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Partial polarization and electromagnetic spatial coherence of blackbody radiation
emanating from an aperture
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We consider, within the classical theory of electromagnetic coherence, the spectral coherence properties of
a field emanating from an aperture in a blackbody cavity. Spatial coherence and polarization are assessed both
in the aperture and in its far zone. We derive an expression for the full 3 × 3 cross-spectral density matrix of
the field in the opening and discuss the validity of some related results given in the literature. The aperture field
serves as a finite, planar secondary source whose transverse coherence length is found to be of the order of the
wavelength and which is unpolarized in the three-dimensional sense. The far field is obtained by propagating
each of the three source-field components separately, resulting in the evaluation of the far-field spatial coherence
in any pair of directions, paraxial or nonparaxial. We show that in the paraxial case, the coherence properties
coincide with those obtained for a planar, secondary source which is spatially δ-correlated and unpolarized. The
results can find applications in the modeling of thermal sources and in the propagation of natural light fields.
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I. INTRODUCTION

Blackbody radiation has had a pivotal role in the develop-
ment of quantum mechanics and introduction of the concept of
photons [1]. The coherence properties of blackbody radiation
inside a cavity have been studied in the past within both the
classical and the quantum theories, and the coherence matrices
in the space-time domain [2–5] and in the space-frequency
domain [6,7] are explicitly known (see also [8]). More recently,
the spectral polarization properties of blackbody radiation
emanating from an aperture in a cavity were analyzed and
it was shown that the far field is unpolarized in every direction
and obeys Lambert’s law [9]. In addition, a few years ago the
far-field spatial coherence matrix was derived in the paraxial
region [10]. In both works the far field is obtained in terms of
the two transverse electric-field components in the aperture,
and explicit knowledge of the full 3 × 3 cross-spectral density
matrix in the opening is not required.

In this paper, we construct the complete 3 × 3 electric
cross-spectral density matrix of a field in an aperture of a cavity
containing blackbody radiation. The aperture field differs from
the field inside the cavity, as it only contains light exiting
the cavity. The ensuing cross-spectral density matrix has not
appeared in the literature before and we point out that some
claims in previous works on the form of the aperture-field
coherence matrix are inconsistent with our results. The field
in the opening constitutes a finite, planar, secondary source
whose statistical properties are quantified in terms of the
electromagnetic degree of coherence [11–15] and the degree
of polarization of three-dimensional (3D) fields [16–18].
We show that the spectral spatial coherence width of the
source is of the order of the wavelength and the planar source
is unpolarized in the 3D sense. These results are consistent
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with those found earlier for a blackbody field inside a
cavity [19,20].

The far field is obtained in this work by propagating each of
the three electric-field components separately into the far zone
in terms of the Rayleigh diffraction formula. This approach
leads to a correct cross-spectral density matrix [21] that is valid
in any two directions, not necessarily confined to the paraxial
regime. We show that in all directions the far-field spatial
coherence extends over a very narrow angular separation,
which is smaller the larger is the aperture. Under paraxial
conditions the spatial coherence of the far field is shown to
coincide with that produced by a spatially δ-correlated and
two-dimensional (2D) unpolarized planar secondary source.
Physical justification of the results is given.

The paper is organized as follows. In Sec. II the cross-
spectral density matrix of the blackbody radiation in an
aperture is derived and the partial polarization and partial
electromagnetic coherence in the opening are quantified.
Section III is devoted to the propagation of the aperture field
into the far zone, while Sec. IV focuses on the characterization
of the far-field coherence. Section V summarizes the main
conclusions of this work.

II. CROSS-SPECTRAL DENSITY MATRIX
AT THE APERTURE PLANE

Blackbody radiation inside a cavity can be viewed as a
superposition of angularly uncorrelated and unpolarized plane
waves whose intensities are the same and the propagation
directions fill the whole 4π solid angle (see Fig. 1). This
intuitive physical model corresponds to a statistically homo-
geneous and isotropic field whose cross-spectral density, in
combination with Planck’s law, is precisely that of blackbody
radiation [2,19]. The radiation emanating from an opening in
the wall of the cavity is composed of only those waves that
propagate into a half-space. We set the aperture at the z = 0
plane and consider the field in the half-space z > 0.
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FIG. 1. Blackbody radiation inside a cavity can be regarded as
a superposition of plane waves which is isotropic within the full
4π solid angle, whereas radiation emanating from the aperture is
isotropic within the 2π solid angle. The aperture is at the z = 0
plane. The figure illustrates the situation in two dimensions.

