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Adiabatic evolution of light in an array of parallel curved optical waveguides
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Adiabatic evolution of light in parallel curved optical waveguide array is investigated theoretically. This
problem is shown to bear a close connection with the process of coherent population transfer in a “bow-tie”
model in quantum physics. Under certain conditions on the geometry of the waveguides and the optical properties
of the system complete light transfer between the outer waveguides is achieved. Special attention is paid to the
case of three waveguides, which is analyzed using the solutions of the well-known bow-tie model. The analytic
solution is used to design recipes for creating arbitrary superpositions of light intensity between the waveguides,
with possible applications in achromatic optical multiple-beam splitters. For more than three waveguides complete
light transfer between the outer waveguides and beam splitting is demonstrated numerically.
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I. INTRODUCTION

The analogies between wave optics and quantum mechanics
were made since the dawn of quantum mechanics in the
pioneering works of de Broglie [1] and Schrödinger [2].
The wave function itself is named by the analogy with wave
optics. In the past decade analogies have been going in the
opposite direction: some of the very well-known techniques
from coherent quantum control of atoms and molecules found
analogs in the realm of optical physics. Examples include Rabi
oscillations [3], Landau-Zener tunneling [4–6] and stimulated
Raman adiabatic passage (STIRAP) [7–10]. The number
of quantum-optical analogies appearing in the literature is
still growing rapidly, as described recently in a comprehen-
sive review with a special focus at the use of waveguide
structures [11].

In this paper we propose an experiment for light transfer
between the two outer waveguides of a waveguide array by
using the ideas of adiabatic population transfer in a multi-
state quantum system with crossing energies. This technique
promises to be both efficient and robust against variations
of the parameters, such as the transitory curvature of the
waveguides (WGs) and the couplings between them; therefore,
the technique is expected to be achromatic. In addition to the
complete light transfer between the two outer WGs in the
array the technique allows us to create arbitrary superpositions
of light intensity between the WGs; therefore, the scheme
can serve as an achromatic optical multiple beam splitter.
In contrast to the previous achromatic adiabatic multiple
beam splitter, which uses an analog of STIRAP and which
is unidirectional [12,13], here the splitting device works in
forward and backward directions of light propagation equally
well.

II. PARALLEL CURVED WG ARRAY

An optical realization of Landau-Zener-Stückelberg-
Majorana (LZSM) tunneling [14] in WG couplers with a
cubically bent axis was proposed by Longhi [5] (see Fig. 1).
The propagation of the amplitudes a1(z) and a2(z) of light
waves trapped in the two WGs in the scalar and paraxial
assumptions for the electromagnetic field is described by a

system of two coupled differential equations written in a matrix
form as

i
d

dz

[
a1(z)
a2(z)

]
= 1

2

[
2kz β12

β12 −2kz

] [
a1(z)
a2(z)

]
, (1)

with

k � 48πdAns

λL3
, β12 = β2 − β1.

Here d is the distance between the two WGs of the coupler,
2A is the maximum lateral shift of the WG axis from the
input (z = −L/2) and output (z = L/2) WG planes, ns is the
refractive index of the substrate, λ is the wavelength, L is
the coupler length and βj (j = 1,2) are the propagation
constants. The absolute squares of the amplitudes a1(z) and
a2(z) are the dimensionless light intensities in the WGs, nor-
malized to the total input light intensity: I1(z) = |a1(z)|2 and
I2(z) = |a2(z)|2. Obviously, I1(z) + I2(z) = 1 in the lossless
case. This realization was experimentally demonstrated by
Dreisow et al. [6] and the results were in good agreement with
the theoretical LZSM model for a linear crossing of energy
levels with a constant coupling of finite duration.

