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We present an improved phase estimation scheme employing entangled SU(1,1) coherent states in comparison
to NOON and entangled coherent states under perfect and lossy conditions for a fixed mean photon number. The
study is also devoted to the phase enhancement of the quantum states resulting from a generalized nonlinearity of
the phase shifts, both without and with losses. Furthermore, we show that these states give the smallest variance
in the phase parameter for a large number of photons in a different order of nonlinearity. Finally, the phase
sensitivity of this interferometric setting with parity detection is discussed.
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I. INTRODUCTION

Quantum optical metrology deals with the estimation of
an unknown phase by exploiting the quantum nature of the
input state under consideration [1–4]. The ultimate goal of
quantum metrology is to achieve strong sensitivity of certain
quantum states to small variations of external parameters,
which opens up great opportunities to increase the resolution of
interferometric measurements [5,6]. Experimental, quantum-
enhanced metrology promises many technological advances,
since an optimally designed quantum measurement procedure
outperforms any classical method [7]. In the usual classical
setting, for a given number of input photons, N , the best pre-
cision that can be obtained using these states of light scales as
1/

√
N , which is usually referred to as standard quantum limit

or shot-noise limit [8]. By exploiting the quantum signature of
highly nonclassical entangled states, it has been shown that
the uncertainty can be improved to a scaling 1/N known
as the Heisenberg limit [5,9]; an enhancement of a factor
of 1/

√
N depends on the nature of the input states and the

detection strategy of the output measurement. These bounds
are obtained by an application of the Cramer-Rao inequality
(CRB) in terms of the quantum Fisher information (QFI) for
a number of repeated independent trials [5,10]. Unfortunately,
maximally entangled states of light which potentially lead to
Heisenberg limited sensitivity are very sensitive to photon-loss
noise, which is considered the most destructive noise in
quantum-enhanced optical interferometry, where the benefit
from highly entangled states deteriorates quickly even if only a
small amount of noise is detected by the system [11]. Recently,
quantum metrology has included very modest entangled re-
sources using so-called BAT state, is formed by passing a dual
Fock state, |ψ〉 = |N〉|N〉 through a 50:50 beam splitter and
other states that have potentially better performance against
loss compared to NOON states, possessing the same mean
particle number, for the realistic scenarios of loss with current
technology [12–14]. Recently, several development schemes
have shown the potential advantages of nonlinearities [15–18]
and the significance of the query complexity for quantum
metrology [17], deducing that the same phase operation
is essential for the appropriate resource count in different
quantum states. These theoretical studies have explained
the role of nonlinearity to improve the Heisenberg limit in

linear systems and presently leading to the super-Heisenberg
limit [19]. The nonlinear phase operations can be achieved
experimentally in several ways [20,21]. More recently, it
was shown that entangled coherent states (ECSs) can allow
the Heisenberg limit and can beat NOON states for small
values of photon number with both linear and nonlinear
optical elements [18,22,23]. These works left many questions
unanswered. Are there any input states that improve the phase
enhancement to NOON and ECSs for different orders of the
nonlinearity and the asymptotic scaling behavior with larger
photon number of the phase sensitivity? In this paper we
answer these questions for two-mode optical interferometry,
both without and with losses. We use a particular sort of
entangled states, called entangled SU(1,1) coherent states
(CSs), for phase estimation as shown in Fig. 1. Entangled
SU(1,1) CSs are an equal superposition of an SU(1,1) CS in
mode a with vacuum in mode b, and vacuum in mode a with a
SU(1,1) CS in mode b. Lie algebras of the SU(1,1) groups are
widely used related to the squeezing properties of the radiation
field which is still a central topic in quantum optics. On the
one hand, various experiments have been performed in which
squeezed light can be generated. In particular, Wódkiewicz
and Eberly [24] discussed the role of SU(1,1) CSs associated
with Lie algebra of the group SU(1,1) in connection with
variance reduction (squeezing), and the coherence-preserving
Hamiltonians associated with SU(1,1) CSs were studied by
Gerry [25]. This kind of SU(1,1) CSs is a special case of two-
photon coherent states discussed by Yuen [26]. This fact was
used by Gerry [25], who applied the SU(1,1) formulation of the
two-photon coherent states to the problem of the interaction of
squeezed light with a nonlinear-absorbing medium modeled
as an anharmonic oscillator. Recently, a practical way for
three-boson realization of SU(1,1) and characterizing all
squeezed states of this type as SU(1,1) CSs was developed [27].
Such states can be generated by certain multimode linear
quantum optical networks comprising one two-mode squeezer
and several passive optical elements. Another family of the
SU(1,1) CSs can be implemented and naturally emerged from
the quantum motion in various potentials such as infinite-well
and trigonometric Pöschl-Teller potentials. Indeed, the Pöschl-
Teller potentials share with their infinite-well limit the nice
property of being analytically integrable. The reason behind
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this can be understood within a group-theoretical context:
These potentials possess an underlying dynamical algebra,
namely SU(1,1) and the discrete series representation of the
latter [28]. On the other hand, the general form for the entan-
gled SU(1,1) CSs incorporates entangled harmonic oscillator
coherent states in the formalism. Entangled SU(1,1) CSs might
be created in Fock space using an ideal Kerr nonlinearity by
an appropriate arrangement of three nonlinear media elements
or by a Hamiltonian evolution which is a generalization of K2

