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Reconstruction of the surface-height autocorrelation function of a randomly rough dielectric
surface from incoherent light scattering
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An analytic approach is developed for obtaining the normalized surface height autocorrelation function of
a one-dimensional randomly rough dielectric surface from experimental scattering data. It is based on the
contribution to the mean differential reflection coefficient, obtained in the Kirchhoff approximation, from the
light scattered incoherently. The incident light is s polarized, and its plane of incidence is perpendicular to the
generators of the surface. Good agreement with numerically generated experimental data is obtained.
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While the main goal of studies of the inverse problem in
the scattering of electromagnetic waves from rough surfaces is
arguably the reconstruction of the profile of the rough surface
from measurements of angular, wavelength, and polarization
dependencies of the field scattered from [1,2] or transmitted
through [3] it, there are other, statistical, properties of the
surface profile function that are very useful and easier to
obtain. These are the normalized surface height autocorrelation
function [4], the power spectrum of the surface roughness [5],
the probability density function of surface heights [6], and the
rms height of the surface [7].

Here we present an approach to the determination of
the normalized surface height autocorrelation function of
a one-dimensional randomly rough dielectric surface, from
measurements of the angular dependence of the contribution
to the mean differential reflection coefficient from the light
scattered incoherently (diffusely) from it. This approach also
allows us to obtain an estimate of the rms height of the surface
from these data.

This problem was studied earlier by Chandley [4]. There
are several differences between his work and ours. Chandley’s
approach uses scalar diffraction theory and a thin phase screen
approximation [8] to model the interaction of light with the ran-
domly rough surface. A thin phase screen may be visualized as
a layer of negligible thickness that introduces phase variations
in the scattered wave without introducing amplitude variations.
It is derived from simple optical path length arguments and
geometrical optics concepts. Our approach, on the other
hand, is based on an expression for the field scattered by a
one-dimensional randomly rough dielectric surface provided
by the Kirchhoff approximation. This approximation is based
on the assumption that the scattered field is produced by the
reflection of the incident light from the plane tangent to the
surface at each point of it. We use this expression due to its
simplicity, and because it is able to reconstruct well the surface
profile function of a one-dimensional rough Dirichlet surface
from experimental scattering data [1].
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Chandley [4] used the angular dependence of the mean in-
tensity of the scattered light in the far field as the experimental
quantity to be inverted, while we use the angular dependence
of the mean differential reflection coefficient, obtained from
the incident and scattered fluxes for this purpose. The use
of properly normalized far-field data permits the estimation of
the standard deviation of heights. Another difference is that the
dielectric constant of the scattering medium does not appear
explicitly in Chandley’s theory, but it does in ours. This means
that it is not possible to use Chandley’s theory to recover the
dielectric constant of the scattering medium from experimental
scattering data, but it is possible to do so with our approach,
as we will see below.

Rough surfaces appear in natural situations and are intro-
duced on purpose for some applications. Assuming that the
surface profile function is a Gaussian random process, our
approach permits the estimation of its most basic statistical
properties, the standard deviation of heights and the height-
height correlation function. Among other things, the spectral
content of the surfaces and its standard deviation of slopes
are determined by these quantities. The method described
here could find applications in situations as varied as the
characterization of ocean waves and the surface of antiglare
screens and efficiency-enhanced structured solar cells.

The physical system we consider consists of vacuum in the
region x3 > ζ (x1) and a dielectric medium in the region x3 <

ζ (x1). We assume that the dielectric medium is characterized
by a dielectric constant ε that is real, positive, and frequency
independent. The surface profile function ζ (x1) is assumed to
be a single-valued function of x1 that is differentiable. It also
constitutes a stationary zero-mean, Gaussian random process,
defined by

〈ζ (x1)ζ (x ′
1)〉 = δ2W (|x1 − x ′

1|), (1a)

〈ζ 2(x1)〉 = δ2, (1b)

where the angle brackets denote an average over the ensemble
of realizations of ζ (x1), δ is the rms height of the surface,
and W (|x1|) is the normalized surface height autocorrelation
function. From Eqs. (1a) and (1b) we obtain the result that
W (0) = 1.
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The surface x3 = ζ (x1) is illuminated from the vacuum
by an s-polarized plane wave of frequency ω, whose plane
of incidence, and the plane of scattering, is the x1 x3 plane,
and whose angle of incidence, measured counterclockwise
from the positive x3 axis is θ0. The expression for the
contribution to the mean differential reflection coefficient from
the light scattered incoherently from this surface is given in
the Kirchhoff approximation by [9]

