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Quantum effects in the interaction of off-resonant coherent light with a single atom
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Well-controlled nonlinear interactions between light-field pulses and single atoms could be used to implement
optical quantum information technologies based on qubits encoded in superpositions of coherent states of light.
Here, we investigate the transformation of a coherent light field input at a single atom sufficiently far from
resonance to limit the decoherence effects associated with random excitations of the atom. The conditions for
suppressing multiphoton scattering to implement arbitrarily large shifts of the coherent light amplitude without
decoherence are studied. It is shown that quantum-controlled coherent shifts can be achieved by sufficiently long
coherent pulses, indicating the possibility of generating superpositions of coherent states with large amplitude
differences. The dominant multiphoton scattering effect associated with four-wave mixing is also identified, and
the spectral and temporal characteristics of the entangled photon pairs generated by this process are discussed.
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I. INTRODUCTION

Quantum optics has long been a testing ground for
quantum-information-related technologies, since it combines
the reliable control of field coherence by conventional linear
optical elements with the possibility of precise measure-
ments by photon detection. Ideally, a well-controlled optical
nonlinearity would complete the quantum optical toolbox
by adding unconditional quantum gate operations based on
photon-photon interactions. Initially, it was hoped that the
interaction of light with a single atom in a microcavity
would provide the solution, and initial experimental results did
confirm that the nonlinear effects observed in such a system
would be sufficiently strong to realize interactions between
individual photons [1]. However, these initial results were
based on continuous-wave input fields and their application
to individual photons in well-defined finite-time pulses is
not immediately obvious. As the variety and the quality of
technical implementations improve, the question of whether
quantum information technologies could be based on nonlinear
optics has attracted renewed interest [2–7]. In particular, the
fact that light-field propagation effects need to be taken into
account has been increasingly recognized, and the limitations
of device fidelity caused by nonlinear scattering in the time-
frequency degree of freedom have been analyzed in a number
of theoretical works [8–21].

Unfortunately, the present methods of analysis have not
resulted in any simplifying intuitive insights, strengthening
the impression that the light-matter interaction in free space
is just too random and complex for any meaningful control at
the quantum level [12,14,16]. It may therefore be helpful to
take a step back, and to examine the way that the light-matter
interaction is described in quantum mechanical models. What
exactly is the cause of the difficulties, and might there be a
way to find a more simple description of the interaction within
a useful limit?
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Since the idea of nonlinear switching works well in the
classical limit, it has been suggested that the problem might
be solved by using coherent states of light with high photon
numbers [2,5,22]. In this limit, the nonlinearity of off-resonant
interactions between light and matter could be sufficient to
cause the desired quantum effects without any additional
decoherence caused by nonlinear scattering between different
frequencies. However, a more detailed theoretical analysis
of the interaction between a coherent field and a single
photon in a nonlinear medium shows that it is difficult
to avoid nonlinear scattering effects between the different
spatiotemporal modes describing the propagation of the light
field through the medium [14,18]. Nevertheless the robustness
of optical coherence in the linear limit suggests that the
absorption and reemission of multiple photons will not nec-
essarily result in decoherence. It may therefore be important
to examine the quantum physics of photon absorption and
emission in more detail, in order to distinguish coherent and
incoherent optical effects at a more fundamental level. For
this purpose, we here consider the interaction of a coherent
input field with a single-atomic system. Although this kind of
coherently excited atomic system has been studied extensively
using semiclassical models of the light-matter interaction,
a complete quantum mechanical description of the output
light field is nontrivial, since it generally involves quantum
interferences between a large number of sequential photon
absorptions and reemissions. As we show in the following,
the problem can be simplified considerably by analyzing the
interaction terms that couple the light field to an atomic
system. In particular, it is possible to show that a large number
of absorption and reemission events can be summarized by
a simple coherent shift of the light field, corresponding to
the effects of coherent atomic dipole emission. Significantly,
we can show that this fully coherent dipole emission can
involve a large number of photons, despite the fact that it
is associated with the dipole of a single-atomic system. It may
therefore be possible to implement quantum-controlled shifts
of coherent states that can entangle two ground states of an
atomic three-level system with the two-dimensional Hilbert
space formed by two nearly orthogonal coherent states of the
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light field. We also show that the effects of quantum noise
associated with spontaneous absorption and emission events
can be described by pairs of quantum jump events that generate
pairs of photon states that are displaced in the optical phase
space by the field amplitude of the coherent emission. These
photon pairs can be described by an entangled two-photon
wave function similar to the two-photon wave functions of
down-converted photon pairs. It is pointed out that these two
photon states describe the effects of squeezing associated with
four-wave mixing at the single-atom nonlinearity. Thus, the
incoherent effects in the off-resonant light-matter interaction
can be traced back to the inadvertent squeezing of the vacuum
at frequencies far away from the original input frequency.

