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Lasing in nanowires: Ab initio semiclassical model
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The semiclassical equations which describe lasing in nanowires are derived from first principles. Both the
lasing threshold condition and the steady-state regime of operation are discussed. It is shown that the lasing is
governed by the Fourier coefficients of the field susceptibility averaged over the nanowire cross section. The
general theory is illustrated by the case where a nanowire supports a single Fabry-Pérot mode originated from a
transverse magnetic waveguide mode. Basing on the developed theory, the possibility of lasing without inversion
is predicted and the corresponding nanolaser cavity is designed.
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I. INTRODUCTION

Recent advances in nanotechnology have led to the possi-
bility to fabricate nanowires which can lase under pumping
conditions [1]. Currently they can be grown from both
inorganic and organic materials and demonstrate lasing at both
optical and electrical pumping. This progress paves the way
to diverse applications of nanowire lasers in nanoscale optical
and optoelectronic devices.

To be able to design nanolasers and optimize their opera-
tion, one needs to have a deep understanding of the elementary
optical processes which lead to lasing. So far, to describe
nanolaser action, one utilizes the conventional laser equations
which have been obtained for the laser cavities of dimensions
much larger than the laser field wavelength [2]. One of the key
approximations which has been used to derive such equations
implies that both the field and polarization in the laser cavity
are described by plane waves which are slowly modulated in
both time and space [3]. The latter assumption is obviously not
fulfilled in nanocavities where the field changes essentially
on the scale of the wavelength. Moreover, such equations
involve some semiphenomenological parameters, in particular
the photon decay rate and the modal gain, which cannot be well
defined for a nanocavity [4]. Another aspect related to small
sizes of a nanocavity is the fact that the atoms or molecules
of the active medium are in close proximity to the cavity
walls, which implies a significant role of the cavity-quantum-
electrodynamical effects [5]. One partly takes such effects
into account by means of introducing the population decay
rate modified by the Purcell factor in the rate equations. The
rate equations do not contain, however, information about the
phase of the light field and thus are incomplete. All of these
arguments reveal that the laser equations should be revisited
from the beginning in order to provide a basis for a proper
nanolaser design.

The drawbacks highlighted above can be overcome only
in the framework of a self-consistent lasing theory based on a
Green’s function of a system. Such a theory has been developed
for rather general lasing media in Ref. [6]. It leads to a set of
self-consistent integral equations that gives the laser threshold,
frequency, and modal interaction. The laser equations were
derived for a two-dimensional (2D) scalar problem, which
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corresponds to lasing in an infinitely long dielectric cylinder
of arbitrary cross section. The finite longitudinal extension of
a Fabry-Pérot cavity was considered in a simplified 1D model.
It was also pointed out that proper treatment of the openness
in the transverse plane of the cylindrical geometry is equally
important [7,8].

Recently, we developed an ab initio analytical model which
is capable of describing rigorously a 3D vector electromagnetic
field in a cylindrical nanocavity of arbitrary diameter and
length [9–12]. This model allows one to calculate Fabry-Pérot
modes of a cylindrical nanowire [10], as well as the dyadic
Green’s function and the Purcell factor for a cylindrical
nanocavity [12]. In this paper, we apply that approach to derive
the laser equations for a nanowire (NW) from first principles
and thus to fill this gap in the nanolaser theory. We use the
developed theory to design a nanowire laser which can operate
without a population inversion.

The paper is organized as follows. In Sec. II, we introduce a
general theoretical formalism and derive the lasing condition
and formulas for the steady-state regime of operation of a
NW laser. In Sec. III, we apply the general theory for the
case when a NW supports a single transverse waveguide
mode. The obtained results are discussed in Sec. IV, which
is followed by the conclusion in Sec. V. Some details of
the laser condition derivation as well as the consideration of
the classical analogy of lasing without inversion are given in
the appendices.