The random electric field in the space-frequency domain
produced by a superposition of plane waves propagating within
the solid angle α is [19]

E(r,ω) =
∫

α

A(û,ω) exp(ikû · r)d�, (1)

where

û = sin θ cos ϕûx + sin θ sin ϕûy + cos θûz (2)

is the unit vector that specifies the propagation direction
of a plane wave in spherical polar coordinates (ϕ,θ ) (see
Fig. 2), with ûx , ûy, and ûz being the unit vectors along
the Cartesian coordinate axes. The differential solid angle is
given by d� = sin θdθdϕ. In addition, A(û,ω) is the random
complex amplitude of the wave, ω is the angular frequency,
and k = ω/c = 2π/λ is the wave number, with c being the
speed of light in vacuum and λ the wavelength.

The vector amplitude can be decomposed as

A(û,ω) = As(û,ω)ŝ + Ap(û,ω)p̂, (3)

where As(û,ω) and Ap(û,ω) are the amplitudes of the
s-polarized and p-polarized components, and ŝ = ûz ×
û/|ûz × û| and p̂ = ŝ × û are the related unit vectors (see
Fig. 2). The electric-field vector is generally three-dimensional
and we represent it by the column vector E(r,ω) =
[Ex(r,ω),Ey(r,ω),Ez(r,ω)]T, where T denotes transpose. For
now we neglect the effect of the finite-sized aperture.

Equation (1) gives the realization of a random free field in
the space-frequency domain. The cross-spectral density matrix
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FIG. 2. (Color online) Illustration of notation.

can be written as

W(r1,r2,ω) = 〈E∗(r1,ω)ET(r2,ω)〉
=

∫
α

∫
α

〈A∗(û1,ω)AT(û2,ω)〉
× exp [−ik(û1 · r1 − û2 · r2)]d�1d�2, (4)

where the asterisk and the angle brackets stand for the complex
conjugate and ensemble average, respectively. Employing
Eq. (3), the angular correlation matrix becomes

〈A∗(û1,ω)AT(û2,ω)〉 = 〈A∗
s (û1,ω)As(û2,ω)〉ŝ1ŝ

T
2

+〈A∗
s (û1,ω)Ap(û2,ω)〉ŝ1p̂

T
2

+〈A∗
p(û1,ω)As(û2,ω)〉p̂1ŝ

T
2

+〈A∗
p(û1,ω)Ap(û2,ω)〉p̂1p̂

T
2 . (5)

For angularly uncorrelated and unpolarized plane waves whose
intensities are the same we write

〈A∗
s (û1,ω)As(û2,ω)〉 = 〈A∗

p(û1,ω)Ap(û2,ω)〉
= a0(ω)δ(û1 − û2), (6)

〈A∗
s (û1,ω)Ap(û2,ω)〉 = 〈A∗

p(û1,ω)As(û2,ω)〉 = 0, (7)

where a0(ω) is a positive frequency-dependent constant and the
directional Dirac δ function is given by δ(û1 − û2) = δ(ϕ2 −
ϕ1)δ(θ2 − θ1)/| sin(θ2)| [22]. The fact that the s-polarized and
p-polarized components in each plane wave are mutually
uncorrelated and have the same intensity ensures that the waves
are 2D unpolarized, i.e., the degree of polarization of beam-like
fields is 0 [23]. Inserting Eqs. (6) and (7) into Eq. (4) leads to

W(r1,r2,ω) = a0(ω)
∫

α

(U3 − ûûT) exp (ikû · R)d�, (8)

where U3 = ûx û
T
x + ûy û

T
y + ûzû

T
z is the 3 × 3 unit matrix and

R = r2 − r1. The above cross-spectral density matrix holds
for a three-component field in 3D space and it is seen to be
of statistically homogeneous form for any α. Introducing the
aperture-plane vectors ρ and σ (see Fig. 2),

ρ = xûx + yûy, (9)

σ = sin θ cos ϕûx + sin θ sin ϕûy, (10)

we can write

ri = ρi + zi ûz, i ∈ (1,2), (11)

û = σ + cos θûz. (12)

With this notation the cross-spectral density matrix in the z = 0
plane assumes the form

