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Quantum state transfer using stimulated Raman adiabatic passage under a dissipative environment
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We propose a potentially practical scheme to realize arbitrary quantum state transfer between two traveling
atoms that go through a high-finesse cavity by using stimulated Raman adiabatic passage in an atom-cavity-laser
system under a dissipative environment. By numerically simulating the dynamics of the system, we demonstrate
quantitatively that the fidelities of the quantum state transferred between two atoms can be maximized by
elaborately adjusting the peak amplitudes of the laser’s Rabi frequency and the detuning of the Raman transition.
Additionally, the noise effect from the atomic and cavity dissipation can reduce the fidelity. The experimental
feasibility is justified using currently available technology.
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I. INTRODUCTION

Recently, the adiabatic passage technique [1–4] developed
in the adiabatic theorem has shown fruitful application in
quantum state control and quantum information processing
(QIP) such as coherent population trapping [5], lasing without
population inversion [6], and nonclassical state engineering
[7]. It is well known that adiabatic passage techniques mainly
include the stimulated Raman adiabatic passage (STIRAP)
[1,8–12], adiabatic rapid passage [13–16], Raman chirped
adiabatic passage [17–19], Stark chirped rapid adiabatic
passage [20–22], piecewise adiabatic passage [23,24], and
bichromatic adiabatic passage [25].

These adiabatic passage techniques possess significant
advantages such as robustness to environmental noises and
parametric fluctuation. However, the dynamics regarding the
adiabatic passage techniques was not studied sufficiently in
dissipative systems. It is widely believed that the unavoidable
interaction with the environment results in the system being in
decoherence and also in other novel phenomena, thereby the
dissipation plays an increasingly critical role in the field of QIP.
As a result, it is instructive and interesting to investigate more
rigorously the above-mentioned adiabatic passage process by
explicitly considering the coupling between the system and
the external environment [26].

In the present work, we focus on an atom-cavity system
using the STIRAP technique in a dissipative environment,
where a pair of �-type atoms pass through the cavity
along opposite directions with each atom interacting nearly
resonantly with the cavity mode and the laser pulse. In our
model, the noise effects from the atomic spontaneous emission
and the cavity dissipation are treated phenomenologically by
the Markovian master equation in Lindblad form. Based on this
model, we show the possibility of realizing arbitrary quantum
state transfer (QST) between the two traveling atoms in a
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STIRAP process by elaborately adjusting the atom-cavity and
atom-laser coupling strengths and the detuning in the Raman
transition, where the peak amplitudes of the Rabi frequencies
should satisfy the condition G0 � �0 with G0 (�0) the peak
amplitudes of Rabi frequencies of the atom-cavity (atom-laser)
coupling. The relationship between the fidelities and the peak
amplitudes of the laser’s Rabi frequency in the dissipative and
nondissipative cases are numerically analyzed through trans-
forming the Markovian master equation from the Lindblad
form to the Redfield form. We also show that the STIRAP
process can be optimized by elaborately adjusting the values
of detuning and the presence of a dissipative environment
reduces the fidelity of the quantum state transferred.

The remainder of this paper is organized as follows. We
describe the model of our system in Sec. II by introducing
the Lindblad master equation for the noise effect. In Sec. III
we implement the QST between two traveling atoms using the
STIRAP technique and investigate the quantitative relation
between the fidelities and the peak amplitude of the laser’s
pulse and the detuning, respectively. We discuss our results in
Sec. IV and summarize in Sec. V.

II. SYSTEM AND MODEL

As illustrated in Fig. 1(a), the atom-cavity-laser system
under consideration consists of two atoms passing through
a high-finesse cavity with the same velocity v in opposite
directions along the z axis. Additionally, the transmission of
the laser beam is parallel to the y axis (i.e., perpendicular to the
page). Each of the atoms consists of three levels and interacts
with the cavity mode and a laser by a �-type structure, as
shown in Fig. 1(b), where the cavity mode with the frequency
ωc is in near resonance with the transition |e〉 ⇔ |f 〉 (with
the frequency ωef ) and a laser beam with the frequency ωL

couples to the transition |e〉 ⇔ |g〉 (with the frequency ωeg).
Without loss of generality, we consider the Rabi fre-

quencies �j (t) and Gj (t) to be real and positive and de-
note the detunings of the laser and cavity fields from the
atomic transition frequencies by � = ωeg − ωL = ωef − ωc,
where for simplicity we assume ωeg1 = ωeg2 = ωeg and
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FIG. 1. (Color online) (a) Schematic setup for the STIRAP
process in the atom-cavity-laser system, where two atoms pass
through the cavity and couple to the laser beam propagating along the
y axis (perpendicular to the page). (b) Level structure of the atoms
with two nondegenerate ground states |g〉j and |f 〉j and an excited
state |e〉j , where the subscript j (j = 1,2) denotes the two atoms.
Here �j is the detuning and �j (t) and Gj (t) are the atom-laser and
atom-cavity coupling strengths, respectively.

