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Stable single-wavelength emission from fully chaotic microcavity lasers
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We experimentally and numerically show that single-wavelength emission can be stably observed for a fully
chaotic microcavity laser with a stadium shape under continuous wave condition. The emission pattern is
asymmetric with respect to the symmetry axes of the laser cavity, and it cannot be explained by a single cavity
mode. On the basis of numerical analysis, we interpret such a lasing as the result of frequency-locking interaction
among several low-loss cavity modes. Moreover, we experimentally investigate the optical spectral properties
of the laser under pulsed-pumping condition, and discuss the pulse-width dependence on the number of lasing
modes.
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I. INTRODUCTION

Unlike one-dimensional laser cavities, such as Fabry-Perot
cavities, two-dimensional (2D) laser cavities can exhibit a rich
variety of lasing modes depending on the geometries of the
cavity shapes [1]. Up to now, various geometries of 2D laser
cavities have been proposed and investigated extensively, e.g.,
microdisk [2], deformed disk [3,4], spiral [5], limaçon [6],
and so on. The interest in such laser devices comes from the
potential applications in optical engineering [7] as well as from
the viewpoint of fundamental laser physics and classical and
quantum chaos theory [1,8].

In the fundamental viewpoint, fully chaotic cavities (i.e.,
cavities having fully chaotic ray dynamics in a ray optics
picture) are of particular interest, one of whose representative
examples is the stadium-shaped cavity shown in Fig. 1.
Such cavities offer a good experimental stage for addressing
fundamental problems regarding ray-wave correspondence in
open systems [9–12] and light-matter interaction. Up to now,
many theoretical and numerical studies on the lasing in fully
chaotic cavities with a stadium shape have been intensively
performed [13–17], where the lasing properties have been
discussed based on a nonlinear dynamical model taking into
account light-matter interaction.

The lasing in stadium-shaped cavities has been experi-
mentally studied mainly under pulsed-pumping conditions
[18–24]. In these studies, multimode lasing has been often
observed. In contrast, only a limited number of studies are
carried out with continuous wave (cw) pumping condition for
chaotic cavities with other shapes [25–27]. Interestingly, it has
been reported that single-mode lasing can be observed even
when the cavity size is much larger than the lasing wavelength.

It would be interesting to understand the lasing property
from the viewpoint of modal interactions because there exist
spatially complex modes in chaotic cavities, which can lead
to strong interactions via the spatial overlap. Recently, the
relationship between the modal structure and the interactions
has been well discussed, and it has been shown that modal
interactions play an important role in so-called complex lasers
such as random lasers [28,29]. At present, in fully-chaotic

cavity lasers, it is unclear how modal interactions influence the
lasing properties, especially the single-mode lasing property
under cw condition, and how the lasing state depends on the
operating condition.

In this paper, we experimentally and numerically study
the lasing properties in a stadium-shaped cavity under both
cw and pulsed-pumping conditions. First, it is shown that a
stable single-wavelength emission can be achieved under cw
pumping operation. The emission pattern is asymmetric with
respect to the symmetry axes of the stadium-shaped cavity, and
it does not correspond to any emission patterns of the cavity
modes, although the single-wavelength lasing in other chaotic
cavities reported in Refs. [25–27] have been explained on the
basis of a single low-loss cavity mode. Our numerical analysis
suggests that single-wavelength lasing with an asymmetric
emission pattern can be interpreted as due to frequency-locking
interaction among several low-loss modes. We show that owing
to the interaction, several modes are integrated into a single
lasing mode with a spatially extended pattern over the interior
of the cavity, and the lasing mode strongly suppresses the
lasing of the other modes via the spatial overlap.

In addition, we experimentally investigate how the single-
wavelength lasing state is changed under the pulsed-pumping
condition. We discuss the operating condition required for
observing the single-wavelength lasing state and the dynamics
of the modal interactions toward the lasing state.

The rest of this paper is organized as follows: In Sec. II, we
report the numerical results regarding the dynamical behavior
and the emission pattern of a stadium-shaped cavity laser,
which are obtained by using a nonlinear dynamical model. We
discuss the mechanism of the emergence of single-wavelength
lasing with an asymmetric emission pattern. In Sec. III, we
experimentally investigate the optical spectra and far-field
pattern of a semiconductor laser diode with a stadium-shaped
cavity operated under cw condition, and we demonstrate that
such single-wavelength lasing can be obtained in the laser
diode. In Sec. V, we report the experimental results on the
lasing phenomena under pulsed-pumping conditions, and we
discuss the operating condition for the single-wavelength
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FIG. 1. A stadium-shaped cavity.

lasing and the transient dynamics toward the lasing state.
Finally, Sec. IV provides a summary and discussion.