W(ρ1,ρ2,ω) = a0(ω)
∫

α

(U3 − ûûT) exp (ikσ · ρ)d�, (13)

where ρ = ρ2 − ρ1. The angular integrations over the solid
angle α = 2π (half-space z > 0) can be performed as outlined
in Appendix A and the result is

W(ρ1,ρ2,ω) = 2πa0(ω)

{[
j0(kρ) − j1(kρ)

kρ

]
U3

+ j2(kρ)ρ̂ρ̂T − i
J2(kρ)

kρ

(
ρ̂ûT

z + ûzρ̂
T)}

,

(14)
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where ρ = |ρ| and ρ̂ = ρ/ρ. The functions ji(kρ), with i ∈
(0,1,2), are spherical Bessel functions of order i, and J2(kρ)
is the Bessel function of the first kind and order 2.

The matrix of Eq. (14) describes the spectral spatial co-
herence of an infinitely large planar secondary source formed
by an isotropic (into the half-space z > 0) superposition of
unpolarized and angularly uncorrelated plane waves. The finite
size of the aperture, assumed to be circular and of radius ε,
is incorporated by invoking Kirchoff’s boundary conditions,
which state that the field within the opening equals the incident
(unperturbed) field and it is 0 elsewhere. Introducing the
blocking function,

B(ρ) =
{

1 if ρ < ε,

0 otherwise,
(15)

the cross-spectral density matrix pertaining to the finite-sized,
circular secondary source in the plane z = 0 takes the form

W(0)(ρ1,ρ2,ω) = B(ρ1)B(ρ2)W(ρ1,ρ2,ω), (16)

where W(ρ1,ρ2,ω) is given by Eq. (14).
Up to now, we have not specified the spectral coefficient

a0(ω). The cross-spectral density matrix of blackbody radi-
ation [6] is found if 4a0(ω) is chosen [19] to coincide with
Planck’s spectrum [24], i.e.,

4a0(ω) = 2h̄ω3

πc3

1

exp (h̄ω/kBT ) − 1
, (17)

where h̄ is the reduced Planck’s constant, kB the Boltzmann
constant, and T the absolute temperature. The origin of the
factor 4 is that the energy densities of the s-polarized and
p-polarized electric fields are each a0(ω), and the electric and
magnetic fields contribute equally to the total energy density.

We note that some works state that the cross-spectral density
matrix of the blackbody field in the aperture is one-half the
matrix pertaining to the field inside the cavity [9,10]. This
conclusion leads to a cross-spectral density matrix of the
aperture field which otherwise equals Eq. (16) but the last
term of Eq. (14) is absent. Whereas the energy is halved,
physically it is understandable that the aperture correlation
matrix can be different from the true blackbody correlation
matrix across a plane since the plane waves propagating into
the half-space z < 0 are missing. We soon see that the last
term in Eq. (14) is necessary when all three electric field
components are propagated separately, as it makes the far field
obey the divergence (transversality) condition. The origin of
the erroneous statements [9,10] appears to be that, in contrast
to what is argued in [25], although a superposition of angularly
uncorrelated scalar plane waves which is isotropic in the full
4π solid angle produces a sinc-form correlation function, a
similar superposition within the 2π solid angle does not. In
fact, it is likely that the coherence function related to the latter
case cannot be expressed in a closed form except in the plane
z = 0 and along the z axis. Incidentally, the situation resembles
the decomposition of the point-dipole field into propagating
and evanescent parts which have closed-form expressions only
in the z = 0 plane and on the z axis [26]. Note also that the
cross-spectral density matrix of Eq. (14) is of a statistically
homogeneous form but it is not isotropic [27,28]. This is unlike
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FIG. 3. Illustration of the electromagnetic degree of coherence as
a function of kρ, with ρ = |ρ2 − ρ1|, in the aperture of a blackbody
cavity.

the blackbody radiation inside a cavity, which is known to be
both homogeneous and isotropic [20].

