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Optical cloning of arbitrary images beyond the diffraction limits
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Cloning of arbitrary images from the spatial profile of a laser beam onto that of a second beam is theoretically
investigated. The two fields couple to each other while propagating in an atomic � medium displaying coherent
population trapping in the case where probe and control fields have comparable strength. Our method is suitable
to clone arbitrary images as demonstrated in numerical simulations where the three letters “CPT” are encoded
in the control field profile. The cloned structures have features reduced in size by about a factor of 2, when
compared to the initial control images, and are consistent with a recent related experiment.

DOI: 10.1103/PhysRevA.88.013810 PACS number(s): 42.30.−d, 42.50.Gy, 32.80.Qk, 42.65.−k

I. INTRODUCTION

Optical diffraction forms a fundamental limitation to the
creation and detection of small images for conventional optical
devices and microscopy. The reason is that any image with
finite size can be considered as a group of different plane-
wave components. Each component acquires a different phase
shift during propagation either in free space or in medium.
The resulting superposition of all wave components leads to
diffraction, which means that the transmitted image will be
distorted even after propagating only a few Rayleigh lengths
[1]. From this interpretation, it is clear that diffraction can be
eliminated if conditions are tailored such that each plane-wave
component acquires the same phase shift during propagation.
To achieve this, it has, for example, been suggested that several
specially shaped beams with spatially dependent phases such
as Airy [2,3], Bessel [4,5], Mathieu [6,7], and parabolic [8]
beams, can propagate without diffraction in free space, since
the phase differences between the different components are ex-
actly compensated by the initially spatially dependent phases.

It has also been recognized that optical diffraction can
be greatly suppressed or even eliminated by using atomic
coherence effects, such as electromagnetically induced trans-
parency [9–15], coherent population trapping (CPT) [16–19],
or saturated absorption techniques [20] in multilevel atomic
systems. Most of these methods can be understood by noting
that the spatially dependent probe and coherent control fields
couple to the atomic transition in such a way that the probe field
experiences a spatially dependent refractive index depending
on the intensity of the control fields. As an example, a
suitable spatially dependent control field can optically induce
a waveguide-like structure. When the probe field propagates in
the induced waveguide inside the atomic medium, it is mostly
confined in the waveguide due to total reflection, resulting in
the elimination of the diffraction for the probe.

A more interesting and counterintuitive approach, which
is fundamentally different from previous methods, has been
developed by Firstenberg et al. [21,22]. They have theo-
retically proposed and experimentally verified that atomic
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motion and collisions can be utilized to eliminate the paraxial
diffraction of arbitrary image. The underlying physics is that
the phase difference acquired during propagation for each
plane-wave component of the image is exactly compensated
by an additional phase shift induced by the atomic motion,
thus leading to the elimination of diffraction. However, this
method is plagued by strong absorption.

Recently, Li et al. [23] experimentally demonstrated that
the spatial shape of a control beam can be cast onto a weak
probe beam via coherent population trapping in a three-level �
atomic system. In their experiment, the transmitted intensity of
the probe beam had a similar spatial profile as that of the control
beam, no matter what the input probe is. Moreover, the size of
the transmitted probe beam was half of that of the diffraction-
limited input probe. Manipulation of the susceptibility along
the transverse direction is the key idea behind mapping the spa-
tial shape of the control beam onto the probe beam. It has been
used for focusing, defocusing, and self-imaging [9,10,24,25].

It is important to note that the probe field is typically treated
as weak and the control field as strong, such that perturbation
theory can be employed to derive the linear effect of the
atomic medium on the probe field propagation. There have
been theoretical and experimental studies where the probe is
not necessarily weak [26–28]. In this situation, the effect of the
atomic coherence on the propagation dynamics of the control
field need to be taken into account [29].