z

nonlinear evolution from a multipartite system including the
SU(1,1) Schrödinger cat–like states [29–31]. Such evolutions
are extremely sensitive to environmentally induced decoher-
ence. Other methods for generating entangled coherent states
could be considered, but the nonlinear evolution considered
illustrated one of the possible approaches to producing these
entangled states [29,30]. We were surprised to find that these
states lead to a lower precision than the NOON and ECSs [22]
for the interesting region of metrology with a large number of
photons for different orders of the nonlinearity under perfect
and lossy conditions. In the lossy regime, both arms of the
interferometer are subject to photon losses which can be
modeled by fictitious beam splitters (BSs) inserted at arbitrary
locations in both channels. Furthermore, we discuss the phase
sensitivity saturation of the SU(1,1) interferometric setting
with a realistic measurement approach on one mode of the
output state.

The present paper is organized as follows. In Sec. II, we
present the phase sensitivity of the two-mode state in the
context of SU(1,1) Lie algebra using QFI for generalized phase
shifters under perfect conditions. Furthermore, we discuss
the phase sensitivity of this interferometric setting with purity
detection. In Sec. III, we investigate the effect of photon losses
on the phase enhancement behavior. Finally, we summarize our
work in Sec. IV.

II. OPTIMAL PHASE ESTIMATION USING SU(1,1) CSs

The phase optimization is related to QFI by the CRB for
the output states as

δφ � 1√
FQ

, (1)

where FQ is the QFI [32].
We focus on input states as the entangled SU(1,1) CSs in

the context of the optical fields using the Holstein-Primakoff
realization (HPR). The SU(1,1) CSs are given in terms of a set
of single-mode Bose annihilation and creation operators that
are associated with the HPR form of the SU(1,1) Lie algebra.
This HPR is given by the operators

K̂+ = â†(2k + â†â)1/2, K̂− = (2k + â†â)1/2â,
(2)

K̂z = â†â + k,

satisfying the commutation relations

[K̂+,K̂−] = −2K̂z, [K̂±,K̂z] = ∓K̂±, (3)

where it is further assumed that â and â† satisfy the Bose
algebra [â,â†] = 1. The parameter k is the so-called Bargmann
index related to the eigenvalue of the SU(1,1) Casimir operator
K̂2

z − (K̂+K̂− + K̂−K̂+)/2 given by k(k − 1). For the relevant

representations, the positive discrete series, the Bargman
index takes on the values k = 1

2 ,1, 3
2 , . . . . The corresponding

bases {|k,n〉} satisfy the eigenvalue problem K̂z|k,n〉 = (n +
k)|k,n〉. By comparing with Eq. (2) it is clear that, for the
HPR, the states |k,n〉 are related to the Bose number states |n〉
according to |k,n〉 ∼ |n〉. That is, the bases are independent of
the value of the Bargmann index and so are identical for all k,
being simply the entire infinite-dimensional Hilbert space of
the number states |n〉 for n = 0,1,2, . . . .