The spatial coherence properties of the source can be
quantified with the electromagnetic degree of coherence
[11–15], μ(r1,r2,ω), and the 3D degree of polarization
[16–18], P3(r,ω), defined, respectively, as

μ2(r1,r2,ω) = tr[W†(r1,r2,ω)W(r1,r2,ω)]

trW(r1,r1,ω)trW(r2,r2,ω)
, (18)

P 2
3 (r,ω) = 3

2

{
tr
[
�2

3(r,ω)
]

tr2[�3(r,ω)]
− 1

3

}
, (19)

where the dagger denotes the Hermitian adjoint, tr refers to
the trace, and �3(r,ω) = W(r,r,ω) is the 3 × 3 polarization
matrix. Using Eq. (16) the degree of coherence in the aperture
takes the form

μ(ρ1,ρ2,ω) = 1√
3

[
j 2

0 (kρ) + 1

2
j 2

2 (kρ) + 3

2

J 2
2 (kρ)

(kρ)2

]1/2

,

(20)

whose behavior as a function of kρ is shown in Fig. 3.
The degree drops from μ(ρ,ρ,ω) = 1/

√
3, corresponding

to an unpolarized 3D field [11], to a small number at
approximately kρ = 6. Therefore, we may say that the source
correlations extend over the distance of the light’s wavelength
and the related (transverse) coherence length is ρcoh ≈ λ.
Approximately the same value for the coherence length is
found for blackbody radiation inside the cavity, where the
degree of coherence is otherwise the same as that in Eq. (20) but
the last term is missing [20]. The degree of polarization defined
in Eq. (19) is also readily calculated and is P3(ρ,ω) = 0,
indicating explicitly that the planar source is 3D unpolarized,
as is also the field inside the cavity [19].

III. PROPAGATION TO FAR ZONE

Once the realization of the electric field in the aperture
plane is known there are at least two fundamentally different
ways to propagate the field into the half-space z > 0 and the
far zone. Since the two transverse aperture-field components
uniquely determine the electric field throughout the domain
z > 0, one can propagate the Ex(r,ω) and Ey(r,ω) components
and compute Ez(r,ω) from the divergence condition [31]. This
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approach amounts to the classic Luneburg equations [32] and
it was used, e.g., in [9] to obtain the far field in spherical polar
coordinates. Alternatively, one may calculate all three electric-
field components directly on the basis that they all obey the
Helmholtz equation [23]. This leads to a valid expression for
the total electric field in the half-space z > 0 including the far
zone, provided that the source field is correct (consistent with
Maxwell’s equations) [21]. We make use of the latter method
in this work. From the realizations the cross-spectral density
matrix is obtained by statistical averaging.

Mathematically the field realizations can be computed by
means of Green’s functions [33] or the angular spectrum
decomposition [22,29]. The cross-spectral density matrices
can also be propagated using the coherent modes [12] or
elementary field representations [30]. Adopting the Green’s
function approach based on the Rayleigh diffraction formula
for scalar waves [23], the far-zone electric-field components,
E

(∞)
i (r,ω), with i ∈ (x,y,z), are written as

E
(∞)
i (r,ω) =

∫∫ ∞

−∞
Ei(ρ,ω)G(r − ρ,ω)d2ρ, (21)

where the integration is over the z = 0 plane, and the Green’s
function is

G(r − ρ,ω) = − 1

2π

∂

∂z

[
exp (ik|r − ρ|)

|r − ρ|
]
. (22)

Far from the aperture we can approximate |r − ρ| ≈ r − û · ρ,
and Eq. (22) assumes the form

G(r − ρ,ω) ≈ − ik

2π
cos θ

exp (ikr)

r
exp (−ikû · ρ). (23)

Using this in Eq. (21), the cross-spectral density matrix of the
far field reads in the Cartesian coordinates as

W(∞)(r1û1,r2û2,ω) = (2πk)2 cos θ1 cos θ2
exp[ik(r2 − r1)]

r1r2

× T(σ 1,σ 2,ω), (24)

where

T(σ 1,σ 2,ω) = 1

(2π )4

∫∫ ∞

−∞

∫∫ ∞

−∞
W(0)(ρ1,ρ2,ω)

× exp [−ik(σ 2 · ρ2 − σ 1 · ρ1)]d2ρ1d
2ρ2,

(25)

with W(0)(ρ1,ρ2,ω) given in Eq. (16). The matrix T(σ 1,σ 2,ω)
is the four-dimensional Fourier transform of the cross-spectral
density matrix at the z = 0 plane. It can also be viewed
as a matrix describing the correlation between the plane
waves propagating in different directions and it could be
constructed in terms of the angular-spectrum representation
[29]. Assuming that the radius of the (circular) aperture is
much larger than the wavelengths contained in the spectrum
(which define the coherence length at each frequency) allows
us to perform the integrations in Eq. (25) with the result (see

Appendix B)

T(σ 1,σ 2,ω)