In this paper, we theoretically investigate the possibility
of cloning of an arbitrary image carried on a control field
to another probe beam. The two control and probe beams
are coupled to a three-level atomic � system to form a
CPT configuration. We assume the two laser fields to be of
comparable strength, such that perturbation theory for the
probe field is not valid any more to describe the effect of
the atomic medium on the two fields. We start by calculating
the susceptibilities, including linear and nonlinear effects for
both fields by solving the related density-matrix equations.
As expected, we find that a spatially dependent refractive
index for the probe field is generated, structured by the
spatial intensity profile of the control beam. In particular,
the generated structures enable one to transfer the transverse
distribution of the control field onto the transmission profile
of the probe field. In order to study the full propagation
dynamics, we then numerically solve the paraxial propagation
equations for both fields by using a higher-order split operator
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method [30]. We begin our analysis with a Gaussian control
and a super-Gaussian probe field and observe the gradual
mapping of the control field onto the probe field throughout the
propagation. We find, in particular, that in the case of a strong
probe field, the transmitted probe beam is focused more tightly
by a factor of two compared to the weak probe field case.
Next, we consider a control field with a spatial two-peaked
Hermite-Gaussian profile and demonstrated cloning of the
profile onto the probe beam with feature size reduced by a
factor of about 2.5. In order to verify that our method can
serve as a universal tool for cloning of arbitrary image, we
finally simulate the three-dimensional light propagations for
both fields, in which the spatial profile of the control field
carries the three letters “CPT.” We show that this structure can
be cloned onto the probe beam, which initially has a simple
plane-wave profile, even though the control field is severely
distorted throughout the propagation due to diffraction. Again,
we observe a reduction of the feature size by a factor of about
2 in the probe field.

The article is organized as follows. In Sec. II A, we intro-
duce our theoretical model and then employ a semiclassical
theory to describe the system. In Sec. II B, we discuss the
propagation equations for all fields in the strong field limit.
In Sec. II C, we analytically calculate the atomic responses to
the probe and control fields, including both linear and high-
order nonlinear effects. In Sec. II D, we specify the spatially
dependent profiles for both fields that are used in our numerical
simulation. In Sec. III A, we first show the differences in the
spatial dependence of the absorption properties for the probe
field in the weak and strong field limit, respectively. Then, we
discuss the spatial refractive modulation, which is dependent
on the probe detuning. Finally, the refractive index for the
control is investigated in both weak and strong field cases.
In Sec. III B, we discuss our numerical results on the light
propagation in several cases where different spatial profiles
are chosen for both fields. Sec. IV provides a brief summary
of the presented work.

II. MODEL

A. Equations of motion

We consider a homogeneous cloud of 87Rb atoms, with
two laser fields coupled to the atoms such that a three-level
� scheme as shown in Fig. 1 is of relevance. The probe
field couples to transition |1〉 ↔ |3〉, and the control field to
transition |2〉 ↔ |3〉. The two copropagating fields are defined
as

�Ej (�r,t) = êjEj (�r)e−i(ωj t−kj z) + c.c., (1)

where Ej (�r) are the slowing varying envelope functions, êj the
unit polarization vectors, ωi the laser field frequencies, and kj

is the wave numbers of fields. The index j ∈ {1,2} denotes the
probe or control field, respectively.

The Hamiltonian of the system in electric dipole and
rotating wave approximation is given by

H = h̄ω31|3〉〈3| + h̄ω32|2〉〈2|
−h̄(ge−iω1t |1〉〈3| + Ge−iω2t |2〉〈3| + H.c.), (2)
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FIG. 1. (Color online) Schematic setup for the cloning of arbitrary
images encoded in the spatial profile of a control field onto the spatial
profile of a probe beam. Both fields copropagate through a rubidium
vapor cell and couple to the atoms on the |3〉 ↔ 〈1| (probe field
with frequency ω1) and |3〉 ↔ 〈2| (control field with frequency ω2)
transitions, respectively. Our analysis includes the case in which both
fields are equally strong.

with Rabi frequencies of the probe and control fields defined
as

g =
�d31 · �E1e

ik1z

h̄
, (3a)

G =
�d32 · �E2e

ik2z

h̄
. (3b)