Now, we aim to find the input state that allows performing
phase estimation with the best precision possible, i.e., yielding
the highest value of the QFI. In particular, we consider the pure
two-mode input state, superposition of macroscopic SU(1,1)
CSs which can be understood as a superposition of NOON
states, given by

∣∣� int
E

〉
ab

= Nξ,k[|ξ,k〉a|0〉b + |0〉a|ξ,k〉b], (4)

where the normalization factor Nξ,k is dependent on the
construction of coherent states associated to SU(1,1) Lie
algebra.

Since the group SU(1,1) is noncompact and its unitary
representations must be dimensionally infinite, then there are
two principal kinds of coherent states to be considered within
the positive discrete series. The first kind is generated from
an extremal state by an element of the respective groups
via a displacement operator which generates the Perelomov
coherent states (PCSs) from the vacuum [33]

|ξP ,k〉i = exp(μK̂+ − μK̂−)|k,0〉i

= 1√
1F0(2k; |ξP |2)

∞∑
n=0

[
(2k)n
n!

] 1
2

ξn
P |n〉i , (5)

where μ = (ϑ/2) exp(−iϕ), ξP = e−iϕ tanh(ϑ/2), and where
(2k)n is a Pochammer symbol: (2k)n = 	(n + 2k)/	(2k). The
angle ϕ is azimuthal with 0 � ϕ � 2π but ϑ is a hyperbolic
angle with 0 � ϑ < ∞. The function 1F0(2k; |ξP |2) is a
hypergeometric function. The parameter ξP is restricted to
within the unit circle in the complex plane; 0 � |ξP | < 1. The
average photon number of the PCS is

〈n̂〉P = k|ξp|2
1 − |ξp|2 = k(cosh ϑ − 1). (6)

The SU(1,1) CSs as defined by Perelomov were previously
discussed in connection with squeezed states of a single-mode
field. The realization of the SU(1,1) Lie algebra required
for these states involves bilinear and quadratic products of
the annihilation and creation operators of the single mode.
Such states may be produced out of vacuum by a degenerate
parametric amplifier whose Hamiltonian is linear to SU(1,1)
generators. But there is another, equivalent, form of SU(1,1)
CSs that we consider, namely, the Barut-Girardello coherent
states (BGCSs) [34], given as a right eigenstate of the SU(1,1)
lowering operator. Using the HPR of the operator K̂− as given
by Eq. (2), the corresponding BGCS is

K̂−|ξB,k〉i = ξb|ξB,k〉i (7)
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FIG. 1. (Color online) Interferometric phase estimation scheme
for the entangled SU(1,1) CSs. Channel b acquires a phase φ relative
to channel a. After applying a phase shift Û (φ,α) in mode b, the
parity measurement is performed.

and is given in normalized form as

|ξB,k〉i = 1√
0F1(2k; |ξB |2)

∞∑
n=0

[
1

(2k)nn!

] 1
2

ξn
B |n〉i . (8)

The average photon number of the state is

〈n̂〉B = I2k(2|ξB |)|ξB |
I2k−1(2|ξB |) , (9)

where Il is the modified Bessel function of order l.
Let us now consider an interferometer with two arms a and

b, as shown in Fig. 1. An initial |� int
E 〉ab is prepared in modes a

and b and acquires a phase φ in channel b relative to channel a

by a generalized nonlinear phase-shifter operation, Û (φ,α) =
exp iφ(b̂†b̂)α , where b̂ is the annihilation operator in mode b.
Nonlinear transformations with “nonlinear phase shifts” can
be used in precision interferometric measurements and are
very easily implemented in practice since they correspond
to propagation in media with nonlinear optical properties.
Several experiments have demonstrated that nonlinear phase
operations can be realized in various setups. For example,
self-Kerr phase modulation (k = 2) has been measured as
a function of electric field amplitudes in waters, fibers,
nitrobenzene, Rydberg states, etc. [35]. Notably, the phase
shift dependent on the applied field clearly follows theoretical
predictions in the case of a Rydberg electromagnetically
induced transparency medium [20]. A well-known example
of a nonlinear phase operation is given by the Kerr interaction
for k = 2 [36]. The predicted advantage applies generally to
quantum interferometry and proposed mechanisms to produce
metrologically relevant phase shifts from a nonlinear Kerr-like
interaction. Thus, a new frontier arises if we consider that the
signal can be imprinted in the probe via nonlinear processes.
The key point is that nonlinear schemes allow us to improve the
scaling and reach larger resolutions than the linear ones. This
leads to new quantum limits, new experiments, and eventually
new devices.