〈
∂Rs

∂θs

〉
(θs,θ0)incoh

= 1

L1

(
ω

2πc

)∣∣Rs

(
1
2 (θs + θ0)

)∣∣2
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cos2 1
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×
∫ ∞
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∫ ∞
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〉}

. (2)

In this expression L1 is the length of the x1 axis covered
by the rough surface, and θs is the angle of scattering
measured clockwise from the positive x3 axis. The function
Rs[ 1

2 (θs + θ0)] is defined by
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, (3)

while the function α0(q) is

α0(q) = [(ω/c)2 − q2]
1
2 , Reα0(q) > 0, Imα0(q) > 0,

(4)

where c is the speed of light in vacuum. The wave numbers k

and q are related to the angles of incidence and scattering by

k = (ω/c) sin θ0, q = (ω/c) sin θs, (5)

respectively.
The expression given by Eq. (2) simplifies considerably in

the case of normal incidence θ0 = 0, k = 0, where it has the
form〈
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. (6)

Since we have assumed that ζ (x1) is a Gaussian random
process, the ensemble averages in this expression can be
evaluated analytically. Then, with the change of variable

x1 = u + x ′
1, Eq. (6) becomes

〈
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(7)

We see from Eq. (7) that if the factor cos4(θs/2) in
the exponent in the integrand were a constant the integral
would be a Fourier transform and therefore readily inverted.
Now cos4(θs/2) decreases from unity at θs = 0 to 1/4 at
θs = π/2. We will make the approximation of replacing it
by unity in what follows. This approximation is very good
when the scattering is limited to small angles. For example,
cos4(θs/2) = 0.9 for θs = 26.19◦, and cos4(θs/2) = 0.8 for
θs = 37.92◦. With this approximation we obtain the result

e(2ωδ/c)2W (|u|) − 1

= 2c

ω

∫ ω/c

0
dq cos uqe(2ωδ/c)2 cos4 θs

2

×
⎡
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ε − sin2 1
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) 1
2

cos 1
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2θs

) 1
2

⎤
⎦

2 〈
∂Rs

∂θs

〉
(θs,0)incoh. (8)

The limits of integration in this expression are dictated by the
fact that the mean differential reflection coefficient is defined
only in the interval |q| < ω/c, and that for normal incidence
〈∂Rs/∂θs〉(θs,0)incoh is an even function of θs . If we now use
the fact that W (0) = 1, we obtain from Eq. (8)

e(2ωδ/c)2 − 1

= 2
c

ω

∫ ω/c

0
dqe(2ωδ/c)2 cos4 θs

2

×
⎡
⎣cos 1
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ε − sin2 1
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) 1
2

cos 1
2θs − (

ε − sin2 1
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) 1
2

⎤
⎦

2 〈
∂R

∂θs

〉
(θs,0)incoh, (9)

from which δ can be determined. Once δ has been determined,
Eq. (8) can be used to determine W (|u|). In evaluating the
integrals in Eqs. (8) and (9) it is convenient to make the change
of variable q = (ω/c) sin θs , Eq. (5).

To illustrate this approach to the determination of W (|x1|)
and δ, we apply it to the reconstruction of these functions
from data for 〈∂Rs/∂θs〉(θs,0)incoh for three different one-
dimensional randomly rough dielectric surfaces. These data
were obtained by means of rigorous computer simulations
[10]. In these simulations, a realization of the surface profile
function of one of these types of randomly rough surfaces is
generated by an approach that is based on the power spectrum
of the surface roughness g(Q) [10]. In our notation, the power
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FIG. 1. (Color online) A plot of W (|x1|) as a function of x1. The input surface height autocorrelation function is depicted by the dotted
(blue) curve, and the reconstructed function is depicted by the solid (red) curve. Here θ0 = 0◦, λ = 632.8 nm, ε = 2.25, δ = 60 nm, and
a = 3 μm. (a) Gaussian power spectrum. (b) Cosine power spectrum. (c) Triangular power spectrum.

spectrum can be defined by the expression [11]

g(Q) = 1

δ2
lim

L→∞
〈|ζ̂L(Q)|2〉

L
, (10)

where ζ̂L(Q) is the Fourier transform of a section of the
random profile of the surface of length L. According to
the Wiener-Khinchin theorem, g(Q) and W (|x1|) constitute
a Fourier transform pair [11]:

g(Q) =
∫ ∞

−∞
dx1W (|x1|)exp(−iQx1). (11)