II. THEORETICAL FORMALISM

Let us consider a cylindrical NW of radius a and length
L which is embedded in the medium with the dielectric
function ε1. Let us assume that the material of the NW is
described by the dielectric function ε2 and the NW contains
active centers (ACs) (impurity atoms, ions, or molecules,
quantum dots, etc.). To consider lasing in the NW, we adopt
a semiclassical description, namely, we treat the ACs as
quantum-mechanical systems, while the electromagnetic field
in the NW is described classically as a solution of Maxwell’s
equations. We model an AC by a two-level system with
the ground state |1〉, excited state |2〉, transition frequency
ω21, and transition dipole moment μ12. We assume that the
transition |2〉 → |1〉 is homogeneously broadened and has the
linewidth γ⊥.
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We seek the solution of Maxwell’s equations in a cylindrical
NW in the form of the Fourier transform in time,

E(t) =
∫ ∞

0
[E∗(ω)eiωt + E(ω)e−iωt ]dω

= E(−)(t)eiωmt + E(+)(t)e−iωmt , (1)

where we assume that the Fourier transform E(ω) has a narrow
distribution around one of the NW normal-mode (Fabry-Pérot)
frequencies, ωm, so that E(±)(t) are slowly varying functions
of time. The amplitudes E(±)(t), in turn, can be expressed as
Fourier integrals over the propagation constant β,

E(±)(r,θ,z,t) = 1

2π

∫
C

Ẽ(±)(r,θ,t ; β)eiβzdβ, (2)

with r , θ , and z being the cylindrical coordinates of a point,
the z axis being directed along the NW axis, and C being a
path in the complex plane of β running along the real axis. The
Fourier transforms, Ẽ(±)(β), have poles on the real axis which
correspond to the waveguide modes of an infinitely long NW
of the same radius, a. We assume in the following that only a
single mode labeled by a and having the propagation constant
βa is relevant to lasing that can be achieved by an appropriate
choice of the NW radius and length. The contribution of this
mode to the total field can be written as

E(±)
a (r,θ,z,t) = [

E(±)
− (r,t)e−iβaz + E(±)

+ (r,t)eiβaz
]
e−inθ , (3)

where the integer n specifies the angular symmetry of the
waveguide mode [14] and the quantities E(±)

− (r,t) and E(±)
+ (r,t)

are determined by the residues of Ẽ(±)(β) at the poles −βa(ωm)
and βa(ωm), respectively. Let us note that the modes specified
by n and −n are degenerate and the further results are identical
for them. We assume a cylindrical symmetry of the system
under consideration so that these modes do not interact with
each other.

The field Ea(R,t) originating from the contribution (3) in-
duces the dipole moments in the ACs which satisfy the optical
Bloch equations. By assuming the smallness of the frequency
detuning, � = ωm − ω21, and applying the rotating wave
approximation, one comes to the equations for the macroscopic
polarization, P(t) = P(−)(t) exp(iωmt) + P(+)(t) exp(−iωmt),
and population difference density D of the AC ensemble:

Ṗ(+)(R) = −(γ⊥ − i�)P(+)(R)

− i

h̄
|μ12|2D(R)E(+)

a (R,t), P(−) = P(+)∗, (4)

Ḋ(R) = −γ‖(R)[D(R) − D0]

+2i

h̄
[P(−)(R)E(+)

a (R,t) − P(+)(R)E(−)∗
a (R,t)]. (5)

Here the radius vector R = (r,θ,z) specifies a point inside the
NW, γ‖ is the spontaneous relaxation rate which takes into
account the Purcell effect, D = ρ(n2 − n1) with ρ being the
number density of the ACs, n1 and n2 are the populations
of the ground and excited states, respectively, and D0 is its
equilibrium value.

Up to this point, the derivation follows in general the
conventional laser theory [3]. For the next step, one needs
to obtain a relation between the polarization P and the electric
field Ea to have a closed set of equations. This task is solved
in the semiclassical laser theory by using an assumption that

both the field and polarization amplitudes are slowly varying
functions of both time and coordinates, which is not applicable
to a nanocavity. Instead, we use a rigorous relation between
E and P expressed in terms of the field susceptibility tensor
F̄ [12]:

E(+)(R,t) =
∫

F̄(R,R0; ωm)P(+)(R0,t)dR0, (6)

where the integral is taken over the region occupied by ACs
and we have neglected the effect of retardation. Let us note
that the quantity F̄(R,R0; ω) can be derived from the dyadic
Green’s function of the system and Eq. (6) takes place for a
nanolaser of arbitrary geometry. The field susceptibility for
points inside a NW includes two contributions [12]. One of
them originates from the Hertz potential which has the only
nonzero component parallel to the NW axis, 
. The other one
is represented by the Hertz potential perpendicular to the axis,
�. The latter contribution is essential only at the points close
to the ends, at distances of the order of the wavelength in the
NW material, λ/

√
ε2 = 2πc/(ω

√
ε2) with c being the speed

of light in vacuum. For long NWs such that L 	 λ/
√

ε2,
the contribution of the facet regions to the total field can
be neglected. The further consideration concerns such long
nanowires, which is the typical case for many experiments.

To find the evolution of the field in the lasing mode, one has
to solve Eqs. (4)–(6) simultaneously. In this paper, we shall
consider the two key problems of the laser theory: (i) the lasing
condition and (ii) the steady-state regime of operation.

In the first case, to investigate the stability of the system,
we write Eqs. (4) and (5) for small deviations δE(±)

a , δP(±), and
δD, keeping only the linear terms in them. The so-obtained
equations can be solved by applying the Laplace transform
in time. As a result, one comes to a set of coupled integral
equations for the Laplace transformed electric-field deviations.
Using the fact that in the considered approximation the kernel
in the integral equation (6) is degenerate, one can readily
reduce the problem to a set of two linear homogeneous
algebraic equations (see Appendix A for details). Equating
the determinant of this set to zero, one finds the condition
imposed on the Laplace transformation variable, s = σ + i�,
that it has a nontrivial solution which implies nonzero values
of δE(±)

a . The condition that the corresponding σ > 0 means
that the system is unstable and any initial fluctuations in the
field will lead to its exponential growth in time, i.e., to lasing.

This criterion is simplified in the case where the transition
dipole moments in all ACs are aligned along the NW axis,
z [13]. Then the condition of existence of a nontrivial solution
for δE(±)

a is reduced to

χ (s)F0 = 1, (7)

with

F0 = 4π

∫ L/2

−L/2

∫ a

0
F+

a,zz(r; r,z; ωm,βa)u(z)rdrdz

≡
∫ L/2

−L/2
K(z)dz, (8)

where F+
a,zz is the contribution of the lasing mode in

the field susceptibility tensor, u(z) = cos βaz for even and
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u(z) = i sin βaz for odd Fabry-Pérot modes, and

χ (s) = |μ12|2
h̄

D0

� + i(s + γ⊥)
. (9)

Let us note that χ (0) is the linear optical susceptibility of the
gain medium.

Taking into account that, for the Fabry-Pérot modes of
certain parity with numbers m 	 1, βam ≈ 2πm/L [10], one
concludes from Eq. (8) that the nanolaser operation in the mth
mode is governed by the mth Fourier coefficient of the field
susceptibility averaged over the NW cross section.

Separating the real and imaginary parts in Eq. (7), one finds
that σ is positive if

η ≡ (n2 − n1)
�a

γ⊥
> 1, (10)

with �a = (1/h̄)|μ12|2ρImF0, which gives the condition for
the lasing threshold [15]. The quantity (n2 − n1)�a in this
inequality describes the rate of the field amplification. Being
divided by the mode group velocity, it can be considered as
the modal gain. The other equation which follows from here
describes the frequency pulling effect for the lasing frequency,
ωl = ωm − �:

ωl − ω21 = 1

h̄
|μ12|2D0ReF0. (11)

To obtain the laser equations in the steady-state regime, we
assume that the inversion D acquires a constant value and
perform the Laplace transform of Eqs. (4) and (6) in time.
Then, Eq. (7) still holds if one makes the substitutions σ = 0
and F0 → F with

F = 4π

∫ L/2

−L/2

∫ a

0
F+

a,zz(r,r,z)Dr (r,z)u(z)rdrdz (12)

and

Dr (r,z) =
[

1 + E2
0

E2
s

γ 2
⊥

�2 + γ 2
⊥

J 2
n (q20r)|u(z)|2

]−1

, (13)

where E0 ≡ E
(+)
+z (r = 0), Es = h̄(γ⊥γ‖)1/2/(4|μ12|) is the

saturation field, and q20 = √
(ω/c)2 − β2

a . The intensity of the
generated field is determined by the condition

1

h̄
|μ12|2D0ImF = γ⊥. (14)

The frequency pulling effect in the steady-state regime is given
by Eq. (11), with F0 replaced by F .

