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Analytically solvable two-level quantum systems and Landau-Zener interferometry
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A simple algorithm is presented based on a type of partial reverse engineering that generates an unlimited
number of exact analytical solutions to the Schrödinger equation for a general time-dependent two-level
Hamiltonian. I demonstrate this method by deriving exact solutions corresponding to fast control pulses that
contain arbitrarily many tunable parameters. It is shown that the formalism is naturally suited to generating
analytical control protocols that perform precise nonadiabatic rapid passage and Landau-Zener interferometry
near the quantum speed limit. A general, exact formula for Landau-Zener interference patterns is derived.
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I. INTRODUCTION

Although they have pervaded quantum physics since
its inception, very few time-dependent two-level quantum
systems are known to be analytically solvable. Among the
most famous examples of exactly soluble two-level evolution
is the Landau-Majorana-Stückelberg-Zener (LMSZ) problem
[1–5], which remains a very active area of research due to
numerous applications pertaining to quantum phase transitions
[6], quantum control [7–11], and quantum state preparation
[12–14]. The hyperbolic secant pulse of Rosen and Zener [15]
has played an important role in self-induced transparency [16]
and qubit control [17–19], and it has since been found to
belong to a larger family of analytical controls [20–30]. Several
of these examples have proven very beneficial to the fields
of quantum control and computation [17,18,31–34], where
analytical solutions are often central in the design of control
fields that are fast, precise, and robust against noise. However,
the rarity of such solutions has severely limited one’s options
in developing an analytical approach to qubit gate design.

In a recent work [35], a systematic method for deriving
arbitrarily many families of exactly solvable two-state systems
was presented, vastly extending the number of known analyt-
ical solutions. This method allows one to input many of the
basic features of the desired control field and then compute
exactly the corresponding evolution of the system with the
provided formulas. However, a limitation of this work is that
it applies only to systems where the driving is along a single
axis of the Bloch sphere, such as in the case of electrically
driven singlet-triplet qubits [36–39], making it inapplicable to
the majority of driven two-level systems.

In this paper, I address this limitation by presenting a
method to generate arbitrarily many families of solutions
in the most general case where the two-level Hamiltonian
has time dependence along any set of axes of the Bloch
sphere. Of course, one can easily generate exactly solvable
Hamiltonians by first choosing the evolution operator and
then differentiating to obtain the corresponding Hamiltonian,
but it is challenging to arrive at a physically meaningful
Hamiltonian in this way. In contrast, the method presented
here allows one to specify the basic form and many features of
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the Hamiltonian whose evolution one wishes to solve before
proceeding to compute the exact solution for this evolution.
This method has important applications in a vast range of
problems, including the development of quantum controls
for essentially any quantum computing platform and control
protocols for performing LMSZ interferometry and nonadi-
abatic rapid passage (NARP). I illustrate this by deriving
exactly solvable LMSZ driving fields and control pulses that
execute a desired evolution at speeds approaching the quantum
speed limit (QSL) [40–46]. Attaining fast evolution times is
especially crucial in quantum computing where quantum gates
need to be performed on time scales much shorter than the
decoherence time. In the case of periodic driving through a
level anticrossing, I show that the formalism allows one to
easily derive analytical expressions for LMSZ interference
patterns and conditions for coherent destruction of tunneling
[47,48].

II. ANALYTICALLY SOLVABLE HAMILTONIANS

The Hamiltonian we consider has the general form

H = bx(t)σx + by(t)σy + bz(t)σz, (1)

where the bk(t) are real functions and the σk are Pauli
matrices. This Hamiltonian describes any time-dependent
two-level system, with the functions bk(t) interpreted as
either driving fields or time-dependent energy splittings.
Alternatively, we may parametrize the Hamiltonian in terms
of rotating-frame fields α, β, and ϕ, where βeiϕ ≡ bx+iby

and α(t) ≡ 2
∫ t

0 dt ′bz(t ′) − ϕ(t). In the Appendix, it is shown
that one can systematically find analytical solutions for the
evolution operator generated by Hamiltonian (1) with ϕ and
either α or β chosen as desired; although one cannot choose
both α and β at will (were this the case, all two-state problems
could be solved analytically), one still has a large amount of
control over the features of the second, unspecified function.
For concreteness, we suppose that one wishes to fix β(t) at
the outset [the formalism can easily be modified to fix α(t)
instead]. While we cannot then find analytical solutions for
arbitrary α, there exists a different parametrization of the
Hamiltonian in which α is replaced with a new function,
χ (t), such that one can systematically generate an analytical
expression for the evolution operator for arbitrary choices of
β, ϕ, and χ . Parametrizing the laboratory-frame evolution
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operator as