The field scattered from this realization of the surface is given
in terms of the values of the single nonzero component of the
electric field in the vacuum and of its normal derivative, both
evaluated on the rough surface. These two source functions
satisfy a pair of coupled one-dimensional inhomogeneous
integral equations, obtained with the help of Green’s second
integral identity in the plane [12]. These equations are solved
by converting them into a pair of coupled inhomogeneous
matrix equations by the use of a numerical quadrature scheme.
The results are used to calculate the differential reflection co-
efficient for that realization of the surface profile function. An
arithmetic average of the results for the differential reflection
coefficient obtained from an ensemble of 2000 realizations
of the surface profile function yields the mean differential
reflection coefficient. The use of data for the mean differential
reflection coefficient obtained in this way allows an assessment
of the quality of the reconstruction of W (|x1|) to be made.

The three choices for the power spectra and the correspond-
ing expressions for W (|x1|) are:

(1) a Gaussian power spectrum

g(Q) = √
πa exp(−a2Q2/4) (12a)

W (|x1|) = exp
( − x2

1/a2
)
; (12b)

(2) a cosine power spectrum

g(Q) = aπ

2
cos

(
aQ

2

)
|Q| < π/a

= 0 |Q| > π/a (13a)

W (|x1|) = a2

4

cos(πx1/a)

(a/2)2 − x2
1

; (13b)

(3) a triangular power spectrum

g(Q) = 2a

(
1 − a|Q|

π

)
|Q| � π/a

= 0 |Q| > π/a (14a)

W (|x1|) =
[

sinc

(
πx1

2a

)]2

. (14b)

In these expressions a is a parameter that defines the lateral
scale of the roughness. The latter two power spectra are
unlikely to be found in naturally occurring or fabricated
randomly rough surfaces, but the reconstruction of W (|x1|)
from scattering data obtained on the basis of such spectra tests
the versatility of our inversion approach.

The reconstructed W (|x1|) and the input W (|x1|) are plotted
for the random surface defined by Eqs. (12) in Fig. 1(a), for
the surface defined by Eqs. (13) in Fig. 1(b), and for the
surface defined by Eqs. (14) in Fig. 1(c). The wavelength
of the incident light is λ = 632.8 nm; the dielectric constant
of the scattering medium is ε = 2.25. The roughness of
each of the three randomly rough surfaces is characterized
by the values δ = 60 nm and a = 3 μm. In each case, the
reconstructed and input values of W (|x1|) are plotted for x1

in the interval −9 μm < x1 < 9 μm. It is seen that on the
scale of these figures the reconstructed and input W (|x1|) are
indistinguishable for |x1| � 4 μm and are in good agreement
for the larger values of x1. In particular, the oscillations of
the input W (|x1|) given by Eqs. (13b) and (14b) are well
reproduced in the reconstructed W (|x1|). The values of δ

obtained from Eq. (9) are (1) 60.18 nm, (2) 59.81 nm, and
(3) 59.45 nm, all very close to the input value δ = 60 nm. Thus,
for the values of the experimental, material, and roughness
parameters employed in obtaining the results presented in
Figs. 1(a)–1(c), the approach to the reconstruction of W (|x1|)
and δ developed here has yielded excellent results.

To explore how the quality of the reconstruction is affected
by varying the experimental, material, and roughness param-
eters we have carried out several additional calculations. The
majority of these calculations have been carried out on the basis
of the mean differential reflection coefficients of surfaces de-
fined by the Gaussian power spectrum, Eq. (12a), which seems
the most physical of the three power spectra considered here.

In Figs. 2(a) and 2(b) we have plotted the reconstructed and
input W (|x1|) for the surface defined by Eq. (12) when the
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FIG. 2. (Color online) A plot of W (|x1|) as a function of x1 for the random surface defined by the Gaussian power spectrum. The input
surface height autocorrelation function is depicted by the dotted (blue) curve, and the reconstructed function is depicted by the solid (red)
curve. Here θ0 = 0◦, λ = 632.8 nm, ε =2.25, and δ = 60 nm. (a) a = 2.5 μm. (b) a = 3.5 μm.

parameter a has the values 2.5 and 3.5 μm, respectively, while
λ, ε, and δ retain the values assumed in obtaining Fig. 1(a). It is
seen from a comparison of the results in Fig. 2 with the results
in Fig. 1(a) that varying the parameter a from 2.5 to 3.5 μm
for fixed values of the other parameters does not degrade the
quality of the reconstructions of W (|x1|). The reconstruction
presented in Fig. 2(b) is marginally better in the wings than the
one presented in Fig. 2(a). The reconstructed values of δ for
the surfaces leading to Figs. 2(a) and 2(b) are (1) 59.91 nm and
(2) 60.04 nm, respectively, which are in very good agreement
with the input value δ = 60 nm.

