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Mode reconstruction of a light field by multiphoton statistics

Elizabeth A. Goldschmidt,1,2,* Fabrizio Piacentini,3 Ivano Ruo Berchera,3 Sergey V. Polyakov,2 Silke Peters,4 Stefan Kück,4

Giorgio Brida,3 Ivo P. Degiovanni,3 Alan Migdall,1,2 and Marco Genovese3

1Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA
2National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA

3Istituto Nazionale di Ricerca Metrologica INRIM, Strada delle Cacce 91, 10135 Torino, Italy
4Physikalisch-Technische Bundesanstalt Braunschweig, Bundesallee 100, 38116 Braunschweig, Germany

(Received 31 January 2013; published 15 July 2013)

We present a simple method to reconstruct the mode distribution of multimode classical and nonclassical
optical fields using a single measurement of higher-order photon number correlation functions. Knowing the
underlying number and structure of occupied modes of a light field plays a crucial role in minimizing loss and
decoherence of quantum information. Typically, full characterization of the mode structure involves a series
of several separate measurements in spatial, temporal, frequency, and polarization domains. We experimentally
demonstrate reconstruction of up to three modes with excellent agreement and study the robustness of our method
in experimentally realizable regimes.
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I. INTRODUCTION

Characterizing the underlying processes contributing to a
light field has wide ranging applications throughout physics.
For instance, knowledge of the mode structure is vital for
engineering sources of nonclassical light that minimize loss
and decoherence of quantum information due to coupling to
unwanted modes. Such applications include mode-matching
biphoton collection [1], producing factorizable states of photon
pairs [2], minimizing classical background emission from
single-emitter sources [3], and characterizing the number
and degree of squeezing in multimode continuous variable
entangled states [1,4–8].

Photon-number statistics are used to characterize a variety
of optical systems including single-photon sources [9–11],
photon pair sources [12–14], cavity QED [15,16], and lasers
[17,18]. In most cases, these measurements have been lim-
ited to single- and twofold photodetection, or first- and
second-order optical coherence. In terms of understanding the
underlying processes contributing to the light field, this can
provide only limited information, such as a measure of the
purity of the system. Recent developments in photon-number
resolving (PNR) detectors [19–21] allow simpler measurement
of higher-order correlations, and such measurements should
continue to become more routine [22–24]. We show that this
additional information can allow a full characterization of
the various quantum and classical modes present in a light
field. We present and implement experimentally a method to
reconstruct the underlying mode structure of an optical field
using high-order photon-number statistics.

Typically, full characterization of the mode structure in-
volves a series of separate measurements in spatial, temporal,
frequency, and polarization domains, requiring a range of
instrumentation. However, our method can be easily inte-
grated into existing optical systems as it uses only a single
measurement of the photon-number distribution of a field.
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Also, full mode reconstruction allows a more subtle distinction
between classical and nonclassical fields. We show how a
full reconstruction of the underlying mode structure of a
field can provide information about nonclassical components
of a nominally classical field. We consider multimode light
from a single source, such as multimode thermal light from
spontaneous parametric down conversion (SPDC), as well
as from multiple sources, each producing light in one or
more modes, such as attenuated single photons from a single
emitter and coherent light from a laser. We note, however,
that this method is extremely general and can be used for any
combination of sources, though only the total fraction of the
power with underlying Poissonian statistics can be determined.
We perform a proof of principle experiment using PNR
detection and mixed states with contributions from one or more
modes with thermal statistics, up to one mode with attenuated
single-photon statistics, and up to one mode with Poissonian
statistics. We successfully identify the distribution of contribu-
tions from up to three total modes of classical and nonclassical
light. We also theoretically study the robustness and prospects
of our method in experimentally accessible regimes.