U =
(

u11 −u∗
21

u21 u∗
11

)
, |u11|2 + |u21|2 = 1, (2)

the explicit u11, u21 and driving fields are (see the Appendix)

u11 = cos χeiξ−−iϕ/2, u21 = iη sin χeiξ++iϕ/2, (3)

ξ± =
∫ t

0
dt ′β

√
1 − χ̇2

β2
csc(2χ ) ± 1

2
sin−1

(
χ̇

β

)
± η

π

4
,

bx = β cos ϕ, by = β sin ϕ, (4)

bz = χ̈ − χ̇ β̇/β

2β
√

1 − χ̇2/β2
− β

√
1 − χ̇2/β2 cot(2χ )+ ϕ̇

2
.

The initial conditions u11(0) = 1, u21(0) = 0 imply χ (0) = 0,
and χ̇ (0) = −ηβ(0) ensures that bz(0) is finite, where η =
±1. Equations (3) and (4) embody one of the main results
of this paper, as they constitute a general analytic solution of
the evolution generated by the Hamiltonian of Eq. (1). The
task of finding analytical solutions has been reduced to first
choosing bx , by by picking β and ϕ at will. One then selects
χ to produce a desired bz via Eq. (4), fixing the Hamiltonian.
Once these choices are made, an analytical expression for
the evolution operator follows from Eq. (3). A simple case
is χ = −η

∫ t

0 dt ′β(t ′) and ϕ = 0, where Eq. (4) gives that
by = bz = 0, corresponding to an x rotation for any β. Another
simple example arises when β = χ = 0, for which Eq. (3)
yields a z rotation for any bz.

III. QUANTUM SPEED LIMIT

In Eqs. (3) and (4), it is clear that proper solutions
necessarily satisfy |χ̇ | � |β|. The physical origin of this
constraint lies in the notion of the QSL [40–46], which refers
to the minimum time it takes a quantum state to evolve
to a different state in the Hilbert space due to energy-time
uncertainty. Indeed, |χ̇ | � |β| implies that the fastest possible
evolution from χ (0) = 0 to a desired final value χtarget ≡
χ (T ) > 0 is obtained by choosing χ (t) = ∫ t

0 dt ′|β(t ′)|, with
the shortest time given by substituting t = T in this expression
and solving for T in terms of χtarget and whatever parameters
might appear in β. For constant β = β0 > 0, we immediately
obtain Tmin = χtarget/β0, which is the QSL time TQSL for states
evolving under an arbitrary time-independent Hamiltonian in
the “Heisenberg regime” [43]. We refer to |χ̇ | � |β| as the QSL
constraint. The present work leads to a general definition of
TQSL, χ (TQSL) = χtarget ≡ ∫ TQSL

0 dt ′|β(t ′)|, for arbitrary time-
dependent two-level systems. This definition is consistent with
that used in Ref. [44] for a certain class of time-dependent
Hamiltonians. Note that the QSL evolution χ = ± ∫ t

0 dt ′β(t ′)
coincides with bz = ϕ̇/2, suggesting that the fastest quantum
operations are those which tend to minimize bz − ϕ̇/2, a
tendency that is borne out in the examples given below.