In Fig. 3 we have plotted the reconstructed and input
W (|x1|) for the surface defined by Eq. (12) when the rms
height δ is increased to δ = 100 nm. a assumes the values 3, 6,
10, 14, and 18 μm, while λ and ε have the values obtained in
Fig. 1(a). There is no significant worsening of the quality of the

reconstruction arising from a near doubling of the rms height
of the surface for |x1| � 5 μm. In the wings, the reconstructed
W (|x1|) begins to display oscillations instead of monotonically
decreasing to zero. The reconstructed values of δ obtained from
Eq. (9) for these five surfaces are (1) 101.3 nm, (2) 104.2 nm,
(3) 106.1 nm, (4) 105.8 nm, and (5) 104.6 nm. These values
are to be compared with the input value δ = 100 nm.

We have also considered the effect on the quality of the
reconstruction of varying the wavelength of the incident light.
In Figs. 4(a) and 4(b) we present the reconstructed and
input W (|x1|) for the surface defined by Eq. (12) when the
wavelength λ has the values λ = 458 and 680 nm, respectively,
while ε,δ, and a have the values assumed in obtaining Fig. 1(a).
The reconstruction at the shorter wavelength presented in
Fig. 4(a), while good overall, is poorer than the one presented in
Fig. 1(a) in that it becomes negative at large values of |x1|, in the
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FIG. 3. (Color online) A plot of W (|x1|) as a function of x1 for the random surface defined by the Gaussian power spectrum. The input
surface height autocorrelation function is depicted by the dotted (blue) curve, and the reconstructed function is depicted by the solid (red)
curve. Here θ0 = 0◦, λ = 632.8 nm, ε = 2.25, and δ = 100 nm. (a) a = 3 μm. (b) a = 6 μm. (c) a = 10 μm. (d) a = 14 μm. (e) a = 18 μm.
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FIG. 4. (Color online) A plot of W (|x1|) as a function of x1 for the random surface defined by the Gaussian power spectrum. The input
surface height autocorrelation function is depicted by the dotted (blue) curve, and the reconstructed function is depicted by the solid (red)
curve. Here θ0 = 0◦, ε = 2.25, δ = 60 nm, and a = 3 μm. (a) λ = 458 nm. (b) λ = 680 nm.

wings. In contrast, the reconstruction at the longer wavelength
presented in Fig. 4(b) is as good as the one presented in
Fig. 1(a). The reconstructed values of δ obtained from Eq. (9)
for these surfaces are (1) 60.62 nm and (2) 59.92 nm, in good
agreement with the input value δ = 60 nm.

Finally, we have considered the effect on the quality
of the reconstructions when the dielectric constant of the
scattering medium is changed, with all of the remaining
experimental, material, and roughness parameters keeping the
values used in obtaining Fig. 1. In Figs. 5(a)–5(c) we present
the reconstructed and input W (|x1|) for the random surfaces
defined by Eqs. (12)–(14), respectively, obtained for a value
of ε = 2.7225, so that these surfaces are more reflective than
the ones leading to Fig. 1. The reconstructed curves are seen
to lie on top of the input curves. The values of δ obtained from
Eq. (9) for the surfaces generated by the Gaussian, cosine, and
triangular power spectra are (1) 59.9 nm, (2) 59.89 nm, and
(3) 60.18 nm, respectively, again very close to the input value
δ = 60 nm.

Until now we have carried out the reconstruction of W (|x1|)
and the determination of δ knowing the value of the dielectric
constant ε of the scattering medium. In practical situations
we often do not know the value of ε, and it becomes one of
the quantities to be determined by the inversion procedure. To
determine the value of ε from data for the dependence of the
mean differential reflection coefficient, we assume a sequence
of values for ε. Since the refractive index of glass is about 1.5,
we assumed values of ε starting at 2.2 and extending up to
3.0. For each assumed value of ε, values of δ and the function