The rest of the paper is organized as follows. In Sec. II,
we introduce a simple model of one-dimensional light-field
propagation and local interaction with an atomic system.
We describe the propagation of light by time-dependent
operators and derive the effective Hamiltonian that describes
the dynamics of the atom and its interaction with the field.
In Sec. III, the complex amplitude of the input coherent
field is subtracted from the field operators to obtain effective
field operators for which the coherent input state is an
effective vacuum. It is then possible to include the coherent
input field in the atom dynamics, separating its effects from
the effects of the light-matter interaction. In Sec. IV, the
interaction Hamiltonian is expressed in terms of eigenstates
of the coherently driven atom and transitions between those
eigenstates. All transitions between the eigenstates are then
correlated with the emission of photons into the effective
vacuum of the coherent input field. In Sec. V, it is shown
that, in the absence of quantum jumps, the ground state of the
coherently driven atom displaces the amplitude of the coherent
field by a constant amount corresponding to the dipole of the
ground state induced by the driving field. The conditions under
which quantum jumps are sufficiently unlikely to be neglected
are considered. Section VI discusses a possible application of
large coherent shifts to a hybrid system of atomic qubits and
qubits formed by superpositions of nearly orthogonal coherent
states. Section VII discusses the quantum states of the photon
pairs emitted as a result of the quantum jumps between the
dressed states of the driven atom. Section VIII summarizes the
results and concludes the paper.

II. LIGHT-FIELD PROPAGATION AND INTERACTION
WITH A LOCAL ATOMIC SYSTEM

We consider the interaction between a light field propa-
gating in one dimension and a single atom interacting with
the field at a specific point, x = 0. Note that this is different
from the situation in a waveguide, where the light field can
propagate in two directions, and the interaction with the
atom may change the direction of propagation. In general,
the one-dimensional description of light-field propagation can
be justified by identifying the absolute value |x| = r with the
distance from the atom, and the sign of x with the propagation
direction, so that incoming waves are described by x < 0 and
outgoing waves are described by x > 0. As explained in [23],
this description can even be applied to the spherical waves of
free-space emission. For practical purposes, however, it will
be helpful to consider a realization where the incoming and

the outgoing fields propagate in a well-focused beam shape
along the axis of an optical cavity. The simplest realization
of a well-controlled one-dimensional atom system would be
a single atom in a one-sided cavity system, where almost
100% of the spontaneous emission from the atom is emitted
into the direction of the lower-reflectivity mirror [9]. Since
the excitation of the atom is the time-reversed process of the
emission, the incoming light must come from the same side of
the cavity, so that x < 0 describes incoming light at a distance
of r = −x from the cavity, while x > 0 describes outgoing
light at a distance of r = x. Significantly, the spatial degree
of freedom x does not simply describe the physical position,
but combines information about the distance from the system
with the direction of propagation. In this manner, incoming
light can be separated from outgoing light, and all propagation
effects can be described by a unidirectional shift of position
with a constant velocity of c in the positive x direction.