The atomic transition frequencies and the corresponding
dipole moment matrix elements are denoted by ω3j and d̂3j ,
respectively, and we label the radiative decay rate from state
|3〉 to ground state |j 〉 by 2γj . The master equation for the
density operator ρ is given by

ρ̇ = − i

h̄
[H,ρ] + Lγ [ρ]. (4)

The last term in Eq. (4) describes incoherent processes, such
as spontaneous emission, and is determined by

Lγ [ρ] = −γ1(|3〉〈3|ρ − 2|1〉〈1|ρ33 + ρ|3〉〈3|)
− γ2(|3〉〈3|ρ − 2|2〉〈2|ρ33 + ρ|3〉〈3|). (5)

In a suitable interaction picture, the density matrix equations
follow as

σ̇33 = −2(γ1 + γ2)σ33 + iGσ23 + igσ13

− iG∗σ32 − ig∗σ31, (6a)

σ̇22 = 2γ2σ33 + iG∗σ32 − iGσ23, (6b)

σ̇32 = −[(γ1 + γ2) + i�2]σ32 + igσ12

+ iGσ22 − iGσ33, (6c)
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σ̇31 = −[(γ1 + γ2) + i�1]σ31 + iGσ21

+ igσ11 − igσ33, (6d)

σ̇21 = −[� − i(�2 − �1)]σ21 + iG∗σ31 − igσ23. (6e)

The detunings of the probe and the control fields from the
respective transition frequencies are defined as

�1 = ω31 − ω1, (7a)

�2 = ω32 − ω2. (7b)

We have further included pure dephasing of the ground state
coherence, e.g., due to phase changing collisions, and denote
the total decay rate of the coherence by �. The remaining
density matrix equations follow from the constraints σ11 +
σ22 + σ33 = 1 and σij = σ ∗

ji .

B. Propagation equation

We use Maxwell’s wave equations to simulate the spatial
evolution of the control and the probe beams through the
medium, in order to study the effect of both diffraction and
dispersion during the propagation. The wave equations for the
probe (j = 1) and control (j = 2) fields can be written as(

�∇2 − 1

c2

∂2

∂t2

)
�Ej = 4π

c2

∂2 �Pj

∂t2
, (8)

where �Pj are the macroscopic polarizations induced by the
control and probe fields, respectively. They can be expressed
in terms of both the atomic coherences as well as the
susceptibility as

�Pj = N ( �d3j σ3j e
−iωj t + c.c.) = (χ3j êjEj e

−iωj t + c.c.),

(9)

where N is the density of the atomic medium, and χ31 and
χ32 are the susceptibilities for the response to the probe and
control fields, respectively. In slowly varying envelope and
paraxial wave approximation, Eqs. (1), (3), and (8) lead to
propagation equations for the two fields given by

∂g

∂z
= i

2k1

(
∂2

∂x2
+ ∂2

∂y2

)
g + 2iπk1χ31 g, (10a)

∂G

∂z
= i

2k2

(
∂2

∂x2
+ ∂2

∂y2

)
G + 2iπk2χ32 G. (10b)

The first terms in the parentheses on the right-hand sides
account for the diffraction. The second terms on the right-hand
sides are responsible for the dispersion and absorption of both
the control and probe beams. Note that the two propagation
equations are coupled via the susceptibilities χ31 and χ32.

C. Medium susceptibility

Next, we calculate the response of the medium to the
probe and control fields, characterized by the respective
susceptibilities. In steady state, the atomic coherences σ31(ωp)
and σ32(ωc) are obtained from Eqs. (6) as

σ3j = N3j

D
, (11)

where the numerators N32, N31, and the denominator D

are listed in Appendix A. The expressions are rather com-

plex, since we include the fields to all orders, in order to
account for nonlinear effects. To simplify the expressions,
we have assumed equal decay rates on the two transitions,
γ1 = γ2 = γ /2. Using Eqs. (9), one can readily obtain the
susceptibility at the frequencies at ωc and ωp as

χ32(ωc) = N |d32|2
h̄G

σ32, (12a)

χ31(ωp) = N |d31|2
h̄g

σ31. (12b)