= a0(ω)

k2
D(σ,ω)(1 − σ̄ 2)−1/2

[
U3 − (1 − σ̄ 2)ûzû

T
z − σ̄ σ̄ T

− (1 − σ̄ 2)1/2
(
ûzσ̄

T + σ̄ ûT
z

)]
, (26)

with σ = |σ |, σ = σ 2 − σ 1 and σ̄ = |σ̄ |, σ̄ = (σ 1 + σ 2)/2.
In addition,

D(σ,ω) = A0

2π2

J1(kσε)

kσε
, (27)

where A0 is the area of the circular aperture of radius ε. The
cross-spectral density matrix in Eq. (24) is valid for any two
directions û1 and û2, paraxial or nonparaxial. In the former
case, apart from a multiplicative factor it reduces to the matrix
presented earlier in the literature [10].

IV. FAR-ZONE COHERENCE

Inserting Eqs. (24), (26), and (27) into Eq. (18) gives

μ(r1û1,r2û2,ω) =
√

2

∣∣∣∣J1(kεσ )

kεσ

∣∣∣∣
[

cos θ1 cos θ2

1 − σ̄ 2

]1/2

, (28)

for the degree of coherence of the far field. The validity of this
expression is not restricted to the paraxial region. Note that the
far-zone degree of coherence does not depend on the distances
r1 and r2. The behavior of μ(r1û1,r2û2,ω) as a function of θ1

in the xz plane is illustrated for θ2 = 0 (paraxial geometry)
and θ2 = 3π/8 (nonparaxial geometry) in Figs. 4(a) and 4(b),
respectively. The dashed (blue) and solid (red) curves refer
to kε = 100 (ε ≈ 16λ) and kε = 400 (ε ≈ 64λ), for which
the assumption of the radius being large compared to the
coherence length should hold. We observe that the spatial
coherence extends over a larger angular separation in the
nonparaxial direction than in the paraxial regime. In addition,
the larger the aperture is, the smaller the angular separation
over which the far field is spatially coherent. Note also that
for small apertures the degree of coherence is asymmetric in
the nonparaxial directions. In general, the angular separation
is very small, of the order of milliradians.

It is insightful to compare, in the paraxial region, the
far-field degree of coherence in Eq. (28) to that generated
by a planar, circular secondary source which is spatially
δ-correlated (zero coherence length) and unpolarized in the
2D sense. Such a source can be described by the cross-spectral
density matrix,

W(0)(ρ1,ρ2,ω) = S(ω)B(ρ2)U2δ(ρ2 − ρ1), (29)

where S(ω) characterizes the spectral density, B(ρ2) is the
blocking function given in Eq. (15), and U2 = ûx û

T
x + ûy û

T
y .

Substitution into Eq. (25) gives

T(σ 1,σ 2,ω) = S(ω)D(σ,ω)

(2π )2
U2, (30)

which, when inserted into Eq. (24) and then into Eq. (18),
results in

μ(r1û1,r2û2,ω) =
√

2

∣∣∣∣J1(kεσ )

kεσ

∣∣∣∣ (31)
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FIG. 4. (Color online) Illustration of the far-field electromagnetic
degree of coherence as a function of θ1 (in units of π ) when (a) θ2 = 0
and (b) θ2 = 3π/8. In both cases ϕ1 = ϕ2 = 0, corresponding to the
xz plane, while the dashed (blue) and solid (red) curves refer to
kε = 100 and kε = 400, respectively. The peak values are 1/

√
2.

for the far-field degree of coherence in the paraxial region.
We note that the same formula is obtained with the far-zone
form of the electromagnetic van Cittert–Zernike theorem
[34]. The result in Eq. (31) is, to a good approximation,
identical to Eq. (28) in the paraxial case (θ1 ≈ θ2 ≈ 0 and
σ̄ ≈ 0) for which the term in brackets is close to 1. The
analysis therefore substantiates the intuitive conclusion that
a planar, 2D unpolarized, δ-correlated secondary source is
a highly accurate model for a planar, secondary thermal
(blackbody) source when the field is considered in the paraxial
regime. Physically this is evident already from Eq. (8), which,
in the paraxial case, reduces to the low-spatial-frequency
representation of Eq. (29).