In the following, we will describe the light field in space and
time by using the continuous modes defined by the annihilation
operators b̂(x) of a photon at position x. For normalization
purposes, the commutation relations of these operators are
given by the Dirac δ function,

[b̂(x),b̂†(x ′)] = δ(x − x ′). (1)

The relevant transition of the atom can be described by
the Pauli operators σ̂i for the two-level system defined by
the ground state |g〉 and the excited state |e〉. Specifically, the
operator σ̂z describes the energy of the atom, with eigenvalues
of +1/2 for the excited state and −1/2 for the ground state.
The complex dipole of the atom is then described by the atomic
annihilation operator,

σ̂− = |g〉〈e|. (2)

An extension to multilevel systems is straightforward, requir-
ing merely a proper labeling of the possible transitions to
distinguish their effects on the light field. For the sake of
simplicity, we will assume that there is only one relevant
transition involved in the interaction, so that a two-level system
is adequate for the description of the atom.

The total Hamiltonian of the light-matter interaction can be
separated into three parts,

Ĥ = Ĥlight + Ĥint. + Ĥatom, (3)

where Ĥlight describes the propagation of light in free space,
Ĥint. describes the interaction between the field and the atom,
and Ĥatom describes the dynamics of the atomic system. We
first simplify the problem by solving the propagation of light
in free space in the Heisenberg picture, so that the propagation
dynamics can be expressed by the time dependence of the
annihilation operators,

b̂(x,t) = b̂(x − c(t − t ′),t ′). (4)

Effectively, light-field propagation turns the spatiotemporal
modes into elements of a quantum shift register, where the
index x at t = 0 defines the time t = −x/c at which the mode
interacts with the atom. To simplify the notation, the operators
of the light field can be labeled according to their arrival time
at the atom,

b̂(t) = b̂( − c(t − t ′),t ′). (5)
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In addition, we assume that the light field is described by
a carrier frequency ωlight that is detuned from the atomic
resonance ωatom by

ωδ = ωatom − ωlight. (6)

The coupling between the atom and the light field can be
described by a local interaction with the mode b̂(t), where the
coupling coefficient is given by the dipole relaxation rate �,
which is equal to one-half of the spontaneous emission rate
of the atom [9,23]. The effective time-dependent Hamiltonian
describing the light-matter interaction can then be written as

1

h̄
Ĥeff = ωδσ̂z −

√
2�c[b̂(t)σ̂ †

− + b̂†(t)σ̂−]. (7)

This Hamiltonian describes the time evolution of the quantum
state, where b̂(t) indicates that the effects of the interaction act
on different parts of the multimode light field as the light field
propagates past the atom. In principle, this operator can be used
to formulate the Schrödinger equation in the photon-number
basis, and the output state of the interaction dynamics could
be found by integrating the quantum coherent superpositions
of all possible sequences of absorption and reemission, as was
done for the two-photon case in [8]. However, this approach
is somewhat impractical in the case of a strong coherent input
field due to the large number of possible absorptions and
reemissions associated with the high photon number in the
input. In the following, we will therefore adapt the formulation
of the interaction to the specific situation of a coherent input
field in order to identify the essential physics of the interaction
in the context of a strong off-resonant driving field.

III. COHERENT-STATE INPUT AS AN
EFFECTIVE VACUUM

Coherent states correspond to a vacuum state displaced
from the zero field by an amplitude of α, which corresponds
closely to the field amplitude used in semiclassical theories
of the light-matter interaction. In the multimode case, the
coherent state is defined by the amplitudes in each mode,
as given by the eigenvalues of the annihilation operators. For
continuous time-dependent fields

b̂(t)|β(t)〉 = 1√
c
β(t)|β(t)〉, (8)

where β(t) is normalized so that |β(t)|2 gives the average
rate of photons incident on the atom at time t . Using all
of the amplitudes β(t), it is possible to define a multimode
displacement operator D̂β , such that the coherent state can be
written as a displaced vacuum,

|β(t)〉 = D̂β |vac〉. (9)

Thus, the coherent state can be treated as an effective vacuum
with regard to a zero-point field value of β(t). The difference
between this zero-point field and the quantum mechanical field
described by the annihilation operators b̂(t) can be represented
by the effective field operators

b̂eff(t) = D̂β b̂(t)D̂†
β

= b̂(t) − 1√
c
β(t). (10)