The fact that the QSL appears as a simple condition on
χ makes the formalism of Eqs. (3) and (4) very effective for
designing quantum controls that operate near the QSL. To see
how this works for a general β(t), note that a simple way to
construct a function χ (t) which obeys the QSL constraint is to
first find a function which satisfies the constraint in the case

where β(t) = β0 is a constant. Denoting the latter function
χ0(t) and defining B(t) ≡ ∫ t

0 dt ′β(t ′), if we choose χ (t) =
χ0(B(t)/β0), then |χ̇ | = |βχ ′

0(B/β0)/β0| � |β| automatically
follows. Note that all the single-axis driving examples in
[35], where the notation there is related to the present by
q = cos(2χ ), can be extended to multiaxis solutions using this
trick. Furthermore, if the control field corresponding to χ0

operates near the QSL, this will also tend to be the case for the
one generated by χ . Focusing, then, on the case β(t) = β0, we
can construct controls that operate near the QSL by choosing
a χ (t) which contains parameters that can be tuned to values
where χ = ±β0t . An important feature of solutions generated
from a χ (B) whose time dependence arises only through B is
that the evolution operator is an ordinary function of B and ϕ,
namely,

ξ±(B) =
∫ B

0
dB ′√1 − χ ′2 csc(2χ ) ± 1

2
sin−1(χ ′) ± η

π

4
,

(5)

where χ ′(B) = dχ/dB. This fact greatly facilitates the design
of a desired evolution since one can directly control the values
of u11 and u21 by adjusting B and ϕ.

IV. PULSE EXAMPLES

A. Gaussian-like pulses

To illustrate this method of obtaining multiaxis solu-
tions from single-axis ones, consider the example χ =
− 1

2 cos−1(e−2β2
0 t2

), where β = β0 and η = 1, and the QSL
constraint is satisfied. Using the method described above, we
can extend this to a solution for any β(t),

χ = − 1
2 cos−1

(
e−2B(t)2)

, (6)

which yields the following driving terms:

bx = Ḃ cos ϕ, by = Ḃ sin ϕ,
(7)

bz = 4B2Ḃ√
e4B2 − 4B2 − 1

+ ϕ̇/2.

The evolution for any B and ϕ is given by Eqs. (3) and (5).
An explicit example is B = μerf(νt)/2 and ϕ = 0, yielding a
Gaussian and a quasi-Gaussian pulse for bx and bz,

bx = μνe−ν2τ 2

√
π

, bz = μ3νe−ν2τ 2
erf(ντ )2/

√
π√

eμ2erf(ντ )2 − μ2erf(ντ )2 − 1
, (8)

where τ ≡ t − t0 and the heights, widths, and centers of these
pulses can be controlled by tuning the parameters μ and ν.
These pulses and the evolution they produce are shown in
Fig. 1, where it is clear that these pulses have a simple, smooth
shape.

B. Pulses with arbitrarily many parameters

For a near-QSL pulse example, consider the case

χ = −β0t[1 + (a2t)
2 + (a4t)

4 + · · · + (akt)
k]−1/k, (9)

where β(t) = β0 and the ai are arbitrary constants, k is an even
integer, and ϕ = 0, η = 1. The QSL constraint is satisfied
regardless of how large k is, so that this χ yields an exact
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FIG. 1. (Color online) (a) Driving fields from Eq. (8) and
(b) corresponding evolution operator parameters for t0 = 5 and
μ = 1/4,ν = 3 (solid lines), μ = 3,ν = 1/2 (dashed lines).

solution with arbitrarily many parameters ai . We can make the
corresponding control field a pulse by setting ak = 4β0/π , so
that χ → −π/4 and bz → 0 as t → ∞. The initial value of the
pulse is set by a2: bz(0) = 2a2β0. Examples of these pulses are
shown in Fig. 2(a). The duration of the pulse approaches TQSL

in the limit ai<k → 0, k → ∞, as can be seen by observing that
χ → −β0t in this limit. The substantial amount of tunability
in this solution already makes it very attractive for applications
in quantum computation such as dynamically corrected gates
[32,34,39], where the shape of the pulse is tuned to perform a
specific quantum operation while simultaneously suppressing
errors.

Using the prescription outlined above, we can extend this
solution to the case of nonconstant β:

χ = −B(t){1+ [a2B(t)]2 + [a4B(t)]4 + · · · + [akB(t)]k}−1/k.