ωef 1 = ωef 2 = ωef . Controlled by the STIRAP process, the
time-dependent atom-cavity coupling strengths and the de-
layed Rabi frequencies of the laser encountered by the traveling
atoms can be written as

G1(t) = G0 exp

[
−

(
vt + d/m

WC

)2]
cos

(
2πx0

λ

)
, (1)
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−

(
vt + d/n

WC

)2]
cos

(−2πx0

λ

)
, (2)

�1(t) = �0 exp

[
−

(
vt + d/p

WL

)2]
e−x2

0 /W 2
L, (3)

�2(t) = �0 exp

[
−

(
vt + d/q

WL

)2]
e−x2

0 /W 2
L, (4)

where λ is the wavelength of the transition |e〉 ⇔ |f 〉; d is the
distance from the cavity center to the center of the laser beam;
m, n, p, and q are random constants, which meet the condition
that m−1 − p−1 = 1 and q−1 − n−1 = 1; and WC and WL are
the waists of the cavity and the laser beam, respectively. In
addition, G0 = −μ

√
ωC/2ε0V and �0 = −μεL (G0,�0 �

ωeg,ωef ) are the peak amplitudes of the atom-cavity coupling
and the laser’s Rabi frequency, where μ, V , ε0, and εL are
the atomic dipole moment, the effective volume of the cavity
mode, the free-space permittivity, and the amplitude of the
laser field, respectively.

Under the rotating-wave approximation, we have the
Hamiltonian of system in the interaction picture in units of
h̄ = 1,

H (t) =
∑
j=1,2

{�j |e〉jj 〈e| + [Gj (t)a|e〉jj 〈f | + H.c.]

+ [�j (t)|e〉jj 〈g| + H.c.]} + δa†a, (5)

where a (a†) is the annihilation (creation) operator of the
cavity mode and δ = ωC − ωLis taken to be positive and much
smaller than the values of ωC and ωL. We take into account

the noise effects from the cavity dissipation and atomic spon-
taneous emission in this open system by phenomenologically
exploiting the Markovian master equation in Lindblad form

dρ

dt
= −i[H (t),ρ] + �(ρ), (6)

with

�(ρ) =
2∑

j=1

[
�eg

(
2σ j

geρσ j
eg − σ j

egσ
j
geρ − ρσ j

egσ
j
ge

)

+�ef

(
2σ

j

f eρσ
j

ef − σ
j

ef σ
j

f eρ − ρσ
j

ef σ
j

f e

)]
+ κ(2aρa† − a†aρ − ρa†a), (7)

where �eg(f ) is the radiative rate between |e〉 and |g〉 (|f 〉), κ is
the decay rate of the cavity, and σ

j
ge = |g〉jj 〈e|, σ j

eg = |e〉jj 〈g|,
σ

j

f e = |f 〉jj 〈e|, and σ
j

ef = |e〉jj 〈f |. Thus the total decay rate
of the excited state |e〉 is � = �eg + �ef for each atom. In our
case, the strong coupling regime with G0 � �,κ is required
for realizing QST with high fidelities in the dissipative case.
To simplify our calculation, we may transfer Eq. (6) from
the Lindblad form to the Redfield form by the usual methods
[27,28], which may yield a simpler numerical computation
by changing the matrix differential equations to the vector
differential equations (see details of our calculations in the
Appendix).

III. QUANTUM STATE TRANSFER
BETWEEN TWO ATOMS

It is an important task in the field of QIP to carry out efficient
control of population transfer and QST [29]. In this section we
explicitly describe the realization of arbitrary QST between
the two moving atoms using the STIRAP process.