D. Beam profiles

In the main part of our Result section, we will numerically
propagate complex transverse beam profiles. But first, in order
to interpret the effect of the beam profiles on the propagation,
we chose the transverse spatial profile of the control field as a
Hermite-Gaussian mode. At z = 0, it can be written as

G(x,y) = G0 Hm

(
x
√

2

wc

)
Hn

(
y
√

2

wc

)
e
− (x2+y2)

w2
c . (13)

Here, G0 is the input amplitude, and wc is the width of the
control field. The function Hk is a Hermite polynomial of order
k, and the indices m and n determine the shape of the control
field profile along the x and y directions, respectively. Since we
want to consider the transfer of arbitrary spatial information,
we will study different values of m,n in the following.

Similarly, the probe field is initially assumed to have a
super-Gaussian transverse profile given by

g(x,y) = g0 e
− (x2+y2)8

w16
p . (14)

The initial peak amplitude and the width of the probe field are
denoted by g0 and wp, respectively. Instead of choosing super
Gaussian as an initial profile, the shape of the probe field can be
considered any arbitrary shape, such as a plane wave, Gaussian,
or hyperbolic shape. The desired spatial profile of the probe
beam can be generated by using a spatial light modulator based
on either liquid crystal or coherent EIT media [31,32].

III. RESULTS

A. Linear and nonlinear susceptibility

We now turn to our results and start by studying the probe
and control field susceptibilities at frequencies ω1 and ω2

using Eqs. (12). For this purpose, we first consider a super
Gaussian probe field and a Gaussian control field [m = 0,

n = 0 in Eq. (13)] such that the probe susceptibility becomes
inhomogeneous along the transverse directions. Results are
presented for two different cases of the initial field amplitudes.
We denote the case g0 
 G0 as the weak field limit and
g0 ∼ G0 as the strong field case. In our numerical calculations,
we choose g0 = 0.015 γ and g0 = 0.15 γ for the two cases,
respectively.

Figure 2 displays the spatial dependence of the probe field
susceptibility. The different curves show Im(χ13) and Re(χ13)
for three different detunings and both probe intensity cases as a
function of x, with y = 0.005 cm. From Fig. 2(a), we find that
the probe field is essentially transmitted without absorption in
regions in which the control field amplitude is large, whereas
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FIG. 2. (Color online) Probe beam susceptibility as a function of
the transverse coordinate x. The control field has a Gaussian (m = 0,

n = 0) beam profile. Panel (a) shows the imaginary and (b) the real
component of the susceptibility. The three different curves show probe
field detunings �1 = −0.005 (blue dotted line, blue dashed line),
�1 = 0.0 (green solid line, green dot-dashed line), and �1 = 0.005γ

(red dashed line, red dashed double-dot line) for two data sets of
probe amplitudes g = 0.015γ and g = 0.15γ , respectively. The other
parameters are y = 0.005 cm, wp = 150 μm, wc = 400 μm, �2 = 0,
� = 0.001γ , and N = 5×1011 atoms/cm3.

in the wings (|x| > 0.05 cm) with low control field, strong
absorption occurs. As expected, we found that the width of the
transparency window depends on the intensities of the control
and probe fields as well as the decay rate of ground-state atomic
coherence. Comparing the two intensity cases, we find that a
relative increase of the probe field intensity results in steeper
transitions between regions of high and low absorption. Later,
we will show that this in turn leads to a smaller feature size of
the image cloning scheme.

The transparency of the medium to the probe field can be
understood as arising from coherent population trapping (CPT)
or electromagnetically induced transparency (EIT), depending

on the relative strength of the two applied fields. In both
cases, destructive interference occurs between two different
excitation pathways from |1〉 or |2〉 to the excited state |3〉.
CPT and EIT are restricted to a certain transparency window.
This transparency window can be controlled via the external
parameters and permits to transfer the transverse distribution
of the control field onto the transmission profile of the probe
field. This is the key mechanism of cloning the control field
profile to the probe field.