When the operator Û (φ,α) is applied to mode b of the input
state, it leads to the following output state:∣∣�out

E

〉
ab

= (1 ⊗ Û (φ,α))
∣∣� int

E

〉
ab

= Nξ,k[|ξ,k〉a|0〉b + |0〉a|ξeinα−1φ,k〉b]. (10)

The exponent α shows the order of the nonlinearity: α = 1
corresponds to a linear phase shift on the input state, α = 2
represents a Kerr phase shift, and α 	= 2 exhibits a more general
nonlinear effect on phase operation.

The QFI for the pure state |�out
E 〉ab is given by

Fα
K = 4

[〈�|�〉ab − ∣∣〈�∣∣�out
E

〉
ab

∣∣2]
, (11)

where |�〉ab = ∂|�out
E 〉ab/∂φ. The subscript K = P,B,N,C,

corresponding to entangled PCS (EPCS), entangled BGCS
(EBGCS), NOON, and ECS, respectively.

Let us first consider the situation with no loss of photons,
in which the QFI of the pure states with a nonlinear phase shift
of order α is analytically achieved. For the NOON state, we
find that Fα

N = 1/N2α with δφα
N � 1/Nα , and for EPCS and

EBGCS,

Fα
P = fξP ,k

⎡
⎣ ∞∑

n=0

n2α	(n + 2k)|ξP |2n

n!	(2k)

− fξ,k

( ∞∑
n=0

nα	(n + 2k)|ξP |2n

n!	(2k)

)2
⎤
⎦ (12)

and

Fα
B = gξB,k

⎡
⎣ ∞∑

n=0

n2α|ξB |2n

n!(n + 2k − 1)!

− gξB,k

( ∞∑
n=0

nα|ξB |2n

n!(n + 2k − 1)!

)2
⎤
⎦ , (13)

respectively, and

δφα
P,B � 1√

Fα
P,B

, (14)

where fξP ,k = 4(1 − |ξP |)2kN 2
ξP ,k , and gξB,k = 4N 2

ξB ,k

|ξB |2k−1/I2k−1(|ξB |).
In order to compare the phase uncertainty for the EPCS

and EBGCS with NOON and ECS, we take into account the
equivalent resource case for the states [37]. We consider the
same average photon number for the mode a given by

nK = N

2
= (

NξP ,k

)2〈n̂〉P = (
NξB ,k

)2〈n̂〉B, (15)

where the normalization factors NξP ,k and NξB ,k are obtained
from Eq. (10).

In Fig. 2, the phase sensitivity for EPCS and EBGCS
can be compared with respect to N for the NOON state for
different orders of the nonlinearity. The dash-dotted black line
is for the NOON state, the dotted green line is for ECS,
the dashed red (k = 1) and solid red (k = 15) lines are for
EPCS, and the long-dashed blue (k = 1) and long dash-dotted
blue (k = 2) lines are for EBGCS. We can see the values
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FIG. 2. (Color online) The lower bound on the phase uncertainty
for EPCS, EBGCS, NOON, and ECS is plotted as a function of photon
number for different orders of the nonlinearity, (a) α = 1, (b) α = 2,
and (c) α = 3. The dashed red (k = 1) and solid red (k = 15) lines
are for EPCS; the long dashed blue (k = 1) and long dash-dotted
blue (k = 2) lines are for EBGCS; the dash-dotted black line is for
the NOON state; and the dotted green line is for ECS [22]. The values
of optimal phase estimation are given for the different kinds of the
states satisfying the inequality δφα