Suppose that at an initial time, the first atom in the cavity is
prepared in an arbitrary superposition state α|g〉1 + β|f 〉1, but
the second atom is in the state |g〉2. Additionally, we assume
that the cavity is initially prepared in the vacuum state |0〉c. The
goal in this scheme is to accomplish the following operation:

|�i(0)〉 = (α|g〉1 + β|f 〉1)|g〉2|0〉c
⇓ (8)

|�f (t)〉 = |g〉1(α|g〉2 + β|f 〉2)|0〉c,
where the coefficients α and β satisfy the normalization
condition |α|2 + |β|2 = 1.

To simplify the numerical simulation, we transfer the master
equation (6) into the Redfield form, which turns the calculation
from the matrix equations to the vector differential equations
(see the Appendix for details). In our case, the Hilbert space
is spanned in 9(N + 1) dimensions with the density matrix
elements of the form ρij,mn,kl , where i, j , m, and n can be any
of g, e, and f and i,m and j,n denote the states of atom 1
and atom 2, respectively. Here k and l represent the number of
photons in the cavity with k,l = 0,1, . . . ,N .

Figure 2(a) shows the Rabi frequencies Gj (t) and �j (t)
employed for QST, where the first atom enters the cavity before
the second one in the experiment. To keep the cavity nearly all
inside the vacuum state during the STIRAP process, the values
of the Rabi frequency �j (t) are taken to be much smaller
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FIG. 2. (Color online) (a) Time evolution of Rabi frequencies
Gj (t) and �j (t) for QST. The parameters are G0 = 1,
δ = 20G0, �1 = �2 = � = 0.1G0, �0 = 0.1G0, WC = 120v/G0,

WL = 70v/G0, d = 10v/G0, x0 = λ, and the random constants
m = 2/7, n = −2, p = 2/5, and q = 2. Also shown is the time-
dependent population of the target state in QST during the STIRAP
process from different initial states: (b) α = √

1/2, β = √
1/2;

(c) α = √
2/3, β = √

1/3; and (d) α = √
5/6, β = √

1/6. The gray
solid and red solid lines represent the populations of the states
|g〉1|g〉2|0〉c and |g〉1|f 〉2|0〉c, respectively, in the nondissipative case
of � = κ = 0. The gray dashed and red dashed lines represent the
populations of the states |g〉1|g〉2|0〉c and |g〉1|f 〉2|0〉c, respectively, in
the dissipative case of � = G0/30,κ = G0/120. The time parameter
is dimensionless.

than that of the Rabi frequency Gj (t). Meanwhile, assuming
Gaussian pulse profiles for �j (t) and Gj (t) of widths TL =
WL/v and TC = WC/v, respectively, we have the sufficient
condition of this STIRAP process: �0TL � 1 and G0TC � 1.

Figures 2(b)–2(d) present the time-dependent population
of the two components |g〉1|g〉2|0〉c and |g〉1|f 〉2|0〉c in the
target state |�f (t)〉 in Eq. (8) from different initial states
|�i(0)〉. As shown in Figs. 2(b)–2(d), the dynamical behavior
of the populations is similar between the nondissipative case
and dissipative case. The biggest difference is slight slow
oscillation behavior displayed in the nondissipative case [the
middle section of Figs. 2(b)–2(d)], which disappears when we
take dissipation effect explicitly into account. The physical
mechanism leading to this result is that this oscillation results
from the complicated dynamics, which is controlled by the
time-dependent relative phases in the Rabi frequencies of the
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FIG. 3. (Color online) Time evolution of the fidelity of the target
states |�f 〉 in the case of � = 0.1G0, where the thick solid, thick
dotted, and thick dashed lines represent the nondissipative case � =
κ = 0. The thin solid, thin dotted, and thin dashed lines represent the
dissipative case � = G0/30, κ = G0/120. The red solid, blue dotted,
and green dashed lines represent the three different initial states with
the parameters α = √

1/2 (β = √
1/2), α = √

2/3 (β = √
1/3), and

α = √
5/6 (β = √

1/6), respectively. The parameter G0 = 1 is used
and the time parameter is dimensionless.

cavity mode and laser field, as shown in Eqs. (1)–(4), where
the time-dependent relative phases are actually tuned by the
relative velocity or position of the two atoms. Additionally,
the population of |g〉1|f 〉2|0〉c in the dissipative case gradually
exceeds that of the nondissipative case with an increase of the
coefficient α.