The effective field operators b̂eff(t) describe the light-matter
interaction in terms of photon absorption and emission events
relative to the effective vacuum defined by |β(t)〉. In particular,
the application of the effective creation operator b̂

†
eff(t) to the

initial coherent state describes the generation of an effective
single-photon state,

|�(t ′)〉 = b̂
†
eff(t

′)|β(t)〉
= D̂β b̂†(t ′)|vac〉. (11)

As the second line of Eq. (11) shows, this state can also be
obtained by displacing the state of a single photon at time t ′
by the coherent amplitudes β(t). Likewise, a series of multiple
effective emissions at different times t ′ can be expressed by
the corresponding coherently displaced multiphoton states.

By describing the quantum state of the light field in terms
of displaced photon number states, we can summarize the
effects of the coherent field amplitude on the atom and express
the remaining interaction in terms of a limited number of
additional photon emissions caused by transitions between the
excited state and the ground state of the atom. The Hamiltonian
describing the dynamics can then be expressed as

1

h̄
Ĥeff = ωδσ̂z −

√
2�[β(t)σ̂ †

− + β∗(t)σ̂−]

−
√

2�c[b̂eff(t)σ̂
†
− + b̂

†
eff(t)σ̂−]. (12)

Significantly, the part of the light-matter interaction that
describes the effect of the coherent driving field on the atom
is now independent of the quantum state of the light field and
can be treated as part of the internal dynamics of the atom. It is
therefore possible to summarize a large part of the interaction
dynamics by including the semiclassical response of the atom
to the field in the description of the atom—a method also
known as “dressing” the atom in the field. However, the fact
that the atom is usually in a partially excited state means that
there can still be a large number of effective emissions of
displaced photon states into the effective vacuum. To keep
track of these additional emissions, it is useful to consider
the dynamics of the atom in the presence of (or dressed in) a
coherent driving field.

IV. DRESSED STATES OF THE ATOM

If we assume that the coherent field changes only slowly,
the semiclassical part of the Hamiltonian can be diagonalized
to obtain dressed-state solutions for stationary states of the
coherently driven atom. Specifically, the atomic Hamiltonian
is now proportional to a Pauli operator associated with an axis
tilted by an angle of θ from the original z direction,

σ̂ ′
z = cos θσ̂z + sin θ 1

2 (e−iφσ̂− + eiφσ̂
†
−), (13)

where φ is the phase of the field amplitude β(t) and θ depends
on the ratio of amplitude |β(t)| and detuning ωδ according to

θ = arctan

(
2
√

2�

ωδ

|β(t)|
)

. (14)

The change to the dressed-state basis also modifies the
description of transitions between the eigenstates of the
atomic Hamiltonian. These transitions can be represented by
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a transformed atomic annihilation operator,

σ̂ ′− = cos2

(
θ

2

)
σ̂− − ei2φ sin2

(
θ

2

)
σ̂
†
− − eiφ sin θσ̂z. (15)

With this transformation, it is possible to express the interac-
tion Hamiltonian in terms of transitions between the dressed
states of the atom. The result reads

1

h̄
Ĥeff = ωβσ̂ ′

z −
√

2�c sin θ [e−iφ b̂eff(t) + eiφb̂
†
eff(t)]σ̂

′
z

−
√

2�c cos2

(
θ

2

)
[b̂eff(t)σ̂ ′†− + b̂

†
eff(t)σ̂

′−]

−
√

2�c sin2

(
θ

2

)
[b̂†eff(t)σ̂

′†− + b̂eff(t)σ̂ ′−]. (16)

In this formulation of the Hamiltonian, it is possible to separate
the dynamics into a time evolution that conserves σ̂ ′

z and a
series of quantum jumps between the eigenstates of σ̂ ′

z that
are correlated with discontinuous changes in the light field
represented by the creation of a photon in the effective vacuum
described by the coherent field. Since the quantum jumps result
in the creation of photon states in the effective vacuum, the
propagation of these photon states away from the atom leaves
an irreversible record of the quantum jump in the emitted field.
Although the process is coherent and the output state should
be expressed by a superposition of different quantum jump
times, the fact that the output-state components can always
be distinguished by the number of photons effectively created
in the output field means that it is convenient to expand the
solution in terms of this number, starting from the solution
for zero quantum jumps. If this series converges, it is possible
to integrate the Schrödinger equation by considering only the
lowest relevant numbers of quantum jumps in the solution,
similar to the Feynman path approach to interactions between
elementary particles.