P < δφα
C � δφα

B � δφα
N for any N

and α for small values of the Bargmann index k. (d) α = 1, showing
the optimal phase estimation of the states after performing the parity
measurement.

of optimal phase estimation for the different kinds of the
states satisfying the inequality δφα

P < δφα
C � δφα

B � δφα
N for

any N and α. In this context, the phase variation decreases
with increasing nonlinear phase order, which illustrates that
the entangled SU(1,1) CSs outperform the phase enhancement
achieved by NOON and ECSs. For large N , δφα

B ≈ δφα
C ≈ δφα

N

and the EGBCS becomes approximately equivalent to the
NOON state, being dominated by the NOON amplitude at
N = 〈n̂〉B , whereas for small values of N the optimal phase
for EBGCS is shown to be less than that for NOON. On the
other hand, the phase estimation δφα

P for EPCS is still smaller
than other optimal phases, even for large values of photon
number N , due to its superposition property of the input
states, where the state |� int

E 〉12 contains an infinite number
of NOON states including N values exceeding 〈n̂〉P . Then, the
superposition property provides an advantage for the EPCS at
smaller Bargmann index values with large ranges of nP . In both
cases of SU(1,1) CSs, the decreasing Bargmann index k gives
the system better sensitivity to different orders of nonlinearity.
For a more detailed example, consider α = 2 and take N = 4
for the NOON state with nN = 2, nC ≈ 1.964 for the ECS [22],
〈n̂〉B = 4 with nB ≈ 1.994 for the EGBCS, and 〈n̂〉P = 4 with
nP ≈ 1.923 (which gives a slightly lower resource count) for
the EPCS in the smaller Bargmann index limit; the values
of the optimal phase estimation are equal to δφ2

N ≈ 0.060,
δφ2

C ≈ 0.030, δφ2
B ≈ 0.038, and δφ2

P ≈ 0.004. For larger
photon number N = 20, we find that δφ2

N ≈ 0.00250, δφ2
C ≈

0.00201, δφ2
B ≈ 0.00222, and δφ2

P ≈ 0.00016. This indicates
that, even with a slight resource disadvantage δφ2

P < δφ2
C <

δφ2
B < δφ2

N , there is still a phase estimation advantage for

larger photon numbers. These results may provide a new
perspective on quantum metrology by possibly replacing the
previously acclaimed performance limit.

We now discuss the parity measurement that detects
whether the number of photons in a given output mode is
even or odd. The measurement is applied in mode b and
the uncertainty in the estimation of the phase shift, �φ,
upon measurement of the parity operator �̂b = (−1)n̂ is given
by [38]

(�φ)2 = (��b)2

(|∂〈�̂b〉/∂φ|)2
, (16)

where (��b)2 = 〈�̂2
b〉 − 〈�̂b〉2 = 1 − 〈�̂b〉2 since �̂2

b = 1.
For the input state (4), the expectation value of the parity
operator is

〈�̂b〉P = 2 + (1 − |ξP |2eiφ)−2k + (1 − |ξP |2e−iφ)−2k

2 + 2(1 − |ξP |2)−2k
, (17)

〈�̂b〉B = 2 + (γ )−βIβ(2γ ) + (δ)−βIβ(2δ)

2 + 2(
√

γ δ)−βIβ(2
√

γ δ)
, (18)

where β = 2k − 1, γ = ei
φ

2 |ξB |, and δ = e−i
φ

2 |ξB |. As shown
in Fig. 2(d), we clearly see that the parity measurement on the
EPCS and EGBCS does not saturate the optimal phase uncer-
tainty given by the Quantum CRB for these states, but it is still
better than the Heisenberg limit given by NOON and ECSs.