The corresponding real part of the susceptibility is shown
in Fig. 2(b). We notice that it can be controlled between
negative and positive values via the detuning. For red detuning
of the probe field (�1 = 0.005γ ), it has a local maximum
around x = 0, whereas for blue detuning, a minimum occurs
around x = 0. For nonzero detunings, the real part becomes
spatially dependent in particular around the regions in which
the absorption undergoes a transition from low to high values.

Therefore, at red detuning, the transverse profile of the
control field allows one to imprint a fiber-like refractive index
gradient onto the atomic medium. This parabolic refractive
index variation causes focusing of the probe field toward the
center of the control field and also guides the probe field
propagation along the propagation axis. Conversely, at blue
detuning of the probe field, the real part has maxima at its
wings, which is referred to as an antiwaveguide-like refractive
index [33]. This antiwaveguide refractive index leads to shape
distortions of the probe field. Hence, electromagnetically
induced focusing and defocusing is possible in our setup by
properly detuning the probe field. At two photon resonance
condition, i.e., �1 = �2 = 0, only the imaginary part of the
susceptibility varies spatially, while the real part is constant.
Then the probe field propagates through the transparency
window without being focused or defocused. Note that the
probe field will nevertheless spread due to the inevitable
diffraction.

Next, we consider the effect on the control field. Figure 3
shows the real part of the susceptibility experienced by the
control field. In particular, Fig. 3 illustrates that it becomes
especially important when the relative intensity of the probe
and control fields are of comparable strength; as for the intense
probe field case, the spatial dispersion of the control field is
about three orders of magnitude larger than in the weak probe
field case. Hence, it is important to include atomic coherence
effects in the paraxial wave equation for the control field. It is
also evident from Fig. 3 that in addition to the diffraction, the
variation of the refractive index induces further distortions of
the control field shape for both red- and blue-detuned probe
fields. Our further analysis also showed that the absorption of
the control field is rather low as compared to the probe field
absorption in both cases, such that the control field can be
propagated through the medium without significant absorption
for relevant parameter ranges.

Finally, we analyze the dependence of the probe suscep-
tibility on the control field transverse beam shape. Figure 4
shows the transverse variation of the probe field suscepti-
bility for a doubly peaked transverse spatial distribution of
the control field obtained by setting m = 1 and n = 0 in
Eq. (13). The central part of the figure is shown enlarged
in the inset. Overall, the interpretation is similar to the case
of a singly peaked control field beam profile. But the doubly
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x (cm)

FIG. 3. (Color online) Real part of the control field susceptibility
as a function of transverse position x. The control field has a Gaussian
(m = 0, n = 0) shape. The three different curves show probe field
detunings �1 = −0.005 (blue dotted line, blue dashed line), �1 =
0.0 (green solid line, green dot-dashed line), and �1 = 0.005γ (red
dashed line, red dashed double-dot line) for two data sets of probe
amplitudes g = 0.015γ and g = 0.15γ , respectively, with different
scales of the axes. The other parameters are the same as described in
the legend of Fig. 2.

peaked structure leads to the formation of two transparency
windows. For positive probe detuning (�1 = 0.005), each of
the transparency windows features a fiber-like refractive index,
focusing the probe field toward the waist of the control field
and thereby reducing the feature size. The generalization of
these results to other spatial modes of the control field with
different values of m, n is straightforward.

B. Propagation dynamics of probe and control beams

In this section, we present results for the evolution of the
spatial beam profile throughout the propagation. For this, we
numerically integrate the full set of paraxial wave Eqs. (10),
using a higher-order split operator method [30]. We begin
with a super-Gaussian probe beam shape and a Gaussian
control beam shape to demonstrate the mapping of the control
field profile onto the probe field. Results are shown in Fig. 5.
Figure 5(a) depicts the intensity profile of the probe beam at
different propagation distances z. The initial field amplitudes
are G0 = 1γ and g0 = 0.15γ , corresponding to the strong
probe field case. We find that the probe beam profile gradually
acquires the control beam shape as it propagates through the
medium. This process is completed at approximately z = 2
cm. Interestingly, the probe field width at this propagation
distance is about 60 μm, which is an order of magnitude less
than the initial width of the control beam. At this distance, the
Rayleigh length of the cloned probe beam is about 1.42 cm.
Consequently, the cloned beam suffers from diffraction
throughout the further propagation. We also notice from

x (cm)