II. METHOD

It is straightforward to write down the full photon-number
probability distribution for a given mode structure with
mean photon numbers μi in the modes. For thermal and
Poissonian statistics μ = 〈n〉 is the mean photon number and
for attenuated single-photon statistics μ is the probability
of finding a single photon. The photon-number probability
distribution is uniquely described by a probability generating
function G(s), which is the product of the generating
functions for all the underlying modes where Gthermal(s) =
[1 + μ(1 − s)]−1, Gsingle photon(s) = [1 − μ(1 − s)], and
GPoissonian(s) = e−μ(1−s) [25]. It is convenient to translate
this into a set of relations between the μi and the intensity
autocorrelation functions (at zero time difference), g(k)(0) =
g(k) = 〈:n̂k:〉/〈n̂〉k , where 〈::〉 denotes normal ordering of the
operators. We find that g(k) = G(k)(s = 1)/(μtotal)k , where
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G(k)(s = 1) is the kth derivative of G(s) evaluated at s = 1.
Clearly g(1) is always unity, so the first-order expression
we use is 〈n〉 = μtotal = ∑

μi . We use this set of nonlinear
relations to find the full mode distribution in the form of a set
of μi . It is straightforward to demonstrate that for the mixed
states considered here, N orders of correlation functions are
required to fully determine the mode occupation for light with
contributions from N modes. For μtotal � k, photon-number
resolution up to k photons is required to accurately measure
g(k). Overdetermining the system, by using more than N

correlation functions to reconstruct N modes, can improve
the accuracy of reconstruction. It is important to note that
we must guess what types of modes could be contributing
to the field, though we see below that there is no penalty for
assuming potential modes that are not in fact present.

As an example, we consider a field that is a mixed state
with contributions from one thermal mode, one single-photon
mode, and one Poissonian mode and a fixed μtotal. By varying
the fraction of power contributed by each mode, such a mixed
state can exhibit g(2) between zero (all single photon) and 2 (all
thermal). For any g(2) between these extremes, there is a family
of possible mode distributions. Figure 1(a) shows curves of
constant g(2), g(3), and g(4) as a function of the fraction from
Poissonian and single-photon modes. The bold g(2) curve is
g(2) = 1, which includes the extreme cases of Poissonian light
only and an equal mixture of thermal and single-photon light.
For two particular mode distributions between those extremes
(points 1 and 2) lines of constant g(3) and g(4) are plotted. We
see that although g(2) is identical, the higher-order correlation
functions are not, demonstrating how a three-mode distribution
can be uniquely identified by μtotal plus two orders of the
correlation function.

We plot the correlation function contours that intersect at
two additional points for reference. The inset is the mode
structure at the four points noted on the main plot. g(2) = 1 is
typically thought of as the border between classical (unshaded)
and nonclassical (shaded) fields. However, all configurations
here have some contribution from an explicitly nonclassical
mode (single photons). Only by reconstructing the full mode
structure can we see the nonclassical component of a field with
g(2) > 1 (see point 4).

We noted above that a set of N correlations is required to
uniquely describe a set of N modes; however, including addi-
tional orders of correlations will further distinguish different
sets of modes. We study the expected improvement gained by
using higher-order correlations in terms of the sensitivity of the
photon-number distribution to the mode structure. The partic-
ular figure of merit we consider is a function of the gradients of
the correlation functions,