Let us consider the lasing threshold condition, given by
Eq. (10), in some more detail. In the same manner as in
the conventional laser theory, it determines the population
inversion, n2 − n1, at which the system starts to lase. The
factor at the inversion, �a , is the averaged contribution of the
lasing mode to the field susceptibility. For even modes, it is
related to the Purcell factor [15]. As follows from Ref. [12],
the latter quantity can be negative for certain positions of the
emitter in the NW. This gives a hint that if the distribution of
ACs is such that �a is negative, then the lasing condition can
be realized when n1 > n2, i.e., without a population inversion.

FIG. 1. (Color online) (a) Dependence of ImK , given by Eq. (8),
for the TM01 mode on the dimensionless z coordinate in the range
−5 � z/a � 5 for the odd Fabry-Pérot mode which exists for L/a ≈
499, a/λ = 0.25. (b) Dependence of the minimum value of ImK and
the separation between the adjacent minima, �z, on the dimensionless
wavelength. L is chosen in the range 498 � L/a � 501 so that there
exists an odd Fabry-Pérot mode.

III. NUMERICAL RESULTS

We illustrate the general theory developed above by the
consideration of a NW which supports a single Fabry-Pérot
mode associated with the waveguide transverse magnetic
TM01 mode (n = 0) and contains ACs with the transition
dipole moments parallel to the z axis. In such a case, the
field inside the NW is described by a single coefficient, ae

z (β).
The further calculations have been carried out for ε1 = 1 and
ε2 = 6 which is close to the dielectric function of GaN, ZnO,
and CdS at the lasing frequencies. To find a proper design of the
NW for lasing without inversion (LWI), we plot the imaginary
part of the integrand in Eq. (8), ImK(z). This quantity is shown
in Fig. 1 for one of the odd Fabry-Pérot modes. It is a sinusoidal
function of z with the period given by π/βa , which is negative
for certain intervals of z.

Let us assume now that the ACs are distributed only within
thin layers at z = zi (i = 1, . . . ,N) perpendicular to the NW
axis and that K(z) does not change essentially within a layer.
Then the quantity F0 can be calculated as F0 ≈ d

∑N
i=1 K(zi),

with d being the layer thickness. Choosing the positions of
the layers in the regions where ImK(z) < 0, one ensures
that ImF0 < 0 and hence the quantity �a is negative. In the
following, we assume that all the quantities K(zi) are equal to
each other.

Let us estimate whether the lasing condition, given by
Eq. (10), can be fulfilled without a population inversion. Taking
the realistic parameters for a gain medium [16]: γ⊥ = 1013 s−1,
|μ12| = 1.5 × 10−17 esu, ρ = 2.4 × 1020 cm−3, and assuming
n2 ≈ 0, a = 100 nm, d = 20 nm, one finds for aImK(zi) =
−0.10 that this criterion is met if N � 10. If the doping
concentration is increased ten times, then LWI is possible even
when there is only a single active layer.

The field E0 generated in the steady-state regime in such a
nanolaser is found from Eq. (14). The corresponding number
of the mode quanta, Nq , can be calculated from the mode
electromagnetic field energy. This quantity, which determines
the mode intensity, is shown in Fig. 2 for different values of
the excess above the threshold in Eq. (10), η.

The frequency pulling effect near the threshold, given
by Eq. (11), is illustrated in Fig. 3. The frequency shift
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FIG. 2. (Color online) Number of the lasing mode quanta gener-
ated in the steady-state regime vs the mode wavelength for different
parameters η, given by Eq. (10). � = 0, a = 100 nm; L is chosen as
in Fig. 1(b).

is normalized to the quantity (1/h̄)|μ12|2D0, which equals
5.4 × 1013 s−1 for the parameters given above, which is
comparable with γ⊥. This quantity is a sinusoidal function
of the active layer position, z. The regions where ImK is
positive correspond to usual lasing with inversion, whereas
those where ImK is negative correspond to LWI. One can
see that at a certain position, z/a ≈ 1.2, the frequency pulling
is absent [the other zeros do not satisfy the lasing condition,
given by Eq. (10)]. In the steady-state regime, the frequency
pulling is even smaller due to the saturation effect.