In a specific scenario, the input light field β(t) will be
time dependent. However, we can assume that the time
dependence is sufficiently slow compared to the detuning
dynamics described by ωδ , so that the quantum state of the
atomic system will follow the changes of the eigenstates of
σ ′

z(t) adiabatically. If the atom is initially in the ground state,
it will remain in the instantaneous ground state |g′〉 unless a
quantum jump takes it to the excited state. Without a driving
field, such quantum jumps would be impossible, since the
excitation of the atom would require the annihilation of a
photon, and no such photon is available in the input state.
However, the presence of the driving field makes such quantum
jumps from ground state to the excited states possible, as

expressed by the product of the creation operators b̂
†
eff(t)σ̂

′†−
in the Hamiltonian. This operator results in a transition to
the excited state and a simultaneous creation of a photon in
the effective vacuum represented by the coherent input field.
The probability of such a quantum jump for an infinitesimal
time interval dt is given by the interaction coefficient in the
Hamiltonian. For the transition from ground state to excited
state, the probability per time interval is

dPjump(g′ → e′)
dt

= 2� sin4

(
θ

2

)
. (17)

Note that 2� is the spontaneous emission rate of the excited
state in the absence of a driving field. For driving fields that
are sufficiently weak compared to the detuning (θ � 1), the
rate of transitions is proportional to the fourth power of the
field amplitude |β(t)|. In this limit, we can expect the atom
to remain in the dressed ground state |g′〉 during most of the
dynamics, with only a small number of quantum jumps to the
excited state.

Once the atom is in the excited state due to a quantum jump,
the probability of another quantum jump back to the ground
state is given by

dPjump(e′ → g′)
dt

= 2� cos4

(
θ

2

)
. (18)

In the limit of weak driving fields (θ � 1), this probability is
equal to the spontaneous emission rate of the atom. The atom
will therefore return to the dressed ground state within a time
comparable to the lifetime of the excited state in the absence
of a driving field.

In general, the response of the atom to the coherent
driving field is given by a coherent superposition of all
possible combinations of quantum jumps. Significantly, each
combination of quantum jumps is distinguishable in the output
state of the light field, since the excitation of a photon in the
effective vacuum represented by the input state transforms the
state of the light field to an orthogonal state. Different quantum
jump sequences are therefore represented by orthogonal states
of the output light field, and no integration over paths with
indistinguishable outcomes is necessary.

V. COHERENT SHIFT OF THE OUTPUT FIELD

The Hamiltonian given in Eq. (16) acts on the light field in
two different ways. In addition to the quantum jumps between
the eigenstates of the dressed states, there is also the interaction
represented by the product of σ̂ ′

z and the field operators. If we
assume that no quantum jumps occur and the atom is always
in its ground state |g′〉, the approximate Hamiltonian of the
light-matter interaction is given by

Ĥ0

h̄
= −ωδ

2
+ 1

2

√
2�c sin θ [e−iφ b̂eff(t) + eiφb̂

†
eff(t)]. (19)

This Hamiltonian acts on the light field as it passes the
atom. Specifically, it generates a displacement of the state
that changes the amplitude of the coherent input state by an
amount proportional to the coefficients in the Hamiltonian.
Using Eq. (14), this coefficient can be expressed in terms of
the input field amplitude,

1

2

√
2� sin θeiφ = 2�√

ω2
δ + 8�|β(t)|2

β(t). (20)

The nonlinear dependence of the coefficient on β(t) reflects the
saturation effects in the excitation of the atom by the driving
field. In terms of the time scales of the atom-field dynamics,
the condition for weak excitation (θ � 1) is given by ωδ 	
8�|β(t)|2, in which case the approximate value of the coherent
shift induced by the atom in the optical field is given by the
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semiclassical linear response,

βout(t) = β(t) − i
2�

ωδ

β(t). (21)

In the limit of weak excitation by the off-resonant driving
field, the response of the single atom can therefore change
the coherent amplitude of the input light in accordance with
the semiclassical theory, without any decoherence of the light
field.