W (|x1|) were determined from Eqs. (9) and (8), respectively.
The angular dependence of the mean differential reflection
coefficient corresponding to each set of ε, δ, and W (|x1|)
determined in this manner was then calculated by the use of
Eq. (7). The dielectric constant closest to the actual value of ε

was obtained by minimizing the cost function

χ =
∫ π

2

−π
2

dθs

[〈
∂Rs

∂θs

〉
(θs,0)input −

〈
∂Rs

∂θs

〉
(θs,0)calc

]2

(15)

with respect to variations of ε. A plot of χ as a function of ε

possesses a clear minimum at the value of ε that describes the
scattering medium best and, together with the corresponding
results for δ and W (|x1|), defines the statistical properties of
the one-dimensional randomly rough dielectric surface. For
example, if we consider the surface defined by the Gaussian
surface height correlation function and the values δ = 60 nm,
a = 3 μm, and ε = 2.7225 assumed in obtaining the results
presented in Fig. 5(a), this method yields ε = 2.725 and δ =
59.87 nm.

The transverse correlation length T of a randomly rough
surface is defined as the distance over which the normalized
surface height autocorrelation function W (|x1|) decreases
significantly from its value of unity at x1 = 0 [13]. A precise
definition of this length does not appear to have been given in
the literature. In fact, for a one-dimensional randomly rough
surface several definitions have been proposed [13]. One that
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FIG. 5. (Color online) The same as Fig. 1, but with ε = 2.7225.
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is expressed in terms of W (|x1|) can be written∣∣∣∣ d2

dx2
1

W (|x1|)
∣∣∣∣
∣∣∣∣
x1=0

= 2

T 2
. (16)

This definition is a modification of the one given by Bass and
Fuks [14], which lacks the factor of 2 on the right-hand side.
It has the advantage over the latter definition in that for a
surface defined by the Gaussian surface height autocorrelation
function, Eq. (11b), where the characteristic length a is
normally called the transverse correlation length, it yields the
result T = a. On applying this definition to the reconstructed
surface height autocorrelation functions obtained for the
surfaces derived from the Gaussian, cosine, and triangular
power spectra and depicted in Figs. 1(a)–1(c) and 5(a)–5(c),
for values of ε equal to 2.25 and 2.7225, respectively, we obtain
the values (1) T = 3.079 and 3.082 μm, (2) T = 3.125 and
3.154 μm, and (3) T = 3.338 and 3.366 μm. Since W (|x1|) is
independent of ε, the near equality of the results for the two
different values of ε for each of the three types of surfaces is an
indication of the accuracy of our inversion method, especially
for x1 in the vicinity of x1 = 0.

In this paper we have presented a simple approach to the
reconstruction of the normalized surface height autocorrela-
tion function W (|x1|) of a one-dimensional randomly rough
dielectric surface from data for the mean differential reflection
coefficient obtained for normally incident s-polarized light.
This approach, which is based on the Kirchhoff approximation,
also enables the rms height of the surface to be determined
and provides an estimate of the transverse correlation length
of the surface roughness. It also enables the determination of
the dielectric constant of the scattering medium in cases in
which this is not known a priori. The agreement between the
reconstructed and input W (|x1|) has been found to be excellent
for values of the experimental, material, and roughness

parameters characterizing the scattering system in the ranges
458 � λ � 680 nm, 2.25 � ε �2.7225, 60 � δ � 100 nm, and
2.5 � a � 18 μm. The domain of validity of this approach to
inversion is undoubtedly larger than this, but its determination
requires additional calculations.

We have been able to assess the quality of our recon-
structions of W (|x1|) because we know the W (|x1|) used in
generating the mean differential reflection coefficients used in
our inversion approach. In an actual experimental situation we
do not have this information. How, then, can one determine
whether a particular reconstruction of W (|x1|) is a reliable
one? The first step is to find out if Eq. (9) has a solution for
δ. If it does not, it means that the surface is one for which the
Kirchhoff approximation is inapplicable. If a solution exists,
and a result for W (|x1|) is obtained from Eq. (8), it should
have the properties that the transverse correlation length T

obtained from it is significantly larger than the wavelength λ

and that the rms height of the surface δ is smaller than T . If
these conditions are met, the reconstructed W (|x1|) should
be a good representation of the actual normalized surface
height autocorrelation function of the surface. In any case,
it is clear from the results presented here that for weakly rough
surfaces the Kirchhoff approximation provides a simple and
accurate method for inverting experimental data for the mean
differential reflection coefficient to obtain the normalized
surface height autocorrelation function and rms height of a
one-dimensional randomly rough dielectric surface.
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