IV. DISCUSSION

The criterion (10) can be understood as the requirement that,
in order to achieve lasing, the rate of the field amplification
should exceed the rate of the polarization decay. The ampli-
fication rate, in turn, is a result of integration over the whole
NW volume. As follows from Eq. (8), the areas where ImK is
positive contribute to the quantity �a with a plus sign, whereas
those where ImK is negative contribute with a minus sign.
Let us assume now that there is no population inversion, i.e.,
n2 < n1. Then the areas of positive ImK contribute to the field
attenuation, while those where ImK is negative contribute to
the field amplification. When the active medium occupies the

FIG. 3. (Color online) The lasing frequency pulling, given by
Eq. (11), normalized to the quantity (1/h̄)|μ12|2D0 as a function of the
dimensionless z coordinate (green line). For comparison, the quantity
ImK is also shown (blue line). a/λ = 0.25; the other conditions are
as in Fig. 1.

whole NW volume, there are alternating layers of attenuation
and amplification, with the contribution of the first ones being
predominant. If, however, one fabricated active centers only
within the amplification areas, the net effect would be the field
amplification. The magnitude of this effect decreases when the
NW radius increases. For large a such that a 	 λ/

√
ε2, the

function ImK takes only non-negative values (not shown).
This feature stems from an effect that is well known

in cavity quantum electrodynamics. When a radiating atom
is located nearby a reflective surface, its radiative decay
rate demonstrates oscillating behavior with the atom-surface
distance, which is essential at distances �λ [17,18]. A similar
effect occurs when an atom is placed between two parallel
surfaces [19,20], inside or nearby a cylindrical waveguide [21],
or inside a cylindrical cavity [12]. It originates from the
interference between the field emitted by the atom and the field
reflected from the surface. The result of this interference
depends on the optical path difference and hence on the
location of the atom relative to the surface. As a consequence,
the range of distances where the decay rate γ is larger than
its value far from the surface, γ0, alternate with the ranges
where γ < γ0. The total decay rate in the vicinity of the
surface can be represented as γ = γ0 + γs , where γs is the
contribution due to the reflected field. Thus, the ranges where
γ > γ0 correspond to positive γs , whereas those where γ < γ0

correspond to negative γs .
The quantity γs , in turn, is determined by the imaginary

part of the field susceptibility associated with the influence of
the surface, Fs [18]. On the other hand, positive and negative
values of Im(Fs) correspond to the dipole moment attenuation
and amplification, respectively (see Appendix B). One can
conclude, therefore, that in the ranges where γ < γ0, the atom
dipole moment is amplified by the field reflected by the surface.
The amplified dipole moment leads to a larger reflected field,
and so on. In other words, an atom located in the amplification
range experiences a positive feedback for its dipole moment
provided by the reflective surface, i.e., the atom and the surface
form loop gain. This effect has numerous analogues in different
fields of science and engineering [22]. Since usually |γs | < γ0,
this gain does not lead to instability.

Turning to the case of a cavity, one has to take into account
the cavity mode structure given by the function u(z) and the
distribution of ACs over the NW volume. Therefore, the above
arguments concerning the sign of Im(Fs) should be replaced
by those on the sign of ImK . Similarly to an atom located in
an amplification range, ACs within an amplification area in
a NW experience loop gain. The magnitude of this effect is
proportional to the number of the active centers involved in
the loop and, under certain conditions, this gain can lead to
instability (see Appendix B).

The considered gain is, however, different from the one
which takes place in conventional lasers. The loop gain which
occurs under the population inversion condition originates
from the light intensity reflected back to the cavity interior and
causes the stimulated emission (in this sense, it can be called
the intensity gain). The gain which is predicted in this paper
for the LWI effect stems from the polarization amplification
(it can be called the polarization gain) and is a classical effect.