Furthermore, the QST process can be characterized by
the fidelity of the final state according to the expression
F = 〈�f |ρ(t)|�f 〉, where |�f 〉 is the desired target state in
Eq. (8) and ρ(t) is the actual density matrix of the system at
time t . As shown in Fig. 3, the fidelities F are described
by these stepwise curves. In the nondissipative case, the
corresponding thick curves show that the fidelity can be very
close to 1 in the long-time limit and does not depend intensively
on the initial states |�i(0)〉. By comparing the thick curves with
the thin curves in Fig. 3, we find that the system-environment
interaction is unfavorable for the fidelity of the QST. So to
carry out our scheme efficiently and with high fidelity, we
have to suppress these noise effect as much as we can.

Being an adiabatic technique, the STIRAP process reaches
an efficiency of unity only in the adiabatic limit and is
insensitive to small or even moderate variations of most
experimental parameters such as the pulse widths, pulse delay,
pulse amplitudes, and single-photon detuning. Figure 4(a)
shows the dependence of the fidelities on the peak amplitudes
of the laser’s Rabi frequency during the STIRAP process
in the long-time limit. Note that the relationship between
the fidelities and the coupling strength can be described
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FIG. 4. (Color online) Dependence of the fidelity on the peak
amplitudes of (a) the Rabi frequency and (b) the detunings in the
long-time limit, where G0 = 1 and α = √

5/6(β = √
1/6). The solid

and dashed lines denote the nondissipative case (� = κ = 0) and
dissipative case (� = G0/30,κ = G0/120), respectively.

with a nonmonotonic curve accompanied by fast oscillation
envelopes in the nondissipative case. This implies that during
the dynamic evolution we can effectively control the QST
and the fidelity can be maximized by only adjusting the
peak amplitudes of Rabi frequencies of the laser. Specifically,
the fidelities can reach 95% (91%) when �0 is located in
the regime of [0.03,0.49] ([0.02,0.22]) in the nondissipa-
tive (dissipative) case. Besides, as shown in Fig. 4(b), an
approximately symmetrical curve represents the relationship
between the fidelities and the detuning in both dissipative and
nondissipative cases. In addition, we demonstrate numerically
the QST performed with high fidelity for a very wide range of
detuning. To obtain higher fidelity, the STIRAP process in our
scheme can be optimized by elaborately adjusting the value of
detuning � within the domains [−0.12,−0.04] and [0.05,0.2]
to try to keep fidelities beyond 95% in the nondissipative case.
In contrast, the fidelities exceeding 90% in the dissipative case
require the value of the detuning to be located in the region
[−0.15,0.25].

IV. DISCUSSION

We briefly address the experimental feasibility of our
scheme. We employ the Zeeman levels 5S1/2 (|F = 3〉), 5S1/2

(|F = 2〉), and 5P3/2 (|F = 3〉) of the 85Rb atom as the states
|g〉, |f 〉, and |e〉, respectively [30]. In our case, all time param-
eters are normalized in units of 1/G0, all frequency parameters
are in units of G0, and the waists (WC and WL) are in units of
v/G0. In addition, to meet the condition of global adiabaticity,
we can choose the atomic velocity v = 15 m/s and atom-cavity
interaction time Tin ≈ WC/v = 120/G0 such that G0Tin � 1,
�0Tin � 1, and δTin � 1 can be well satisfied. In contrast, our
proposed realization demands a strong coupling cavity-QED
system, so we choose the atomic and cavity decay rates
as �/2π ≈ 5 MHz and κ/2π ≈ 1.25 MHz, respectively, and

the atom-cavity coupling strength is G0/2π ≈ 110 MHz.
Recently, an experimental group [31] has shown that the strong
coupling regime [g,κ,�]/2π = [10.6,1.3,3.0] MHz has been
reached. Alternatively, a microcavity QED system [32–35],
such as microtoroidal optical resonators with very small
mode volumes, could offer much stronger coupling strengths
reaching values in the hundreds of MHz, where the atoms are
close to the surface of a microtoroid couple to the evanescent
fields of whispering-gallery modes [32,33].