Here we generalize this model to an array of N parallel
curved WGs. We consider propagation of a monochromatic
wave with a wavelength λ = 2π/k in a WG array of length L

made of N identical single-mode WGs separated by a distance
d in the transverse x direction. The propagation axis of the
array is assumed to be weakly curved along the paraxial
propagation direction z, as seen in Fig. 2. Then the equation
of light evolution reads

i
d

dz
a(z) = HNa(z), (2)

with a(z) = [a1(z),a2(z), . . . , aN (z)]T , where aj (t) is the am-
plitude of the wave trapped in the j th WG, and Ij (z) = |aj (z)|2
is the corresponding light intensity. The “Hamiltonian” in the
scalar and paraxial electric-field approximations, and with
the assumption of nearest-neighbor tight binding, has the
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FIG. 1. Schematic diagram of a directional coupler for the
observation of LZSM dynamics. The coupler is made of two equal
optical WGs with a cubically bent axis separated by a distance d .

three-diagonal form

HN = 1

2

⎡
⎢⎢⎢⎢⎣

�1 β12 · · · 0
β21 �2 · · · 0

...
. . .

...
0 · · · �N−1 βN−1,N

0 · · · βN,N−1 �N

⎤
⎥⎥⎥⎥⎦ , (3)

with �j = (N + 1 − 2j )kz. Hamiltonians of this type are well
known and well studied in quantum optics, where they describe
a coherently driven chainwise connected quantum system of
discrete energy states [15,16]. We use this analogy below to
describe several possible achromatic devices for light transfer
and multiple beam splitting in WG arrays.

III. THREE-WAVEGUIDE ARRAY

We begin with an array of three coupled optical WGs. The
evolution of light propagating in this array is described by
Eq. (2) where the Hamiltonian reads

H3 = 1

2

⎡
⎣ 2kz β12 0

β12 0 β23

0 β23 −2kz

⎤
⎦ . (4)

The diagonal values ξi and the eigenvalues λi of H3 are
shown in Fig. 3. We assume, without loss of generality, that
k > 0. This Hamiltonian is exactly the same as the one for
a three-level quantum system (with the substitution z → t),

FIG. 2. (Color online) Schematic diagram of an array made of N

parallel curved identical WGs separated by a distance d .

FIG. 3. (Color online) Bow-tie crossing: diagonal values (ξi) and
eigenvalues (λi) vs z for the Hamiltonian H3 of a three-WG system.

with a bow-tie energy diagram. This problem has been solved
analytically by Carroll and Hioe [17] in the case when the
couplings are constant and the WG length is large, L2 � 1/k.
The Carroll-Hioe solution is summarized in Table I; note that
p and q can take any real value between 0 and 1. This analytic
solution allows us to readily derive the conditions for complete
light transfer between the outer WGs and for beam splitting at
arbitrary ratios.

A. Complete light transfer 1 → 3

An important special case is the complete light trans-
fer 1 → 3. The transition probability 1 → 3, according to
Table I, is

P1→3 = (1 − p)(1 − q)

= [
1 − exp

( − πβ2
12/4k

)][
1 − exp

( − πβ2
23/4k

)]
. (5)

We conclude that complete light transfer from WG 1 to
WG 3, I3 → 1, takes place when p → 0 and q → 0. These
conditions, which require

β2
12 � k, β2

23 � k, (6)

imply adiabatic evolution [18]. From here we conclude that
the light transfer in this three-WG array is highly achromatic
(i.e., independent of k) in the frequency range in which the
adiabatic condition (6) is fulfilled.

It is important to note that, as Table I shows, the transition
probabilities P1→3 and P3→1 are equal. The implication is that
this WG device produces two-way light transfer, i.e., complete
light transfer occurs in both directions. This important feature,
which derives from the level crossing nature of the device,

TABLE I. Light intensities In (n = 1,2,3) after the three-WG
coupler driven by the Hamiltonian of Eq. (4) in the limit L2 � 1/k

for different initial conditions (I 0
1 ,I 0

2 ,I 0
3 ). Here p = exp(−πβ2

12/4k)
and q = exp(−πβ2

23/4k).