II. NUMERICAL SIMULATIONS

A. Nonlinear dynamical model

First, let us briefly introduce a nonlinear dynamical model
for 2D cavities, the Schrödinger-Bloch (SB) model [16], which
describes the dynamics of the slowly varying envelope of the
electric field Ẽ, the polarization field ρ̃, and the population
inversion component W in a two-level active medium:

∂Ẽ

∂t
= i

2

(
∇2

xy + n2

n2
in

)
Ẽ − αL(x,y)Ẽ + μρ̃, (1)

∂ρ̃

∂t
= −γ̃⊥ρ̃ + κ̃WẼ, (2)

∂W

∂t
= −γ̃‖(W − W∞) − 2κ̃(Ẽρ̃∗ + Ẽ∗ρ̃), (3)

where space and time are made dimensionless by the scale
transformation (ninω0x/c, ninω0y/c) → (x,y) and tω0 → t ,
respectively. ω0 denotes the transition frequency of the two-
level medium. The refractive index n(x,y) equals nin inside
the cavity and nout outside the cavity. αL(x,y) denotes the
linear absorption coefficient, which is equal to the constant
αL inside the cavity and zero outside the cavity. The two
dimensionless relaxation parameters γ̃⊥ and γ̃‖ denote the
transversal relaxation rate and the longitudinal relaxation rate,
respectively. W∞ and κ̃ denote the external pumping parameter
and the dimensionless coupling strength, respectively.

A key to the understanding of the lasing state is the
cavity modes, which are determined by the cavity shape
and the refractive index. They are obtained from the wave
equation (1) by omitting the polarization ρ and absorption
αL and assuming that a mode oscillates with frequency ξj as
Ẽj = ψj (r)e−iξj t , where j denotes a mode number. Because
of the scale transformation, the relation between ξj and
the actual frequency ωj is given by ξj = ωj/ω0 − 1. It is
to be noted that the values of ξj are always complex values
due to leakage from the cavity. The real part of ξj represents
the resonant frequency, while the imaginary part represents the
decay rate.

The lasing possibility of such cavity modes can be predicted
as follows. In the linear limit where the nonlinearity of
Eqs. (1)–(3) is omitted, the net lasing gain g(ξj ) for mode
j can be obtained as the first-order correction of the imaginary
part of the resonance frequency due to the presence of αL and

the active medium [16],

g(ξj ) = α0γ̃
2
⊥

γ̃ 2
⊥ + Re ξ 2

j

+ Im ξj − αL, (4)

where α0 = μκ̃W∞/γ̃⊥. In the above equation, the first term
denotes a Lorentzian-shaped gain that has a maximum at
Re ξj = 0, corresponding to the transition frequency ω0. The
second and third terms represent the cavity loss. When mode j

has a positive net gain g(ξj ) > 0, i.e., the gain (of the first term)
exceeds the total cavity loss, the mode has a possibility to lase.
However, we need to keep in mind that the linear description
is correct only when the light intensity is sufficiently low.

When the cavity size is large and many modes can have
positive net gain, the linear description becomes less effective,
because nonlinear interaction occurs among many modes via
the active medium. In particular, the modes of stadium-shaped
cavities can have chaotic spatial patterns, inducing complex
interaction among them [15].

In what follows, we focus on the lasing of a stadium-shaped
cavity in the case where many modes can have positive net
gain. From the numerical simulation of Eqs. (1)–(3) taking
into account full nonlinearity, we observe that as a result of
complex interaction among the modes, the cavities can exhibit
a strong tendency toward a stationary stable lasing state with
a single frequency.

B. Results

In our simulation, we chose a stadium which consists of
two half circles of radius R = 49/

√
2 and two flat lines of

length 2R, as shown in Fig. 1. The refractive indices inside and
outside the cavity are nin = 2 and nout = 1, respectively. If the
lasing wavelength is assumed to be 0.85 μm, the actual radius
of the stadium corresponds to 2.34 μm. Figure 2 displays the
distribution of the resonances ξ of the stadium, which were cal-
culated by using the extended boundary element method [30].
The other parameters were set as follows: γ̃‖ = 0.003, γ̃⊥ =
0.006, ε = 4.0, αL = 0.004, μ = π/2, κ̃ = 0.5, and W∞ =
2 × 10−3. For the choice of the parameter values, the modes
corresponding to resonances inside the light blue region of
Fig. 2 have positive net gain.
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FIG. 2. (Color online) Resonances of the stadium-shaped cavity
(crosses and closed circles). The resonances inside the light blue
region satisfy the lasing condition g(ξj ) > 0 [see Eq. (4)]. The two
closed circles denote the resonances of the cavity modes dominant in
the final lasing states.
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FIG. 3. Power spectra calculated from the time-series of the light-
field Ẽ(t) in three time regime, (a) t0(=0) < t < t1, (b) t1 � t < t2,
and (c) t2 � t < t3.

The numerical integrations of the SB model were carried
out by using the symplectic integrator method for Eq. (1)
and the Euler method for Eqs. (2) and (3) [31]. The time
evolution of the light field was started from an initial state
of small amplitude. We observed that the initial light field
first increases exponentially, and after a relaxation process,
a stationary lasing state is realized, where the light intensity
saturates to a constant value.