(10)

This class of pulses can be used to implement quantum
operations by tuning bz(t) for a given choice of bx(t) and
by(t). We demonstrate this by designing a fast bz pulse that,
together with bx , implements a Hadamard gate, a quantum
operation that is ubiquitous in the field of quantum information
processing and that is equivalent to a π rotation about x̂ + ẑ.
First, choose ak = 4/π , which ensures that |u11|,|u21| →
1/

√
2. Supposing that ϕ = 0, if we let the system evolve for a

time T such that
∫ B(T )

0 dB ′√1 − χ ′2 csc(2χ ) = −5π/4, then
the phases of u11 and u21 will also attain their Hadamard values.
Such a bz pulse is shown in Fig. 2(b) for an oscillatory bx . From
Fig. 2(b), it is evident that bz quickly sets the magnitudes of
u11 and u21, while the remainder of the evolution with bz ≈ 0
allows their phases to accumulate. As before, the duration of
the pulse approaches TQSL as ai<k → 0, k → ∞. This example
illustrates how one can use this formalism to design analytical
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FIG. 2. (Color online) Control field bz generated by the χ from
(a) Eq. (9) with bx = β0, ϕ = 0, k = 6, a2 = 0, and a6 = 4/(πβ0)
and (b) Eq. (10) with bx = β0(1 + sin2(2β0t)/2), ϕ = 0, k = 6,
a2 = a4 = 0, and a6 = 4/π . A Hadamard gate is achieved for a total
evolution duration T = 3.61/β0.
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FIG. 3. (Color online) Diabatic and adiabatic energy levels.

controls near the QSL in the presence of additional driving
fields.

V. LMSZ INTERFEROMETRY

The present formalism is also natural for designing driving
fields that perform controlled LMSZ interferometry and
NARP, phenomena which have many applications in quantum
control [8–11], state preparation [12,13], and qubit readout
[36–38]. (See Refs. [14] and [49–53] and references therein
for previous analytical approaches to the LMSZ problem.)
The LMSZ problem is generally set up as follows. Define
the eigenstates of σz to be |1〉 and |2〉 and set ϕ = 0 so that
β = bx ; when |bz| 
 |bx |, these states are approximate energy
eigenstates. A nonzero bx produces an anticrossing with an
energy gap of 2bx (see Fig. 3) which may be time dependent.
Now suppose that we drive bz through the anticrossing, starting
from some large negative value at t = 0 up to a large positive
value at t = T . Assuming that the system is initially prepared
in state |1〉 at time t = 0, the probability P2(T ) for the system
to be in state |2〉 at time t = T is

P2(T ) = |u21(T )|2 = sin2[χ (T )]. (11)

The fact that this depends only on χ (T ) demonstrates the
suitability of the present formalism for the LMSZ problem.
If we choose χ such that χ (0) = 0 and χ (T ) = 0, then we
achieve a perfect LMSZ transition: the system is driven through
the anticrossing and returns to state |1〉 with probability 1.
On the other hand, we may choose χ (T ) = π/2, in which case
the system undergoes NARP and ends up in state |2〉 after
being driven through the anticrossing. Other values of χ (T )
lead to superpositions of |1〉 and |2〉. We may also consider
LMSZ interferometry, where the system is driven through
the anticrossing periodically, and the resulting time-averaged
probabilities of being in state |1〉 or |2〉 after many periods
is again largely determined by χ (T ), as we will see. In
choosing a χ (t) for the LMSZ problem, we must impose
appropriate initial conditions. For simplicity, we focus on the
case bz(0) = −∞, bz(T ) = ∞, for which we need χ̈(0) < 0,
χ̈ (T ) > 0; the analysis can be extended straightforwardly to
the case where bz is finite at t = 0,T .

For constant bx , a simple example which satisfies these
boundary conditions and the QSL constraint is

χ = bxt − abxT

2
t2 + abx

3
t3, (12)
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FIG. 4. (Color online) (a) Control field and (b) NARP probability
from Eqs. (12), (11), and (4) with χ (T ) = π/2 and bxT = π/2, 1.6,
1.7, 1.8, 1.9, and 2 and (c, d) χ (T ) = π/4 and bxT = π/4, 0.8, 0.9,
1, 1.1, and 1.2.

where choosing 0 � a � 16/(3T 2) ensures that the bz from
Eq. (3) is finite in the interval t ∈ (0,T ), and η = −1. This
χ saturates the QSL constraint when a = 0, implying that bz

will implement near-QSL evolution for small a. To achieve
a target χ (T ), set t = T in Eq. (12) and solve for a: a(T ) =
6[bxT − χ (T )]/(bxT