(I 0
1 ,I 0

2 ,I 0
3 ) I1 I2 I3

(1,0,0) p2 (1 − p)(p + q) (1 − p)(1 − q)
(0,1,0) (1 − p)(p + q) (1 − p − q)2 (1 − q)(p + q)
(0,0,1) (1 − p)(1 − q) (1 − q)(p + q) q2
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FIG. 4. (Color online) Adiabatic light transfer 1 → 3 between
WGs 1 and 3 in a three-WG array. We assume Gaussian-shaped cou-
plings, β12(z) = β23(z) = β0 exp[−(z − L/2)2/ζ 2], with β0 = 50/ζ ,
k = 250/ζ 2, L = 4ζ . Here ζ is used as the unit of length and 1/ζ as
the unit of frequency.

makes it distinctly different from STIRAP-based devices
[7–10], which are unidirectional.

We note that these findings are not limited to the Carroll-
Hioe model, which assumes constant couplings and constant
parameter k. It is only necessary that the adiabatic evolution
conditions are satisfied, which in the general case require
that at each crossing the square of the coupling between the
corresponding WGs is far greater than the derivative of the
difference between the diagonal elements of the Hamiltonian.

An example of adiabatic light transfer 1 → 3 between WGs
1 and 3 is shown in Fig. 4. The light flows smoothly from WG1
to WG3, while some of it resides temporarily in the middle
WG2.

B. Beam splitting

A potentially very important application of the three-
WG array is to be used as an optical beam splitter. The
Carroll-Hioe solution in Table I allows us to readily find the
necessary WG parameters for beam splitting with variable light
intensity ratios. According to the Carroll-Hioe solution, light
propagating in WG 1 will be split in three equal parts by the
WG array, (1,0,0) → (1/3,1/3,1/3), if the couplings satisfy
the relations

p = 1√
3
, q = 3 − √

3

6
. (7)

These values of p and q can be produced by choosing the
values of the WG parameters β12, β23, and k appropriately.
Similar beam splitting is achieved for light arriving in WG 3,
with the exchange of the values of p and q.

If the light arrives in WG 2 it will be split in three equal parts
by the WG array, (0,1,0) → (1/3,1/3,1/3), if the couplings
obey

p = q = 3 − √
3

6
or p = q = 3 + √

3

6
. (8)

FIG. 5. (Color online) Operation of a three-WG variable beam
splitter for different initial conditions (I 0

1 ,I 0
2 ,I 0

3 ): (1,0,0) (left col-
umn), (0,1,0) (middle column), (0,0,1) (right column). The top row
demonstrates beam splitter with intensity ratio 1

10 : 3
10 : 6

10 , the middle
row with ratio 1

3 : 1
3 : 1

3 , and the bottom row with ratio 1
2 : 1

2 : 0 for
(g), 1

2 : 0 : 1
2 for (h), and 0 : 1

2 : 1
2 for (i). The parameter k is taken to

be k = 10/ζ 2 in all frames and L = 4ζ . The couplings are assumed to
have Gaussian spatial dependence, exp[−(z − L/2)2/ζ 2], with maxi-
mum values at L/2 as follows: (a) β12 = 4.786/ζ , β23 = 6.463/ζ ; (b)
β12 = 1.153/ζ , β23 = 3.124/ζ ; (c) β12 = 3.415/ζ , β23 = 2.254/ζ ;
(d) β12 = 3.306/ζ , β23 = 5.561/ζ ; (e) β12 = β23 = 2.173/ζ ;
(f) β12 = 5.561/ζ , β23 = 3.306/ζ ; (g) β12 = 2.626/ζ , β23 = 0;
(h) β12 = β23 = 3.713/ζ ; (i) β12 = 0, β23 = 2.626/ζ .

It is also possible to split light arriving in WG 2 into two equal
parts, (0,1,0) → (1/2,0,1/2); this requires

p = q = 1

2
. (9)

Examples of operation of three-WG variable beam splitters
is illustrated in Fig. 5. We have determined the values of the
couplings β12 and β23 from the Carroll-Hioe model, although
we have used Gaussian-shaped couplings in the simulations.
These values are seen to produce the desired beam splitting
ratios very accurately.