III. LOSSY REGIME CASE

Next, we determine a lower bound for the uncertainty of
the parameter estimation employing entangled SU(1,1) CSs in
the realistic scenario of the photon loss. To this end, we apply
two BS transformations characterized by the transmission rate
T , considering the scenario of equal losses in both arms of
the interferometer, i.e., T1 = T2 = T , with loss modes c and d

located after the phase operation.
When the output state is a mixed state ρout

E , the QFI is given
by

Fα
K =

∑
i,j

2

λi + λj

∣∣〈λi |∂ρout
E /∂φ|λj 〉

∣∣2
, (19)

where λi and |λi〉 are the eigenvalues and eigenvectors of ρout
E ,

respectively.
After applying the BS transformations, the output state is

written by |�〉 ≡ ÛBSac
ÛBSbd

|�out
E 〉|0〉c|0〉d . Here, the trans-

mission rate parameter in the BSs characterizes the robustness
of the phase estimation for the input state against the photon
loss. Tracing over modes c and d, the mixed state can be written
in four components

ρout
E = (NNξ,k)2

4∑
i

ρi, (20)

where

ρ1 =
∞∑

p,p′,m=0

√
ηm+p,kηm+p′,k

ξpξp′
T

p

2 T
p′
2√

p!p′!
|ξ |2m(1 − T )m

m!

× (|p0〉〈p′0|),
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FIG. 3. (Color online) The graphs show the phase-estimation
precision δφmin for losses in both arms of the interferometer versus
transmissivity T for four states (〈n〉K = 4) with different orders of
nonlinearity, α = 1 and α = 2. The dash-dotted black and dotted
green lines indicate the NOON state and ECSs, respectively. The long
dashed blue line for the EBGCS and the dashed red line for the EPCS
show the starting points of δφ1

P = 0.084 and δφ2
P ≈ 0.004 at T = 1.

ρ2 =
∞∑

p=0

∞∑
p′=0

eipαφ√
ηp,kηp′,k

ξpξp′
T

p

2 T
p′
2√

p!p′!
(|0p〉〈p′0|),

ρ3 =
∞∑

p=0

∞∑
p′=0

e−i(p′)αφ√
ηp,kηp′,k

ξpξp′
T

p

2 T
p′
2√

p!p′!
(|p0〉〈0p′|),

ρ4 =
∞∑

p,p′,m=0

√
ηm+p,kηm+p′,k

e−i(pα−(p′)α )φ

ξpξp′
T

p

2 T
p′
2 (|ξ |2(1 − T ))m

m!
√

p!p′!

× (|0p〉〈0p′|), (21)

where the factor ηn,k depends on the kind of the SU(1,1)
CSs; ηn,k equals (2k)n and 1/(2k)n for EPCS and EBGCS,
respectively. N is the normalization factor given by the
hypergeometric function.

Using the eigenvalues and eigenvectors of the truncated
density matrix ρout

E , we obtain numerically the optimal phase
estimation of ρout

E for symmetric loss cases in a nonlinear phase
operation, which is illustrated in Fig. 3. The results show that
entangled SU(1,1) CSs clearly improve and still outperform
the phase enhancement achieved by NOON and ECSs under
conditions of loss, for essentially the whole range of the
transmission rate. This effect wins out over the fact that the

photon losses in both modes do not destroy the superposition
effects and the coherent states maintain their nonclassical
properties, which could be of significant utility under loss
conditions. Due to the concavity of Fisher information, the
engineering of optimal input states for different lossy rates has
been investigated (so-called optimal states) [11], so entangled
SU(1,1) CSs also offer an advantage over these states even for
large photon number.

IV. CONCLUSIONS

We evaluated analytically and numerically the phase sen-
sitivity of the two-mode state in the context of SU(1,1) Lie
algebra using QFI and showed that the state can outperform the
Heisenberg limit given by NOON states and ECSs possessing
the same average particle number under perfect and lossy
conditions. We used a general form of the nonlinearity in
terms of the power of the number operator, by combining
linear and nonlinear interferometers, and showed that entan-
gled SU(1,1) CSs still outperform the phase enhancement
achieved by NOON states and ECSs for different regions
of loss and nonlinearity order even for a large number of
photons. Although a final parity measurement would not
saturate our derived phase uncertainty bound, such a realistic
measurement approach could still demonstrate an advantage
over NOON states and ECSs with current technology. These
results show that the two-mode field has a potential for
supersensitive phase estimation with phase sensitivity better
than the Heisenberg limit and ECSs. Finally, we encourage the
experimental scientists to perform this task, which may open
new perspectives on quantum metrology for future research
avenues.
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