V. CONCLUSION

We have explored the atomic and cavity dissipation effects
on the population dynamics in the STIRAP process. Based on
the quantitative description of the noise effect in the STIRAP
process, we have proposed theoretical research for realizing
arbitrary QST between two traveling atoms in the cavity. By
numerically simulating the Markovian master equation, we
have shown that the fidelities of the QST can be maximized
by elaborately adjusting the peak amplitudes of the laser’s
Rabi frequency and the detuning of the Raman transition.
We have also shown that the system-environment interaction
is unfavorable for increasing the fidelities of the QST. Our
quantitative estimates of the robustness of the STIRAP process
under lossy conditions would be useful for QIP exploration in
atom-cavity QED systems.
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APPENDIX: LINDBLAD EQUATION
TRANSFORMATION METHOD

We describe below the transformation method for the
Lindblad equation in details. In our case, the Hilbert space
used is 9(N + 1) dimensions and the density matrix element
has the form of ρij,mn,kl , with i,j,m,n = g, e, or f and
k,l = 0,1, . . . ,N , where we denote the states of atom 1 and
atom 2 by i,m and j,n, respectively, and naturally k and l

represent the number of photons in the cavity. Motivated
by the simpler transformation method used for solving the
master equation described in Refs. [7,27,28], we rearrange the
9(N + 1) × 9(N + 1) elements of the density matrix ρ into
a column vector 
ρ(t) of [9(N + 1)]2 components. Thus the
matrix differential equation (6) in the space of 9(N + 1) ×
9(N + 1) dimensions can be transformed to a vector dif-
ferential equation in the Redfield space R of [9(N + 1)]2

dimensions with general form as follows:

d

dt

ρ(t) = M 
ρ(t), (A1)

where M represents a matrix. The vector 
ρ(t) can be
regarded as a summarization of the Bloch vector [27]
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with the form 
ρ(t) = [ρgg,gg,00,ρgg,gg,01, . . . ,ρgg,gg,NN ,

ρgg,ge,00, . . . ,ρgg,ge,NN ,ρgg,gf,00, . . . ,ρgg,gf,NN , . . . ,ρff,ff,00,

. . . ,ρff,ff,NN ]T , where the superscript T means the transpose
of the vector.

A convenient basis {Bj }, j = 1, . . . ,[9(N + 1)]2, for a
9(N + 1) × 9(N + 1) matrix should be introduced to simplify
the following calculation. For example, it can be defined
as

(Bj )kl =
{

1 under condition C1

0 otherwise,
(A2)

where the condition C1 is

9(N + 1)p < j � 9(N + 1)(p + 1),

k = p + 1, l = j − 9(N + 1)p, (A3)

p ∈ {0,1, . . . ,9N + 8}.
From Eqs. (A2) and (A3) we know that all the other elements
of Bj are zero except one element with the value 1. Then,
to ensure that the basis {Bj } is orthonormal, one can define
the scalar product of two random operators Û and V̂ in R as
(Û ,V̂ ) = Tr(Û †V̂ ). Therefore, any operator Û produced in R

can be represented by the coefficient uj ,

Û =
[9(N+1)]2∑

j=1

ujBj , (A4)

with the coefficient uj = Tr(B†
j Û ).

It is noticeable that the master equation (6) has three
different terms with the forms Uρ, ρV , and UρV. We replace
it with the matrix forms for products of the operators Û ρ̂, ρ̂V̂ ,
and Û ρ̂V̂ , respectively, in R. Thus we also can define the

operator products Û ρ̂ with the same form of Û in Eq. (A4) as

Û ρ̂ =
[9(N+1)]2∑

j=1

(Û ρ̂)jBj . (A5)

Then the coefficient (Û ρ̂)j can be derived from Eq. (A5) with
the form

(Û ρ̂)j = Tr(B†
j Û ρ̂) =

[9(N+1)]2∑
l=1

[9(N+1)]2∑
k=1

ulρkTr(B†
jBlBk)

=
[9(N+1)]2∑

k=1

(MU )jkρk, (A6)

where we have set

(MU )jk =
[9(N+1)]2∑

l=1

ulTr(B†
jBlBk). (A7)

Therefore, we can transform Eq. (A6) into reduced general
vector forms

−→
Uρ = MU 
ρ.

We also can obtain
−→
ρV = MV 
ρ corresponding to

(MV )jk =
[9(N+1)]2∑

l=1

vlTr(B†
jBkBl)

and
−→
ρV = MV 
ρ together with

(MUV )jk =
[9(N+1)]2∑

l,s=1

ulvsTr(B†
jBlBkBs)

using the same procedure of Eqs. (A5)–(A7). As a result, we
have transformed Û ρ̂, ρ̂V̂ , and Û ρ̂V̂ into MU 
ρ(t), MV 
ρ(t),
and MUV 
ρ(t) in the space R, respectively.
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