FIG. 4. (Color online) Probe field susceptibility as a function of
the transverse spatial coordinate x. The control field has a doubly
peaked spatial profile characterized by m = 1 and n = 0 in Eq. (13).
The central part around x = 0 is magnified in the inset in the top part
of the figure. The other parameters are y = 0.005 cm, G0 = 1.5γ ,
g0 = 0.015γ , wp = 400 μm, and N = 7.5×1011 atoms/cm3.

Fig. 5 that at two photon resonance condition �1 = �2 = 0,
the probe beam experiences diffraction. In contrast, at red
detuning, the probe field propagates unaltered through the
medium. We thus find that the probe field diffraction can be
controlled by a proper choice of the single photon detuning
�1 of the probe field.

Figure 5(b) further illustrates how the intensity and detuning
of the probe field can be used to control the width of the
transmitted probe beam. It shows that the probe beam is more
tightly focused by a factor of about two for the strong control
field case compared to the weak probe field case. At red
detuning condition, our numerical computations show that the
width and the transmission of the output probe beam are 85 μm
[55 μm] and 20% [5%] for weak [strong] field case.

Figure 6 shows the corresponding results for the spatial
variation of the transmitted control beam intensity profile in
the y = 0 plane after propagation through a 4-cm-long atomic
medium. For the weak probe field case, the control field
propagates essentially without any distortion. But in the strong
probe field case, we find from Fig. 6 that the control field shape
is distorted. Nevertheless, the integrated transmission intensity
of the control field is approximately 100% in both cases.
Thus, we conclude that the control beam intensity is spatially
redistributed in the strong probe field case. As a consequence,
it is necessary to include the effect of atomic coherence in the
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FIG. 5. (Color online) Normalized intensity profile of the propa-
gating probe beam against the transverse coordinate x for y = 0. Panel
(a) shows the beam profile at different propagation distances z. In (b),
the transmitted probe beam intensity at the output of a 4-cm-long
medium is shown for different detunings. All other parameters are
chosen as described in the legend of Fig. 2.

propagation of the control field in the nonresonant as well as
in the resonant condition for the strong probe field case.

Next, we study cloning of a two-peaked Hermite-Gaussian
control beam onto the spatial profile of the probe beam.
Figure 7 shows the peak-normalized intensity of both the
transmitted probe and control beams after a propagation
distance of 4 cm. It can be seen from Fig. 7 that while the
overall structure of the control beam is preserved, the width
of the cloned probe beam profile is reduced by a factor of
about 2.5, as compared to the initial width of the control
beam. Therefore, the finesse of the transmitted probe beam
is about 2.5 times greater than that of the control beam, which
is consistent with the findings of a recent experiment by Li
et al. [23]. The integrated transmission intensity of the cloned
output probe beam is 5% of the integrated intensity of the
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FIG. 6. (Color online) Spatial intensity profile of the control
field as a function of the transverse coordinate x after propagation
through a 4-cm-long atomic medium. Results are shown for different
field parameters. The profile is shown in the y = 0 plane. All other
parameters are the same as described in the legend of Fig. 5.

input probe beam. The transmission of the cloned beam can be
increased by decreasing the optical density. We also found that
the width of the cloned beam can be decreased by decreasing
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FIG. 7. (Color online) Transverse spatial intensity profile of the
probe and control fields after propagation through an atomic vapor cell
of length 4 cm. The initial control field profile is chosen as a Hermite-
Gaussian doubly peaked profile. Panel (a) shows the probe field; panel
(b) shows the control field. The parameters are as described in the
legend of Fig. 4.
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FIG. 8. Transverse spatial intensity profile of the control and
probe fields. Panel (a) shows the initial profile of the control field
at the medium entry. Panel (b) shows the control field profile after
propagation through a vapor cell of length 3 cm filled with rubidium
atoms. Panel (c) shows the probe field profile after the propagation.
Initially, the probe field is chosen as a plane wave. The parameters
are g = 0.15γ , G = 1.5γ , �2 = 0, �1 = 0.002γ , � = 0.001γ , and
N = 1012 atoms/cm3.

the relative intensity of the probe and control field, giving us
control over the finesse of the cloned probe beam.

