backgrounds and high optical access.

However, our collective measurement is fundamentally
different from the above techniques. Even nondemolition
probes cause inevitable decay of the coherence that must
be restored via discrete optical pumping and rotation of
the state. In the superradiant readout, the active flow of
collective information from the cavity also serves to reprepare
the atomic coherence for the next measurement. The atomic
phase continuously evolves across passive and active periods,
allowing future frequency sources to be phase locked rather
than frequency locked to an atomic reference, effectively
eliminating aliasing noise in atomic clocks [45].

Looking forward, the ideas studied here might be applied
on strictly forbidden optical atomic transitions [46], enabling
hybrid optical lattice clocks suited for operation outside of
carefully controlled laboratory environments. Though the
system demonstrated in this work is of limited use for precision
measurement, it nevertheless points a way forward to develop-
ing a different class of atomic sensors [14] and establishes the
theoretical connection between fundamental laser linewidths
and the information gained about the underlying system at the
heart of the laser. Our work also highlights unique phenomena
that emerge from collective coupling of many-body systems,
a topic of much recent and future research, e.g., research with
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FIG. 3. (Color online) Demonstration of nondemolition superra-
diant measurements enabling a hybrid active-passive oscillator for
two different duty cycles shown in (a) and (b). The measured light
phase ψ(t) is shown when the superradiance is switched on (black).
The periods of evolution time, when the superradiance is switched
off, are gray regions (random phase data not shown). The blue
and red exponential curves in (a) correspond to the ideal optimal
estimate weight functions before and after an evolution period,
respectively, calculated with our experimental parameters of N , �c,
and q. (b) The emission amplitude (red) returns to the steady-state
value (dashed line) during active oscillation, reflecting restoration of
the coherence J⊥.
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quantum dots, superconducting qubits, ions, nitrogen-vacancy
centers, and mechanical oscillators [47–51].
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APPENDIX A: DERIVATION OF OPTIMAL ESTIMATOR

Here we derive the optimal estimator φe(t) of the quantum
phase φ(t), and its mean-squared error σ 2

e , given a measure-
ment record ψ(t) of the phase of the superradiantly emitted
optical field. We use the results from a continuous Kalman filter
analysis with uncorrelated process noise and measurement
noise [30,52,53]. Here the measurement noise corresponds
to the photon shot noise that appears in the measurement of
the light phase ψ(t) and the process noise corresponds to the
phase diffusion of the collective atomic Bloch vector that sets
the Schawlow-Townes frequency linewidth limit.

1. Photon shot noise

The measured phase of the radiated light is related to
the underlying quantum phase φ(t) by ψ(t) = φ(t) + �ψ(t),
where the vacuum or photon shot noise adds the noise
component �ψ(t). The noise is Poissonian and described by
its lowest-order moments as 〈�ψ(t)〉 = 0 and 〈�ψ(t) �ψ(t +
τ )〉 = δ(τ )m. Here, δ(τ ) is the Dirac delta function so that
the measurement noise at different times is uncorrelated, but
when τ = 0 it is equal to the constant m = 1

4Rd
. S

(m)
φ (ω)

is the two-sided power spectral density (PSD) of phase
fluctuations due to measurement noise, which for photon
shot noise S

(m)
φ (ω) = ∫ ∞

−∞〈�ψ(t) �ψ(t + τ )〉 cos(ωt)dt =
m [54]. The light phase variance for a measurement time
window �t is σ 2

m = ∫ ∞
−∞ S

(m)
φ (ω)| sinc(ω�t/2)√

2π
|2dω = m/�t =

1
4Rd�t

, where Rd is the average rate of detected superradiantly
emitted photons using homodyne detection. At the optimum
superradiant photon emission rate [1,3] Rd = N2�c/8, ob-
tained at a repumping rate wpk = N�c/2, where �c = Cγ

1+δ2

is the single-particle natural decay rate into the cavity mode,
including a finite detuning of the cavity resonance frequency
from the emission frequency δ in units of the cavity half
linewidth κ/2. Taking into account finite quantum efficiency
q, we find