Significantly, the coherent shift induced by the single atom
can involve a large number of photons. For a rectangular pulse
with constant amplitude β(t) = β0, the average photon number
in the pulse is given by |β0|2T , where T is the duration of the
pulse. Therefore, the coherent-state amplitude of the total pulse
is αin = β0

√
T , and the coherent shift induced by the single

atom is

αout − αin = −i
2�

ωδ

β0

√
T . (22)

By making the pulse time arbitrarily long, a single atom can
thus induce an arbitrarily large coherent shift. This means that
the quantum state of a single atom could be used to control
the amplitude of coherent states, permitting the realization
of atom-light quantum gates that could encode quantum
information into superpositions of nearly orthogonal coherent
state. However, it is necessary to ensure that the amplitude β0

is indeed low enough to neglect the effects of quantum jumps
during the pulse time T . According to Eqs. (14) and (17), the
rate of quantum jumps for an amplitude of β0 is

dPjump(g′ → e′)
dt

= 1

2�

∣∣∣∣22�

ωδ

β0

∣∣∣∣
4

. (23)

If the amplitude β0 is expressed in terms of the total coherent
shift given in Eq. (22), the total probability of a quantum jump
during the pulse time T can be given as

Pjump ≈ |2(αout − αin)|4
2�T

. (24)

To achieve coherent shifts larger than 1, it is therefore
necessary to make the duration of the input pulses sufficiently
longer than the spontaneous emission lifetime of the excited
state.

Note that there is no theoretical limit to the amount of
coherent shift that can be obtained at negligible quantum
jumps. However, the coherence of the atom and the coherence
of the input pulse must be stable over the pulse time T . For
typical atomic transitions at optical freuqencies, 1/� will
be several nanoseconds long, so it is desirable to achieve
coherence times in the microsecond regime in order to suppress
quantum jump effects at sufficiently large coherent shifts.
According to Eq. (24), the coherent shift that can be obtained
with �T ≈ 103 and a quantum jump probability of Pjump = 0.1
is still only αout − αin ≈ 1.9. In practice, it may be difficult to
push the limit much farther due to the difficulty of achieving
long coherence times. This result thus illustrates the technical
challenge involved in controlling macroscopic coherent shifts
through the microscopic degrees of freedom of a single atom.

VI. QUANTUM CONTROL OF COHERENT SHIFTS BY
GROUND-STATE SUPERPOSITIONS

One exciting possibility that emerges from the observation
that a single atom can induce arbitrarily large coherent shifts
in its linear interaction with an input field is the control of
coherent-state amplitudes by quantum states of the atom.
In particular, it may be possible to implement a quantum-
controlled shift gate, if the interaction between the atom and
the light field depends on the quantum state of the atom [22].
For simplicity, we will consider a three-level atom described
by the states |g〉, |e〉, and |d〉, where the third state does not
interact with the light field at all. The atom can now be used
as a qubit, where information can be encoded in |g〉 and |d〉.
To prepare and measure the atom, it may be useful to drop it
through the cavity, using strong pump pulses for preparation
and measurement before and after it passes through the cavity
to interact with the one-dimensional field incident on the face
of the cavity. A schematic setup for such an experiment is
shown in Fig. 1. While the atom is in the cavity, it interacts
with the coherent input pulse according to the theory discussed
above. If Pjump � 1, the total effect of the interaction will be
a conditional phase shift,

Û |α〉 ⊗ |d〉 = |α〉 ⊗ |d〉,
(25)

Û |α〉 ⊗ |g〉 = |e−iχα〉 ⊗ |g〉,
where χ = 2�/ωδ � 1. For sufficiently large coherent am-
plitudes α, the coherent states in the output have negligible
overlap. It is then possible to generate superpositions of
distinguishable coherent states by preparing the atom in an
equal superposition of |g〉 and |d〉, interacting the coherent
light with the atom, and performing a projective measurement
of an equal superposition of |g〉 and |d〉 after the interaction.
The final field state after this operation reads