Finally, Fig. 8 shows how a complex image encoded in
the transverse control field intensity profile can efficiently be
cloned onto the probe field. For this, we choose the three letters
“CPT” as initial profile of the control beam and a plane wave
for the initial probe beam profile. We find from Fig. 8(b) that
the control beam profile is significantly distorted after 3-cm
propagation length through a vapor cell. This distortion arises
from diffraction and from the variation of the refractive index
experienced by the control field. In contrast, the fiber-like
spatial dispersion of the probe field can be used to compensate
or to reverse the effect of the diffraction. As a result, the cloned
image in the transverse profile of the probe beam is tightly
focused. We further note from Fig. 8(c) that the feature size in
the cloned image is reduced by a factor of 2 as compared to
the incident control field image. This suggests that the finesse
of the transmitted cloned image is two times greater than that
of the incident control image. Hence, the feature size of the
cloned image is decreased twofold.

IV. CONCLUSION

In conclusion, we have studied the possibility of cloning of
an arbitrary images encoded in the spatial profile of a coupling
beam onto a probe beam. Our method is based on coherent
population trapping in a three-level atomic � system. We
have considered both, weak probe fields and probe fields with
strength comparable to the control field, and have discussed the
differences for light propagation in the weak and strong field
limits. In the “strong field limit,” where the probe and control
fields are of comparable strength, we first calculated the atomic
susceptibilities, including both linear and nonlinear effects for

the two fields. We then found that a waveguide-like structure
can be formed inside the medium at red detuning of the probe
field when applying a Gaussian control and a super-Gaussian
probe. At the same time, a transparency window centered in the
waveguide, which can be controlled by changing the relative
intensities of the probe and control fields. This transparency
window allows us to transfer the transverse intensity profile
of the control onto the transmitted probe field. By numerically
solving the propagation equations for both fields, we found
that the spatial profile of the control is gradually mapped onto
the transmitted probe already after a few Rayleigh lengths.
Interestingly, the feature size in the spatial profile of the probe
field is reduced compared to that of the original control field
structure. In order to show that our method works for arbitrary
images, different spatial profiles of the control and probe fields
are considered. In particular, the three letters “CPT” initially
encoded on the control field are cloned onto the transmission
profile of the probe. In this process, the feature size is decreased
by a factor of 2. Interestingly, even though cloning of arbitrary
images onto the probe field is constructed nicely, the control
field image is severely distorted due to diffraction throughout
the propagation.
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APPENDIX: COEFFICIENTS FOR SUSCEPTIBILITY

N31 = (|G|2{γ (iγ + �1)[�2 + (�2 − �1)2]

+ [γ (i� + �2 − �1) + �(�2 + �1)]|g|2
+ γ (i� + �2 − �1)|G|2}g) (A1)

N32 = (|g|2{γ (iγ + �2)[�2 + (�2 − �1)2]

+ γ (i� − �2 + �1)|g|2 + [γ (i� − �2�1)

+�(�2 + �1)]|G|2}G) (A2)

D = γ |G|6 + |G|4{3|g|2(γ + 2�) + 2γ [γ�

+�1(�2 − �1)]} + γ |g|2{2|g|2[γ� + �2(�1 − �2)]

+ |g|4 + (γ 2 + �2)[(�2 − �1)2 + �2]}
+ |G|2{|g|2[(4γ + �)�2

2 + 2γ�(2γ + 3�)

+ 2(� − 4γ )�2�1 + (4γ + �)�2
1

] + 3|g|4(γ + 2�)

+ γ
(
γ 2 + �2

1

)
[(�2 − �1)2 + �2]

}
. (A3)
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