S
(m)
φ (ω) = 2

qRN2�c

. (A1)

2. Phase diffusion

In addition to measurement noise, the collective Bloch
vector’s quantum phase φ(t) diffuses with time as a result of
quantum noise in the repumping process, the same mechanism
that sets the Schawlow-Townes frequency linewidth limit in a
bad-cavity laser or maser [1,26,27]. As a result, values of

φ(t) at different times are less correlated with one another as
the time separation grows. Specifically, the two-time phase
difference (as measured in an appropriate rotating frame)
averaged over many trials is zero, 〈φ(t + τ ) − φ(t)〉 = 0, but
the variance of the phase difference grows linearly with the
time difference τ as

σ 2
D(τ ) = 〈[φ(t + τ ) − φ(t)]2〉 = D2|τ |. (A2)

The phase diffusion coefficient D for the superradiant source
can be derived from the expectation value of the two-time
raising and lowering atomic operator 〈σ+(t + τ )σ−(t)〉 in Ref.
[55] and is

D2 = �c

(
1 + 2w

N�c

)
. (A3)

Assuming operation at the repumping rate wpk one finds
D2 = 2�c. For the Kalman filter analysis to follow, we utilize
the PSD of frequency fluctuations defined as

S
(p)
f (ω) =

∫ ∞

−∞
〈φ̇(t + τ )φ̇(t)〉 cos(ωτ )dτ (A4)

for the process noise. From Eqs. (A2) and (A4), one simply
finds S

(p)
f (ω) = D2.

3. Optimal phase estimation with Kalman filter

The Kalman filter [30,52,53] is designed to provide an
optimal estimate φe(t) of the phase φ(t) that minimizes the
mean-squared error in the estimate σ 2

e = 〈[φe(t) − φ(t)]2〉.
The Kalman filter assumes the state model and noise sources
are well known, and the that the process noise and mea-
surement noise are uncorrelated, an assumption we verify by
extending the theoretical work of Ref. [27] to the spectrum of
phase fluctuations in a homodyne measurement.

For this simple case, the optimal Kalman filter takes the
form of a single-pole low-pass filter. In the time domain, this
is equivalent to an exponential weighting of the measurement
record characterized by the exponential time constant τW . The
time constant is the inverse of the Kalman gain K , which is
calculated in steady state by a ratio of the noise power spectral
densities

τW = 1

K
=

(
S

(m)
φ (ω)

S
(p)
f (ω)

)1/2

= 1√
qN�c

, (A5)

assuming w = wpk. The optimal estimate is then the exponen-
tially weighted average φe(t) = 1

τW

∫ t

−∞ ψ(t ′)e−(t−t ′)/τW dt ′.
The mean-squared error in the optimal estimate is given by

the geometric mean of the noise spectral densities

σ 2
e = [

S
(p)
f (ω)S(m)

φ (ω)
]1/2 = 2√

qN
. (A6)

Here we simply considered portions of the measurement record
ψ(t) at times t � t◦, as this is the only information actually
available were the superradiance to be shut off at time t◦ as part
of a Ramsey-like measurement. Conversely, an estimator of
the phase just after superradiance is turned back on φe(t◦ + T )
will only include the measurement record at times t � t◦ + T .
The symmetry of the two noise processes with respect to time
reversal makes it sufficient to consider only the first case.
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4. Modifications for experimental conditions

To obtain a prediction for σ 2
e observed here, we must also

consider the modifications to S
(m)
φ (ω) and S

(p)
f (ω) due to imper-

fections in our experiment. The general superradiant emission
rate, Eq. (3), clearly modifies S

(m)
φ (ω) in Eq. (A1). However,

S
(p)
f (ω), given by the phase diffusion of the Schawlow-Townes

limit, is also modified. As S
(p)
f (ω) corresponds to the full width

at half maximum (FWHM) of the laser linewidth [55], we
estimate the general form of the linewidth using Ref. [26],

�fFWHM = 1

4π

w2

Rd

ninv, (A7)

to calculate the modified S
(p)
f (ω). Here, ninv = N↑

N↑−N↓
is an

inversion factor that depends on w and R through N↑ and N↓,
the steady-state populations of |↑〉 and |↓〉, respectively. After
simplification, S