(〈g| + 〈d|) Û |α〉 ⊗ (|g〉 + |d〉) = |e−iχα〉 + |α〉. (26)

field input |α

field output
|e−iχα + |α

� atom

state preparation
|g + |d

measurement
|g + |d

FIG. 1. Illustration of an experimental realization of a superposi-
tion of coherent states with different amplitudes. A three-level atom
is prepared in an equal superposition of its ground state |g〉 and a
state |d〉. It is then dropped through the one-sided cavity, where the
state |g〉 induces a phase shift χ in the incident light field |α〉, while
the state |d〉 has no effect. Finally, the atom exiting the cavity is
detected in an equal superposition of |g〉 and |d〉, resulting in the
desired superposition in the optical output.
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The interaction between strong coherent light and a single atom
could therefore be used to realize a cat-state superposition of
coherent states with negligible overlaps. Vice versa, evidence
for such a nonclassical coherence in the output field can be
used to confirm whether a quantum-controlled shift gate has
been realized or not.

The present scenario suggests that a possible solution to
the problems raised by uncontrolled nonlinear scattering in
the spatiotemporal degrees of freedom of the light field might
be a hybrid architecture of atoms and fields, where the linear
interaction between the light field and the atom is controlled by
the quantum state of the atom. Importantly, the results derived
above show that this approach may even work if the response
of the atom induces very large coherent shifts. However,
this approach assumes that the quantum jumps that are also
generated by the Hamiltonian in Eq. (16) can be neglected.
In practice, this may require a careful trade-off between the
coherent shift and the errors caused by the quantum jumps, as
expressed by Eq. (24). Note that quantum jumps occur only
if the atom is in the |g〉 state, so that a single quantum jump
immediately identifies the state and destroys the coherence
between |g〉 and |d〉. The generation of a superposition of
coherent states therefore requires that Pjump � 1. However,
the quantum jumps themselves may have interesting and
potentially useful nonclassical properties of their own, so
it may be important to understand the properties of these
nonlinear contributions to the response of the atom in more
detail.

VII. PHOTON-PAIR EMISSION BY TRANSITIONS
BETWEEN DRESSED STATES

As discussed in Sec. IV, a quantum jump that takes the
atom from its dressed ground state |g′〉 to the dressed excited
state |e′〉 will be followed by a quantum jump back to the
ground state within a time that remains close to the original
lifetime of the excited state without driving field. In the limit
of weak excitation (θ � 1), these quantum jump pairs are
approximately independent of each other, since the atom will
have relaxed back to the ground state long before the next
quantum jump initiates another pair event.

In the light field, each quantum jump is represented by
the creation of a photon in the effective vacuum. In addition,
the sign of the displacement is reversed during the time
interval between the quantum jumps. However, the effect of
this displacement is directly related to the value of θ and can
be neglected for θ � 1. We can therefore describe the effects
of a quantum jump event in the output of the light field in
terms of the wave function of a photon pair generated in the
effective vacuum represented by the coherent field. The total
probability density for the photon pairs is given by Eq. (17).
The probability distribution over the time difference |t2 − t1|
between the initial quantum jump and the final quantum jump
is given by an exponential function with a relaxation rate of
2�′ = 2� cos4(θ/2), as given by Eq. (18). During the time
interval between the jumps, the phase dynamics of the excited
state applies, so that the total phase of the two-photon wave
function is given by −ωβ |t2 − t1|. With this information, it
is possible to write down the two-photon wave function that
describes the effects of a quantum jump event on the output

state,

ψ(t1,t2) =
√

2�′ tan2

(
θ

2

)
exp[−(�′ + iωβ)|t2 − t1|]. (27)

Since the two photons are indistinguishable, the definition
of t1 and t2 is rather arbitrary. However, the absolute value
of the difference ensures that the later time appears with a
positive sign, and the earlier time appears with a negative
sign in |t2 − t1|. Interestingly, this means that there is a
correlation between photon arrival time and photon frequency.
The frequency of the first photon is reduced by the difference
between atomic frequency and the input frequency, while the
frequency of the second photon is increased to match the
atomic frequency. This suggests a fairly simple picture of
the nonlinear scattering process in time, where two photons
arrive simultaneously at the atom, and one photon is absorbed
resonantly by taking the necessary energy difference from the
other photon. Since the photon that has supplied this energy
difference is not absorbed, it arrives at the detectors earlier,
while the absorbed photon is emitted only after a time delay
corresponding to the spontaneous emission time.