In the discussion above, we have implied, for the sake
of simplicity, that the active medium is represented by ACs
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which do not interact with each other. The further increase
of the doping level will lead to the formation of quantum
wells comprised of the active material. This should ensure
even larger excess over the lasing threshold for LWI. Recently,
the possibility to grow such structures in a nanowire has been
demonstrated for multi-quantum-well nanowire lasers based
on InGaN/GaN quantum wells [23].

LWI in nanowires predicted in this paper has its analog
for atomic systems in gas media [24]. However, there is a
principal difference. In atomic systems, it can be achieved for
specially prepared atomic states due to a quantum coherence
between two atomic transitions. This effect can be interpreted
as the parametric instability in the system of two coupled
oscillators associated with two atomic transitions of the same
atom [25]. The laser cavity does not play any role in that.
In NWs, lasing without inversion can take place in specially
designed nanocavities. Such an effect can be understood as
the collective parametric instability in a system of oscillators
associated with a single transition in the active centers where
the coupling is mediated by the cavity due to the reflected
field (see Appendix B). As it is known, such a system can
exhibit instabilities which are different from those of a single
oscillator [26].

Let us note that the ACs located within a thin active layer
contribute to the lasing mode with the same phase. Besides
that, the NW design which provides the LWI effect ensures
that the contributions of different active layers to the lasing
field are determined by the same quantity, K(zi), and hence
they are also in phase with each other. In other words, the
distribution of ACs over the NW volume forms a coherent
ensemble of oscillating dipoles. In such a case, even a weak
incoherent pumping will lead to lasing.

V. CONCLUSION

In conclusion, we have derived the semiclassical nanowire
laser equations from first principles. Basing on the devel-
oped theory, we have predicted the effect of lasing without
inversion in nanowires. We have also designed a nanolaser
cavity in which LWI is possible. The estimates have shown
that this effect can be readily observed in experiment. Its
implementation in nanowires will open up new prospects for
the development of nanolasers which do not require powerful
pumping. This will allow one to avoid the parasitic effect of
amplified spontaneous emission. Let us also note that a similar
theory can be developed for surface plasmon amplification in
a nanowire-based spaser [27].

APPENDIX A: DERIVATION OF THE LASING CONDITION

To derive the laser equations, we assume that only a single
mode labeled by a and having the propagation constant βa

is relevant to lasing. Its contribution to the total field can be
written as

Ea(R,t) = E(−)
a (R,t)eiωmt + E(+)

a (R,t)e−iωmt , (A1)

where the quantities E(±)
a are given by Eq. (3).

The integral in Eq. (6) contains the contribution of the lasing
mode in the form of Eq. (3) that gives the relation

E(+)
± (r,t)e−inθ =

∫ L/2

−L/2

∫ 2π

0

∫ a

0
F̄±

a (r,θ,z; r0,θ0,z0; ωm)

× P(+)(r0,θ0,z0,t)r0dr0dθ0dz0, (A2)

where

F̄a(z) = F̄−
a e−iβaz + F̄+

a eiβaz (A3)

with

F̄±
a (r,θ ; r0,θ0,z0; ωm) = ± i

2
Res ˜̄F(r,θ ; r0,θ0,z0; ωm, ± βa)

(A4)

being the contribution of the lasing mode a into the field
susceptibility tensor. Here, ˜̄F(β) is the Fourier transform of
F̄(z), and Res ˜̄F(±βa) notates the tensor composed of the
residues of ˜̄F ij (β) (i,j = r,θ,z) at the specified poles.

The Fourier transform of the field susceptibility tensor
originating from the potential 
, F̃ ψ

ij , can be written as follows
[12]:

F̃
ψ

ij (r,θ ; r0,θ0,z0; β) = 4π

ε2
e−inθ

∑
σ=e,m

Hσ
i (r; β)

× aσ
j (r0,θ0,z0; β), (A5)

where the coefficients aσ
j describe transverse magnetic (TM,

σ = e) and transverse electric (TE, σ = m) field compo-
nents associated with a point dipole oriented along the ort
ej (j = r,θ,z), and the coefficients Hσ

i (r; β) have the form

He
r (r; β) = iβ

q2
J ′

n(q2r), (A6)