The polarization matrix of the far field in any direction is
obtained by setting r1û1 = r2û2 = rû in Eq. (24), leading to

�
(∞)
3 (rû,ω) = a0(ω)A0 cos θ

r2
(U3 − ûûT). (32)

Since �
(∞)
3 (rû,ω)û = ûT�

(∞)
3 (rû,ω) = 0, the far field is

transverse (planar) with respect to û, as expected, and could
be locally represented by a 2 × 2 polarization matrix and
characterized by the degree of polarization of beam-like fields
[23]. We can equally well describe the degree of polarization
in terms of a 3D formalism. Substituting Eq. (32) into Eq. (19)
implies that P3(rû,ω) = 1/2 for all directions and hence
the field is unpolarized in the 2D sense [18]. This is in
agreement with [9] and [10]. Note that the equal-point and
the equal-direction far-field degrees of coherence take on the

value μ(rû,rû,ω) = μ(r1û,r2û,ω) = 1/
√

2, corresponding to
a 2D unpolarized plane wave [11]. The equal-direction degree
of coherence is not unity since the fields at two points in a
fixed direction are not completely correlated.

The radiant intensity (power per solid angle) in the direction
û is also readily obtained as

J (û,ω) = lim
r→∞

{
r2tr

[
�

(∞)
3 (rû,ω)

]}
= 2a0(ω)A0 cos θ

= 1

2

2h̄ω3

πc3

A0 cos θ

exp (h̄ω/kBT ) − 1
, (33)

where Planck’s law of Eq. (17) is inserted in the last equality.
The factor 1/2 comes from the fact that only the waves
propagating into the half-space z > 0 are included. The result
in Eq. (33) shows that the aperture field is a Lambertian source
consistent with [9]. The aperture-field coherence of planar
scalar-wave Lambertian sources has been discussed, e.g., in [7]
and [35].

V. CONCLUSIONS

In this work we have derived the full 3 × 3 cross-spectral
density matrix for a field in the aperture of a blackbody cavity.
Unlike results reported in some works in the literature, this
aperture-field matrix differs in form from the cross-spectral
density matrix of blackbody radiation within the cavity. The
spectral coherence length in the opening was found to be of
the order of the wavelength, and the field was shown to be
unpolarized in the 3D sense. Consistent with previous results,
the far field emitted from the aperture was demonstrated to
be 2D unpolarized in every direction and to obey Lambert’s
law. We have derived the far-field electromagnetic degree
of coherence, which holds in both the paraxial and the
nonparaxial situations, and demonstrated that the spatial
coherence extends over very narrow angular separations. We
have compared the spatial coherence in the paraxial case to that
generated by a planar, secondary, spatially δ-correlated and
2D unpolarized source. To a good accuracy, the two sources
produce the same far-field coherence, indicating that a spatially
δ-correlated, unpolarized secondary source is a good model for
a thermally emitting radiator. The findings of this work add to
the existing results on blackbody radiation, which possesses
a fundamental place in the development of quantum physics.
The results of this work can have applications in the modeling
of thermal sources and in the propagation of natural light fields.
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APPENDIX A: ANGULAR INTEGRATIONS IN EQ. (13)

Making use of Eq. (12) we can rewrite Eq. (13) as

W(ρ1,ρ2,ω) = a0(ω)
∫

α

[
U3 − σσ T − cos2 θûzû

T
z

− cos θ
(
σ ûT

z + ûzσ
T
)]

exp (ikσ · ρ)d�,

(A1)
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where the angular integrations over the half-space solid angle
of α = 2π can be carried out. For the first term one finds∫

2π

exp (ikσ · ρ)d� = 2πj0(kρ), (A2)

while the second term is developed as∫
2π

σσ T exp (ikσ · ρ)d� = − 1

k2
∇ρ∇T

ρ

∫
2π

exp (ikσ · ρ)d�

= 2π

[
j1(kρ)

kρ
U2 − j2(kρ)ρ̂ρ̂T

]
,

(A3)

where ∇ρ denotes the derivative with respect to ρ and
U2 = ûx û

T
x + ûy û

T
y . In the derivation of Eq. (A3) the result

in Eq. (A2) and the facts that ∇ρρ = ρ̂ and ∇ρρ = U2 were
used. For the third term we employ∫

2π

exp (ikσ · ρ) cos2 θd� = 2π
j1(kρ)

kρ
. (A4)

The last term is integrated using the explicit form of σ given
in Eq. (10) and the formula

∫
2π

exp (ikσ · ρ) cos θ sin θ

{
cos ϕ

sin ϕ

}
d�

= 2iπ
J2(kρ)

kρ

{
ρ̂x

ρ̂y

}
, (A5)

where ρ̂i , with i ∈ (x,y), are the components of ρ̂. Collecting
the above integrals leads to Eq. (14).