3). Plugging this into Eqs. (12) and (4)
yields a family of driving fields bz parametrized by T that
achieve the desired evolution for any χ (T ) ∈ (0,π/2]; some
of these are shown in Fig. 4 along with the corresponding
NARP probabilities. The restrictions on a(T ) impose bounds
on T : χ (T ) � bxT � 9χ (T ). The upper bound is particular
to Eq. (12), while the lower bound is the familiar, universal
QSL and gives rise to the step-like curves in Figs. 4(a)
and 4(c). These curves reveal that the desired LMSZ transition
is achieved as quickly as possible by first driving bz to 0 very
rapidly, allowing the system to evolve for a time T � TQSL and
then driving bz quickly up to its final value (see also Ref. [46]).
In addition to NARP, these near-QSL driving fields could
be important for LMSZ-based generation of entanglement in
superconducting qubits [10], where fidelities are often limited
by short relaxation times.

In the context of LMSZ interferometry, the formalism of
Eqs. (3) and (4) yields an exact formula for LMSZ interference
patterns. To show this, we begin by constructing a periodic
driving field bz of period 2T , where χ (t) determines the first
half of one period and χ2(t) = χ (2T − t) the second half,
corresponding to bz retracing its path. Using Eq. (3), we find
the evolution after one full period:

u11(2T ) = e2iξ0(T ) cos (2χ (T )),
(13)

u21(2T ) = −i sin (2χ (T )),

where ξ0 ≡ (ξ++ξ−)/2 and we have assumed that χ̇ (T ) =
−ηβ(T ) for simplicity. From this expression, it is straightfor-
ward to compute the time-averaged probability of being in the
excited state |2〉 after many periods:

P̄2 = [2 + 2 cot2 (2χ (T )) sin2 (2ξ0(T ))]−1. (14)

Thus, we see that the present formalism readily produces
a general, exact, analytic formula for P̄2, whereas analytic
expressions for this important quantity typically require
several approximations [5]. This function takes values in the
range [0,1/2], where P̄2 = 1/2 for χ (T ) = π/4, while P̄2 = 0

2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

bxT

P 2

FIG. 5. (Color online) Time-averaged excited-state probability
P̄2 from Eq. (14) with a periodic driving field generated by Eq. (12)
with χ (T ) = π/2.1 and half-period T . The nonmonotonicity in the
fringe spacing reflects the nonmonotonicity of Eq. (12) at larger values
of T .

for χ (T ) = π/2. This is to be expected since χ (T ) = π/4
corresponds to a 50:50 “beam splitter,” while χ (T ) = π/2
ensures that the system remains in the ground state after every
sweep through the anticrossing. In the context of charge qubits
where states |1〉 and |2〉 correspond to an electron being in
either the left or the right dot of a tunnel-coupled double
quantum dot, the case P̄2 = 0 can be interpreted as coherent
destruction of tunneling [47,48] since the electron becomes
localized in one dot. For more generic values of χ (T ), P̄2 is
modulated by the phase ξ0(T ), which can produce interference
fringes as control parameters are adjusted, as shown in Fig. 5
for the example from Eq. (12) with χ (T ) = π/2.1. As T is
varied, an interference pattern emerges in which the peaks
of the pattern sharpen and eventually disappear as χ (T )
approaches π/2. Interestingly, Fig. 5 reveals a peak at the
QSL time T = TQSL = π/(2.1bx); this is generally the case
since at the QSL, |χ̇ | = |β|, so that ξ0(TQSL) = 0. This leads
to the surprising conclusion that if we choose χ (T ) = π/2 in
order to trap the system in state |2〉, then driving very close to
the QSL may not be ideal since small deviations away from
χ (T ) = π/2 will produce the peak at T = TQSL and, hence,
large uncertainty in the state of the system.