He
θ (r; β) = βn

q2
2 r

Jn(q2r), (A7)

He
z (r; β) = Jn(q2r), (A8)

Hm
r (r; β) = ωn

cq2
2 r

Jn(q2r), (A9)

Hm
θ (r; β) = − iω

cq2
J ′

n(q2r), (A10)

Hm
z (r; β) = 0, (A11)

where Jn is the Bessel function of the first kind and
q2 =

√
(ω/c)2ε2 − β2. The coefficients ae

j and am
j satisfy the

integral equation

M̂(β) 
Aj (β) − 1

2π

∫
C

[e−i(β−β ′)(L/2−z0) − ei(β−β ′)(L/2+z0)]

× N̂ (β,β ′) 
Aj (β ′)dβ ′ = − 
Bj (β), (A12)

where the explicit form of the matrices M̂ and N̂ and the
column vector 
Bj can be found in Refs. [10] and [12],
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respectively, and


Aj (β) = exp(iβz0)

⎛
⎜⎜⎜⎝

ae
j (β)

am
j (β)

be
j (β)

bm
j (β)

⎞
⎟⎟⎟⎠ , (A13)

with be
j and bm

j being the coefficients which determine the TM
and TE field components, respectively, outside the nanowire.
The integral equation (A12) is exact and, in principle, can be
solved numerically. Its iterative solution corresponds to taking

into account successive reflections from the nanowire ends. In
this work, we assume that the nanowire aspect ratio L/(2a) is
large so that Eq. (A12) allows an approximate solution (see
Refs. [9,10,12] for details).

To investigate the stability of the system, we write Eqs. (4)
and (5) for small deviations δE(±)

a , δP(±), and δD, keeping
only the linear terms in them. The so-obtained equations can
be solved by applying the Laplace transform in time. Assuming
the zero initial conditions, one comes to a set of integral
equations,

δE+,i(r,s)e−inθ = iχ (s)
∑

j=r,θ,z

∫ L/2

−L/2

∫ 2π

0

∫ a

0
Res[F̃+

a,ij (r,θ ; r0,z0; ωm,βa)]δE+,j (r0,s)u(z0)r0dr0dθ0dz0, (A14)

where δ 
E+(s) is the Laplace transform of δE(+)
+ (t), s =

σ + i�, u(z) = cos βaz for even and u(z) = i sin βaz for odd
Fabry-Pérot modes, and χ (s) is given by Eq. (9).

Taking into account Eq. (A5) and introducing the quantity

Yμ =
∑

i=r,θ,z

∫ L/2

−L/2

∫ 2π

0

∫ a

0
Res

[
a

μ

i (r,θ,z; βa)
]

× δE+,i(r,s)e−inθu(z)rdrdθdz, (A15)

one obtains a set of two linear homogeneous algebraic
equations relative to Yμ,

Yμ = 4πi

ε2
χ (s)

∑
σ

RμσYσ , μ,σ = e,m, (A16)

where

Rμσ =
∑

i

∫ L/2

−L/2

∫ 2π

0

∫ a

0
Hσ

i (r; βa)Res
[
a

μ

i (r,θ,z; βa)
]

× e−inθu(z)rdrdθdz. (A17)

Equating the determinant of this set to zero, one finds the
condition imposed on s that it has a nontrivial solution, which
implies nonzero values of δE+,i(r,s). The condition that the
corresponding σ > 0 means that the system is unstable and
any initial fluctuations in the field will lead to its exponential
growth in time, i.e., to lasing.

The set of equations (A16) is simplified if the transition
dipole moments in all active centers are aligned along the
nanowire axis z. Then, only the coefficients aσ

z (β) are nonzero,
which leads to the equalities Rem = Rmm = 0. As a result, the
condition of existence of a nontrivial solution is reduced to

χ (s)F0 = 1, (A18)

where

F0 = 4π

∫ L/2

−L/2

∫ a

0
F+

a,zz(r; r,z; ωm,βa)u(z)rdrdz

= 4π

∫ a

0
J 2

n (q20r)rdr

∫ L/2

−L/2
F+

a,zz(0; 0,z; ωm,βa)u(z)dz,

(A19)

q20 = √
(ω/c)2 − β2

a , and we have taken into account that
the quantity F+

a,zz does not depend on θ . Equation (A18)
determines the values of s = σ + i� at which nonzero
deviations δE(±)

a (t) can exist. If the corresponding σ is positive,
then these deviations grow exponentially in time.