It is also possible to interpret the pair emission as a
squeezing effect associated with the quantum limit of four-
wave mixing at a single atom. Since the photons are emitted
at frequencies that are quite different from the input frequency
ωlight, the output state is a squeezed vacuum, where the
quadratures of the frequencies near the atomic resonance ωatom

are entangled with the quadratures of 2ωlight − ωatom. The
amount of squeezing is directly given by the Fourier transform
of the two-photon wave function,

ψ(ω1,ω2) =
√

2�′ tan2

(
θ

2

)
δ(ω1 + ω2)

×
(

1

�′ + i(ωβ − ω1)
+ 1

2�′ + i(ωβ + ω1)

)
. (28)

Thus, the complete response of a single-atomic system to an
off-resonant coherent driving field can be described by the
combination of a linear coherent shift and four-wave-mixing
effects that result in sideband squeezing. More complicated
responses are possible at higher input intensities, but the
quantum state in the output can always be expressed in terms of
a superposition of different quantum jump sequences with the
appropriate linear shift of the coherent amplitude. The present
analysis provides a detailed description of these quantum
effects and can be used to test intuitive assumptions about the
usefulness of optical nonlinearities for quantum technologies.

VIII. CONCLUSIONS

We have analyzed the interaction between coherent light
and a single atom using a completely quantum mechanical de-
scription of light-field propagation and field-atom interaction.
By changing the representation of the field and the atomic
system, we found that the interaction can be described by a
combination of coherent shifts and a sequence of temporally
correlated quantum jumps that result in the generation of
additional photons in the effective vacuum represented by the
initial coherent state. If the excitation of the atom is sufficiently
low, as is typically the case for strongly detuned fields, the
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coherent shift represents the linear response of the atom and the
quantum jumps correspond to photon scattering by four-wave
mixing. Significantly, the linear shift can be made arbitrarily
strong by increasing the pulse duration. It may therefore be
possible to realize a quantum-controlled coherent shift of the
light field, where the control qubit is encoded in the electronic
states of the atomic system. Such a quantum-controlled shift
gate could then be used to generate cat-state superpositions of
coherent states with negligible overlap.

The main nonlinear effect of the light-matter interaction can
be expressed in terms of the generation of additional photon
pairs, where one of the photons is resonant with the atom
and the other photon is emitted at a frequency of 2ωlight −
ωatom. These photon pairs can also be explained as an effect of
vacuum squeezing caused by four-wave mixing between the
input field and the vacuum fluctuations of the two sidebands.
The dominant nonlinear effect in the field-atom interaction
can therefore be described in terms of a highly frequency-
dependent third-order nonlinearity that results in particularly
strong interactions between the input field and frequencies
at the atomic resonance. Taking into account such resonant
nonlinearities may provide significant new insights into the

possibilities and limitations of nonlinear optical elements for
quantum information processes. In particular, it is likely that
the main practical difficulties of achieving effective single-
mode operations in nonlinear quantum optical devices will
originate from four-wave-mixing effects associated with the
off-resonant atomic states involved in the nonlinear response
of the medium.

Essentially, we have shown that the choice of an appropriate
representation is crucial for the description of optical quantum
effects involving a large number of photons. It may therefore be
interesting to consider the application of our approach to more
complicated systems, in order to identify the relevant physical
effects in nonlinear quantum optical devices. In particular, it
seems to be possible to achieve a better intuitive understanding
of the quantum dynamics involved in the off-resonant light-
matter interaction, where a large number of photons is needed
to achieve any significant effects.
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