VI. CONCLUSIONS

In conclusion, a general formalism for deriving exactly
solvable time-dependent two-level quantum systems has been
presented. This formalism can vastly increase the number of
known exact solutions for physical Hamiltonians, as has been
demonstrated with explicit examples. These examples show
that this theory can be a powerful tool in the design of control
pulses both for quantum computation and for precise LMSZ
interferometry near the QSL.
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APPENDIX

In this Appendix, we derive Eqs. (3) and (4) in the text.
The general form of the Hamiltonian and its corresponding
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evolution operator are given in Eqs. (1) and (2). The evolution
operator obeys a Schrödinger equation whose form can be
made compact by transforming to a rotating frame: v11 =
ei

∫ t

0 dt ′bz(t ′)u11, v21 = e−i
∫ t

0 dt ′bz(t ′)u21. Defining βeiϕ ≡ bx +
iby and α(t) ≡ 2

∫ t

0 dt ′bz(t ′) − ϕ(t), we have

v̇11 = −iβeiαv21, v̇21 = −iβe−iαv11. (A1)

Here, it is manifest that the evolution operator in the rotating
frame depends on only two real functions, α and β. We must
further specify bz to return to the laboratory frame, but this
choice can be made after the evolution operator is computed
in the rotating frame. In what follows, I show that one can sys-
tematically find analytical solutions with either α or β chosen
as desired; although one cannot choose both α and β at will (if
this were the case, all two-state problems would be analytically
solvable), we will see that one still has a large amount of control
over the features of the second, unspecified function.

For concreteness, we suppose that β(t) is chosen at the
outset [the formalism can easily be modified to fix α(t)
instead]. While we cannot then find analytical solutions for
arbitrary α, there exists a different parametrization of the
Hamiltonian in which α is replaced with a new function,
κI (t), such that one can systematically generate an analytical
expression for the evolution operator for arbitrary choices of
β and κI . To see this, first express the rotating-frame evolution
operator in terms of some complex κ(t):

v11 = e−i
∫ t

0 dt ′β(t ′)eκ(t ′ )
, v21 = −iηe−i

∫ t

0 dt ′β(t ′)e−κ(t ′ )
, (A2)

with η = ±1. This choice of parametrization is motivated by
observing that we can combine the two equations in (A1)
to obtain β2 = −(v̇11/v11)(v̇21/v21), which generally implies
v̇11/v11 = −iβeκ , v̇21/v21 = −iβe−κ for some complex κ . The
fact that this is true in general can be seen by noting that for
β �= 0, any complex function can be expressed as −iβeκ

for some complex function κ , so that we may therefore
express v̇11/v11 in this way. β2 = −(v̇11/v11)(v̇21/v21) then
implies v̇21/v21 = −iβe−κ . This argument does not hold when
β = 0, however, in this case we find v̇11 = 0 = v̇21, which is
consistent with Eq. (A1). This analysis is thus completely
general and applies to any solution of the Schrödinger
equation. Consistency between Eq. (A2) and Eq. (A1) requires

α(t) = −iκ(t) + η
π

2
− 2

∫ t

0
dt ′β(t ′) sinh κ(t ′), (A3)

which should be interpreted as follows. For any choice of a
complex κ(t) and real β(t) such that the α(t) computed from
Eq. (A3) is real, the evolution operator obtained from Eq. (A2)
is the exact solution for this α and β. Writing κ = κR + iκI

and imposing Im(α) = 0 determines κR in terms of κI : κR =
−2 tanh−1 tan(χ + π/4), with

χ (t) ≡
∫ t

0
dt ′β(t ′) sin (κI (t ′)). (A4)

This leads to an expression for α that is real for any κI :

α = κI + η
π

2
− 2

∫ t

0
dt ′β(t ′) cos κI (t ′) cot[2χ (t ′)]. (A5)

While this parametrization has the nice feature that κI can
be chosen freely, one drawback is that one must then perform
the integration in Eq. (A4), making it harder to relate the
features of κI to the driving field α̇. We can avoid this by
specifying χ directly, but at the expense of now having to
choose functions χ (t) that obey the QSL constraint, |χ̇ | � |β|,
which arises directly from Eq. (A4). Solving Eq. (A4) for κI in
terms of χ , it is straightforward to turn the above expressions
for the evolution operator into expressions which depend on
χ rather than κI . The resulting laboratory-frame evolution
operator and driving fields are given in Eqs. (3) and (4).
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