∑
k(∇ �μg(k)[ �μ]/g(k)[ �μ])2, where �μ is

the set of μi . In Fig. 1(b) we show the ratio of this quantity with
six modes included compared to only three modes. We see a
gain in sensitivity for all mode configurations and the gain is
largest near the fully Poissonian configuration. We note that
this is the configuration where the photon-number statistics
are least sensitive to the mode structure because all orders of
the correlation function are near unity. Higher-order photon-
number resolution, up to ten photons or more, is becoming
possible with new PNR detectors. With such detectors, one
can trade off including additional modes in the reconstruction
for increasing the fidelity of reconstruction.
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FIG. 1. (Color online) Example case of one thermal mode, one
single-photon mode, one Poissonian mode, and fixed μtotal. (a) Lines
of constant g(2) (solid blue), g(3) (dashed purple), and g(4) (dotted
dark blue) plotted against fractions of Poissonian and single-photon
light. Bold line is g(2) = 1 and shaded area represents nominally
nonclassical region (g(2) < 1). Contour line values through point
1: g(2) = 1.0, g(3) = 1.2, g(4) = 2.2; point 2: g(2) = 1.0, g(3) =
1.0, g(4) = 1.0; point 3: g(2) = 0.5, g(3) = 0.3, g(4) = 0.2; point 4:
g(2) = 1.4, g(3) = 2.9, g(4) = 8.0. Inset is the mode structure of the
four points. Bar heights are the mean photon numbers μ in the thermal
mode (left, blue), single-photon mode (middle, red), and Poissonian
mode (right, green). (b) Sensitivity gained by using an overdetermined
set of six correlation functions compared to three. Color represents
the ratio of the gradients for six- to threefold detection at each point
in the space.

III. EXPERIMENT

Figure 2 shows the three light sources and the PNR
detection scheme that we employ for our experimental demon-
stration. We generate pseudothermal light by sending a pulsed
laser through a rotating ground glass disk. The random phase
and amplitude perturbations imparted on the coherent light
by the disk produce an incoherent field that approximates a
thermally distributed field [26,27]. We find our pseudothermal
state has g(2) > 1.9 in all cases, signifying that we are close to
a true thermal state (g(2) = 2). We use attenuated light directly
from the laser for our Poissonian distributed field. And we
obtain single photons from a low-noise single-photon source
based on SPDC in a periodically poled lithium niobate crystal
[28]. In SPDC, photons are always produced in pairs (signal
and idler), so detection of one photon heralds the presence
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FIG. 2. (Color online) Source and detector configurations. SPDC:
spontaneous parametric down conversion. APD: avalanche photodi-
ode.

of the other. Thus the state of the idler field, conditioned on
detection of a signal photon, is close to a single-photon Fock
state, with g(2) < 0.05 in our case [28].

We combine up to three pulsed modes of such light using
beam splitters and insert short-time delays between the fields
to avoid coherent interference between them. We detect the
resulting field with four single-photon avalanche diodes in a
tree configuration, providing photon-number resolution up to
four photons. We perform appropriate postprocessing of the
data according to the positive-operator valued measure of the
detection system to obtain the real photon-number distribution
[29]. We perform a minimization to find the mode distribution
that best fits the measured photon-number statistics.

We use a pulsed source with pulse length much shorter
than the coherence time of the pseudothermal light to ensure
that the detection window is within the temporal width of
the photon bunching [27]. For applications such as SPDC,
pulsed excitation, common for such sources, ensures correct
measurement of the zero-time correlation functions [30]. In
addition, we point out that our method can reconstruct all
modes within the broad spectral range of the detector and can
reconstruct spectral modes with arbitrarily small frequency
difference. Finally, we note that our reconstruction requires
only a single measurement of the photon-number distribution
of the field, unlike most quantum tomography procedures,
which require measurements in multiple configurations to
reconstruct the unknown quantum state [31].

We take data in a variety of regimes. First, we detect fields
containing one, two, and three thermal modes. In all cases we
use the data to reconstruct the detected photon numbers in
three thermal modes. Figure 3 shows examples of these fits for
one, two, and three incident thermal modes. We find excellent
agreement for a range of powers and the reconstruction
correctly identifies the actual number of modes present.

Reconstructing a set of modes with underlying thermal
statistics is useful for applications involving photon pair
sources with such statistics, such as SPDC-based sources. In
particular, there are applications which require performing
a Schmidt decomposition of such a source [2,32,33] or
ensuring the overlap of collected pairwise modes from a highly
multimode source [1]. Our method, if applied to the pairwise
statistics of such a source, would reconstruct the distribution
of pairwise modes without the need to measure the spectral or
spatial distribution of the pairs. The extension of this method to
pairwise statistics is, however, beyond the scope of this paper.