APPENDIX B: CLASSICAL ANALOGY OF LASING
WITHOUT INVERSION

One can follow an analogy between the lasing without
inversion in a system of active centers located in a cavity
and a collective instability in a system of coupled parametric
oscillators. The behavior of an atomic system in a cavity can
be modeled by an oscillating dipole which interacts with its
own field reflected from the cavity walls. Such an approach
has been proven to be an efficient model which describes
the quantum electrodynamics of an atom in the vicinity of a
reflecting surface [17]. The equation of motion of the dipole
μ reads as

μ̈ + γ0μ̇ + ω2
0μ = e2

m
ER, (B1)

where ω0 is the frequency of free dipole oscillations, γ0 is
the damping constant which has the sense of inverse lifetime,
e and m are the charge and the effective mass of the dipole,
respectively, and ER is the reflected electric field at the dipole
position. The reflected field can be expressed in terms of the
field susceptibility part related to the surface, Fs , as

ER = Fsμ, (B2)

which leads to the equation

μ̈ + γ0μ̇ + ω2μ = 0, (B3)

where we have introduced the renormalized frequency

ω2 = ω2
0 − e2

m
Fs = ω2

0 − e2

m
Re(Fs) − i

e2

m
Im(Fs). (B4)

Applying the Laplace transform to Eq. (B3) with a zero
initial condition, one obtains that the transformed equation
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has a nontrivial solution, μ(s), if

s =
−γ0 −

√
γ 2

0 − 4ω2

2
, (B5)

where the minus sign in front of the square root is chosen
to ensure the time behavior at Fs = 0 μ(t) ∼ exp(−iω0t). As-
suming a reasonable approximation that γ 2

0 ,(e2/m)|Fs | � ω2
0,

one finds

Re(s) ≈ −γ0

2
− e2

2mω0
Im(Fs). (B6)

Here, the quantity (e2/mω0)Im(Fs) can be identified
with the surface contribution to the relaxation rate, γs .
Equation (B6) implies that if Im(Fs) < 0, then the field
reflected from the surface introduces the dipole amplification.
If, besides that, −(e2/mω0)Im(Fs) > γ0, then the dipole is
parametrically unstable and any nonzero initial value of
the dipole amplitude will lead to its exponential increase
in time.

For a system of M oscillating dipoles interacting with the
cavity, the equations of motion are given by

μ̈i + γ0μ̇i + ω2
0μi = e2

m

M∑
j=1

Fijμj , i = 1,2, . . . ,M, (B7)

where the quantities Fij describe the reflected field of the j th
dipole at the position of the ith dipole.

Let us assume that the quantities Fij are factorized as

Fij = gihj (B8)

[this corresponds to a degenerate kernel in the integral
equation (6)]. Then one comes to the equation

M̈ + γ0Ṁ + ω0
2M = e2

m
FM, (B9)

where

M =
M∑
i=1

hiμi (B10)

and

F =
M∑
i=1

Fii, (B11)

which is equivalent to Eq. (B1). One obtains from here that
the system described by Eqs. (B7) is parametrically unstable
if Im(F) < 0 and −(e2/mω0)Im(F) > γ0. Let us note that
in this case, the quantity F is proportional to the number of
dipoles in the system, M .

[1] C. Z. Ning, in Advances in Semiconductor Lasers, edited by
J. J. Coleman, A. C. Bryce, and C. Jagadish, Semiconductors
and Semimetals, Vol. 86 (Academic, Burlington, 2012).

[2] C. Z. Ning, Phys. Status Solidi B 247, 774 (2010).
[3] H. Haken, Light, Vol. 2 (North-Holland, Amsterdam, 1985).
[4] A. Mock, J. Opt. Soc. Am. B 27, 2262 (2010).
[5] Cavity Quantum Electrodynamics, edited by P. R. Berman

(Academic, Boston, 1994).
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