(p)
f (ω) reduces to

S
(p)
f (ω) = �c

(
3

2
+ 1

R
(

N�c

w
− 1

)
)

. (A8)

APPENDIX B: PREDICTION OF TIME TO RETURN TO
STEADY-STATE SUPERRADIANT EMISSION

To predict the time to restore the superradiant emission to
steady state, characterized by t80 in the main text, we begin with
a model based on semiclassical optical Bloch equations for the
collective Bloch vector [55]. The cavity mode is adiabatically
eliminated from the set of equations, justified by the cavity
damping rate exceeding all other relevant rates in the system.
We extend the model to include the full ground hyperfine
structure of 87Rb, which requires repumping lasers on both the

|F = 1〉 → |F ′ = 2〉 transition and the |F = 2〉 → |F ′ = 2〉
transition to return atoms from |↓〉 to |↑〉. We also account
for the Raman transition in our system by adiabatically
eliminating the intermediate excited state and defining a
two-photon atom cavity coupling g2 as described in Ref. [3].
The model is similar to the cold-atom laser in Ref. [24], except
that in this work, the cavity decay rate κ is much greater than
the atomic coherence decay rate γ⊥ ≈ w/2. Compared to the
cold-atom lasers in Refs. [22,23], the atomic decoherence
rate is much smaller here, because the atoms are confined in
a far detuned optical lattice instead of a magneto-optical trap
(MOT). Also, here the lasing occurs via a Raman transition
between the magnetic-field-insensitive ground hyperfine
states |↑〉 = |F = 2,mF = 0〉 and |↓〉 = |F = 1,mF = 0〉, as
opposed to different Zeeman states.

To find the characteristic rise time t80(T ) as a function of
the evolution time T , we first solve the system of differential
equations under steady-state conditions with the values of N ,
�c, w, and R calculated from the measured shift of the cavity
mode and laser powers in our experiment. We then assume that
during the dark evolution time all populations remain at their
original steady-state values, but that the collective coherence
is reduced with respect to the original steady-state coherence
J̄⊥ as J⊥(T ) = c(T )J̄⊥, where c(T ) is the fractional reduction
in the Ramsey contrast fringe measured using traditional
microwave spectroscopy and population readout shown in
Fig. 3(b) in the main text. The loss of contrast c(T ) is consistent
with dephasing caused by differential ac Stark shifts experi-
enced by the trapped atoms [42]. To model the behavior once
the coupling is restored at time T , we use the steady-state pop-
ulations and modified coherence J⊥(T ) as initial conditions
to numerically integrate the equations and extract a predicted
value of t80.
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[32] J. Bochmann, M. Mücke, C. Guhl, S. Ritter, G. Rempe, and

D. L. Moehring, Phys. Rev. Lett. 104, 203601 (2010).
[33] M. J. Gibbons, C. D. Hamley, C.-Y. Shih, and M. S. Chapman,

Phys. Rev. Lett. 106, 133002 (2011).
[34] A. Fuhrmanek, R. Bourgain, Y. R. P. Sortais, and A. Browaeys,

Phys. Rev. Lett. 106, 133003 (2011).
[35] Z. Chen, J. G. Bohnet, J. W. Weiner, K. C. Cox, and J. K.

Thompson, arXiv:1211.0723.
[36] N. F. Ramsey, Phys. Rev. 78, 695 (1950).
[37] S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic,

L. Cacciapuoti, J. Grünert, C. Vian, F. P. dos Santos,
P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon,
A. Luiten, M. Tobar, and C. Salomon, J. Phys. B 38, S449 (2005).

[38] A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M.
Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M.
Foreman, J. Ye, M. Fortier, J. E. Stalnaker, S. A. Diddams,
Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and
C. W. Oates, Science 319, 1805 (2008).

[39] G. W. Biedermann, X. Wu, L. Deslauriers, K. Takase, and M. A.
Kasevich, Opt. Lett. 34, 347 (2009).

[40] R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L.
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