IV. MULTIPLE-WG ARRAY (N > 3)

For an array of arbitrarily many WGs N , described by the
Hamiltonian (3), an exact analytic solution is not known yet.
Nevertheless, it follows from general arguments that complete
light transfer 1 → N is always possible in the adiabatic limit.
The reason is that two of the adiabatic states—with the lowest
and the largest eigenenergies of HN—reduce asymptotically
to states 1 and N in the beginning and the end. For k > 0, the
lowest eigenenergy λ1(z) and the highest eigenenergy λN (z)
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FIG. 6. (Color online) The diagonal values (ξi) and the eigenval-
ues (λi) of the Hamiltonian (11) vs z for a four-WG array.

have the asymptotics

|1〉 ← |λ1(z)〉 → |N〉, (10a)

|N〉 ← |λN (z)〉 → |1〉. (10b)

For k < 0 similar relations apply, with states |λ1(z)〉 and
|λN (z)〉 exchanging their places.

In order to estimate the conditions for adiabatic propagation
of light, we consider an array of four WGs and, for the
sake of simplicity, we assume that all couplings are equal:

FIG. 7. (Color online) Adiabatic light transfer 1 → N between
WGs 1 and N in an array of N = 4 WGs (top) and N = 5 WGs
(bottom). All couplings βj,j+1 are equal to β0 sech(z/ζ ) with β0 =
10/ζ , k = 10/ζ 2, and L = 10ζ .

β12 = β23 = β34 ≡ β. The Hamiltonian now reads

H4 = 1

2

⎡
⎢⎣

3kz β 0 0
β kz β 0
0 β −kz β

0 0 β −3kz

⎤
⎥⎦ . (11)

The diagonal values ξi and the eigenvalues λi of this
matrix are shown in Fig. 6. If light comes in WG1, and if
the propagation is nearly adiabatic then the light will follow
predominantly the lowest eigenvalue λ1(z), which associates
with the WG 1 (and ξ1) initially and WG4 (respectively ξ4) in
the end. The adiabatic condition reads

[λ2(0) − λ1(0)]2 � 3k, (12)

and for the case of equal couplings it is

β2 � 12k. (13)

Examples of complete adiabatic light transfer between the
outermost WGs are shown in Fig. 7 for arrays of 4 (top) and 5
(bottom) WGs. In the simulations shown in Figs. 7 and 8 we
have replaced the variable z in Eq. (11) by tanh(z/ζ ) and we
have assumed hyperbolic-secant couplings, sech(z/ζ ).

Because an analytic solution to the bow-tie chain model
is not known for more than three WGs, the performance of
the multiple-WG device as a beam splitter can be investigated

FIG. 8. (Color online) Operation of a beam splitter with in-
tensity ratio 1

N
: 1

N
: · · · : 1

N
for initial conditions (I 0

1 , I 0
2 , . . . I 0

N ):
(1,0,0, . . . 0) for four (top frame) and five WGs (bottom frame).
All couplings βj,j+1 have spatial dependence sech(z/ζ ) but different
maximum magnitudes (listed below) at L/2, and L = 10ζ . The WG
parameters are (top) N = 4, β12 = 0.600/ζ , β23 = 1.020/ζ , β34 =
1.210/ζ , k = 1.500/ζ 2; (bottom) N = 5, β12 = 1.012/ζ , β23 =
2.993/ζ , β34 = 1.777/ζ , β45 = 4.100/ζ , k = 2.625/ζ 2.
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only numerically. We have found that a proper choice of the
couplings can make the device act as a multiple beam splitter.
We demonstrate splitting of the light intensity in equal parts
for N = 4 and 5 WGs in Fig. 8.

V. CONCLUSIONS

We have introduced a method to create multiple optical
beam splitting and complete light transfer in an array of
multiple WGs by using ideas from the well studied dynamics
of multistate quantum systems in the presence of bow-tie level
crossings. These light transfer devices use adiabatic passage
of light and hence they are expected to be robust against

variations of the light wavelength, the WGs couplings, and
the WGs geometry. The operation of the devices as multiple
beam splitters requires careful tuning of the coupling between
the WGs. For an array of three WGs, we have used the
exact Carroll-Hioe bow-tie model to analytically determine
the parameters needed to construct a variable three-beam
splitter. In WG arrays with more than three WGs multiple beam
splitting is demonstrated numerically for four and five WGs.
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