FIG. 3. (Color online) Bar heights are mean photon numbers
μ. Each group of three bars represents a single experiment with
a particular set of mean photon numbers. Dark bars in back are
measured mean photon numbers, �μm, and translucent bars overlaid
are the reconstructed mean photon numbers, �μr. Noted above each
plot is the set of input modes.

We next take data with zero, one, and two thermal modes
plus one Poissonian mode and fit it to two thermal modes plus
one Poissonian mode. We fit data with two thermal modes only
to two thermal modes plus one Poissonian mode. In Fig. 4,
we see excellent agreement for a range of input powers and
correctly identify when only one of type of mode (Poissonian
or thermal) is present.

Many sources of nonclassical light for quantum information
applications, such as SPDC or four-wave mixing, produce
single- or multimode light with thermal statistics. In these
cases it is important to ensure the desired state is not polluted
by laser light, which has Poissonian statistics. Our method

FIG. 4. (Color online) Bar heights are mean photon numbers
μ. Each group of three bars represents a single experiment with
a particular set of mean photon numbers. Dark bars in back are
measured mean photon numbers, �μm, and translucent bars overlaid
are the reconstructed mean photon numbers, �μr. Blue bars are thermal
modes and rightmost, green, crosshatched bar is Poissonian mode.
Noted above each plot is the set of input modes.
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FIG. 5. (Color online) Bar heights are mean photon numbers
μ. Each group of three bars represents a single experiment with
a particular set of mean photon numbers. Dark bars in back are
measured mean photon numbers, �μm, and translucent bars overlaid
are the reconstructed mean photon numbers, �μr. Blue bars are thermal
modes and rightmost, red, crosshatched bar is single-photon mode.
Noted above each plot is the set of input modes.

identifies how much laser pollution is present, even at the
same frequency as the thermal light.

Finally, we take data for the heralded single-photon source
described above. We fit the data to two thermal modes plus
one single-photon mode. We also combine the single-photon
data with data for a single thermal mode and fit it to two
thermal modes plus one single-photon mode. In Fig. 5 we
again find excellent agreement for a range of input powers
and our method identifies how many modes and which type of
mode are present.

In the second case in Fig. 5, the nonclassical source is
heavily polluted with classical thermal light. The mixing
of nonclassical and thermal light is common to heralded
single-photon sources such as those based on SPDC, because
the unheralded statistics are thermal. All the states of mixed
classical and nonclassical light are in the nominally classical
regime (g(2) > 1). However, our method is robust enough to
identify the presence of the nonclassical component, whether
or not there is a strong classical component present.

We define a fidelity of reconstruction as f = [2| �μm ·
�μr|/(| �μm|2 + |�μr|2)]1/2, where �μm and �μr are the sets of
measured and reconstructed mean photon numbers, respec-
tively. For all configurations shown, other than the lowest

power combination of thermal and single-photon light, the
fidelity of reconstruction is greater than 0.99, demonstrating
faithful reconstruction for a broad set of input powers and
mode configurations. Our method clearly recognizes cases
where only one or two modes are present as well as faithfully
reconstructing all modes present. We obtain substantially more
information than is contained in the second-order correlation
function alone, particularly in the cases where we allow the
reconstruction to determine the occupation of modes with
different statistics. With additional detectors, or a true PNR
detector, we should be able to reconstruct more modes, and do
so more faithfully.

IV. CONCLUSION

In conclusion, we propose and implement a method to
reconstruct the underlying mode structure of multimode classi-
cal and nonclassical light fields using detected photon-number
statistics. Such reconstructions are vital for engineering and
understanding sources that produce light suitable for a wide
variety of quantum and classical applications. Our method
uses PNR detection to reconstruct the number and structure of
occupied modes in all degrees of freedom, with a measurement
in a single configuration and without specialized equipment
to make separate measurements in the spatial, spectral,
polarization, temporal, and other domains. We experimentally
demonstrate successful reconstruction of up to three modes
and present numerical simulations suggesting the robustness
of our method in experimentally realizable regimes.
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