APPENDIX B: INTEGRATIONS IN EQ. (25)

Introducing the integration variables ρ = ρ2 − ρ1 and ρ̄ =
(ρ1 + ρ2)/2, Eq. (25) becomes

T(σ 1,σ 2,ω) = a0(ω)

(2π )3

∫∫ ∞

−∞
exp (−ikσ · ρ̄)

×
∫∫ ∞

−∞
B

(
ρ̄ + ρ

2

)
B

(
ρ̄ − ρ

2

)

×
{[

j0(kρ) − j1(kρ)

kρ

]
U3 + j2(kρ)ρ̂ρ̂T

− i
J2(kρ)

kρ

(
ρ̂ûT

z + ûzρ̂
T)}

× exp (−ikσ̄ · ρ)d2ρd2ρ̄, (B1)

where σ = σ 2 − σ 1 and σ̄ = (σ 1 + σ 2)/2 as before. We next
use the fact that the coherence length of the source (at
frequency ω) is of the order of the wavelength and hence
much less than the diameter of the aperture. In other words,
the width of the term in the curly brackets in the latter integral
is much less than the aperture dimension. This allows us, to
a good approximation, to remove the blocking functions from

the latter integral. We note that B2(ρ̄,ω) = B(ρ̄,ω) and define

D(σ ,ω) = 1

(2π )2

∫∫ ∞

−∞
B(ρ̄) exp (−ikσ · ρ̄)d2ρ̄, (B2)

which is the 2D spatial Fourier transform of the blocking
function. For a circular aperture it becomes D(σ ,ω) = D(σ,ω)
and equals Eq. (27). Noting also that ρ̂ = ρ/ρ, changing the
variables as R = kρ and using the fact that R exp (−iσ̄ · R) =
i∇σ̄ exp (−iσ̄ · R), where ∇σ̄ denotes the derivative with
respect to σ̄ , enables us to write

T(σ 1,σ 2,ω) = a0(ω)D(σ,ω)

2πk2

∫∫ ∞

−∞

{[
j0(R) − j1(R)

R

]
U3

− j2(R)

R2
∇σ̄∇T

σ̄ + J2(R)

R2

(∇σ̄ ûT
z + ûz∇T

σ̄

)}

× exp (−iσ̄ · R)d2R, (B3)

where R = |R|. The integrations can readily be performed
by taking the derivatives out of the integral and using circular
cylindrical coordinates. The angular integrations are done with
the help of the formula∫ 2π

0
exp [−iσ̄R cos(β − β ′)]dβ = 2πJ0(σ̄R), (B4)

where β and β ′ are the angles that the vectors R and σ̄ make
with respect to the x axis, and J0(σ̄R) is the Bessel function
of the first kind and order 0. For radial integrations we use the
results ∫ ∞

0
Rj0(R)J0(σ̄R)dR = (1 − σ̄ 2)−1/2, (B5)

∫ ∞

0
j1(R)J0(σ̄R)dR = (1 − σ̄ 2)1/2, (B6)

∫ ∞

0
R−1j2(R)J0(σ̄R)dR = 1

3
(1 − σ̄ 2)3/2, (B7)

∫ ∞

0
R−1J2(R)J0(σ̄R)dR = 1

2
(1 − σ̄ 2). (B8)

These equations are found by expressing the spherical Bessel
functions in terms of the ordinary Bessel functions with the
help of the relation ji(x) = √

π/2xJi+1/2(x), and making use
of Eqs. (A2), (A4) and (A5) of [9]. After the integrations
Eq. (B3) takes on the form

T(σ 1,σ 2,ω) = a0(ω)D(σ,ω)

k2

[
σ̄ 2

(1 − σ̄ 2)1/2
U3

+ 1

3
∇σ̄∇T

σ̄ (1 − σ̄ 2)3/2

+ 1

2

(∇σ̄ ûz + ûz∇T
σ̄

)
(1 − σ̄ 2)

]
. (B9)

The derivations can be done with the help of the identities
∇σ̄ σ̄ = σ̄/σ̄ and ∇σ̄ σ̄ = U2, leading straightforwardly to
Eq. (26).
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[14] T. Setälä, J. Tervo, and A. T. Friberg, Opt. Lett. 31, 2669

(2006).
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