1. Time dependence of spectrum

An interesting dynamical behavior can be seen in a transient
time regime toward the stationary final lasing state. Figure 3
shows the time dependence of the optical spectrum. The
spectra are calculated from the time series of the light field
Ẽ(t) in three time regimes. Each time regime is set such
that tj−1 � t < tj (j = 1,2,3), where tj = j × t1, and t0 = 0
and t3 (≈50 000) denote an initial time when the laser action
starts and a time after relaxation to the stationary lasing state,
respectively. The power spectrum of the first time regime is
shown in Fig. 3(a). The spectrum shows several peaks around
ξ = 0 (i.e., the gain center of the active medium), which
correspond to the modes satisfying the linear lasing condition

FIG. 4. (Color online) Spatial intensity pattern of the stationary
lasing mode. The white curve defines the stadium-shaped cavity.

(4). In the second regime, the peak closest to the gain center
gets larger, while the other peaks are suppressed as the result
of gain competition [Fig. 3(b)]. For the power spectrum of the
third regime [Fig. 3(c)], we can identify only one peak, whose
interpretation will be given later.

2. Spatial pattern

Next, we investigated the spatial pattern of the stationary
single-frequency lasing state. Figure 4 shows its spatial pattern,
which reveals that the pattern is asymmetric with respect to
the x axis, while it is symmetric with respect to the y axis.
Since the spatial patterns of cavity modes are symmetric with
respect to both the x and y axes due to the symmetry of the
stadium shape (e.g., see Fig. 5), the asymmetric pattern cannot
be simply attributed to a single cavity mode.

According to Refs. [14–16], the generation of the asym-
metric pattern can be explained by the frequency-locking
phenomena among cavity modes with different parities. Here,
let ψ(x,y) be the wave function of the cavity modes. Due to
the symmetry of the stadium shape, the wave functions are
divided into four symmetry classes ψab(−x,y) = aψab(x,y)
and ψab(x, − y) = bψab(x,y) with the parities a ∈ (+,−) and
b ∈ (+,−), respectively. If the resonant frequencies of the
cavity modes with different parities are close to each other, they
can lase simultaneously, and for sufficiently strong interactions
their frequencies are locked so that the difference in the
frequency becomes zero. The interference among the lasing
modes with the same frequency but with different parities can
lead to an asymmetric pattern.

Our numerical analysis based on cavity-mode calculation
and a linear stability analysis reveals that the cavity modes of
the resonances denoted by the closed circles in Fig. 2 have
parities (+.+) and (−,+), as shown in Fig. 5, and they can
have a large net gain due to the low loss. Since their frequencies
are close to each other (i.e., they are nearly degenerate) and
there is a spatial overlap between the two modes [32], the
frequency-locking interaction is easily caused between them,
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FIG. 5. (Color online) Spatial intensity patterns of the cavity
modes corresponding to the resonances of (a) the left circle and
(b) the right circle in Fig. 2. The symmetry classes of these modes are,
respectively, (a) even-even, ψ++(x,y) and (b) odd-even, ψ−+(x,y).
Since the intensity pattern has a node (an antinode) along the x (y)
axis [y = 0 (x = 0)], the pattern has odd (even) symmetry with
respect to the x (y) axis. The white curve defines the stadium-shaped
cavity.

and the asymmetric pattern with respect to the x axis can be
generated by the interference between them.

We note that the lasing pattern that is the reverse of that
shown in Fig. 4 with respect to the x axis is also a stable lasing
state with the same frequency. Which lasing pattern appears
depends on the initial states of the light field and the active
medium. The bistability of the lasing pattern is a property seen
in 2D cavity lasers with an axial symmetry, such as stadium
lasers [14].

FIG. 6. (Color online) The schematic of the stadium-shaped
semiconductor laser diode.

3. Discussion on single-frequency lasing

Lastly in this section, we discuss the mode selection
process to the stable single-frequency lasing state. Because
the gain competition occurs for the modes sharing a common
population inversion, the spatial patterns of cavity modes play
a crucial role in the competition. In the stadium-shaped cavity,
a mode typically has a complex pattern spread over the cavity,
so that the population inversion is almost uniformly depleted
by the modes within the gain band, and the overlaps of these
modes lead to strong modal interactions among them. Previous
simulations of the SB model for stadium-shaped cavity lasers
show that only a few modes can lase, even when many
modes have positive net gain [15]. The tendency becomes
more prominent as the pumping power increases. Such strong
mode selection can also be seen in the other homogeneously
broadening lasers with spatially complex modes [33]. More-
over, in our simulations, the frequency-locking interaction also
plays an important role: The interaction integrates the two
modes shown in Fig. 5 into a single lasing mode, and can
further extend the spatial distribution to the whole cavity, as
shown in Fig. 4. Consequently, the lasing mode can deplete
the population inversion more uniformly, thereby preventing
the other modes from being excited.

For larger cavities, the spatial patterns of the cavity modes
become more complex. Moreover, the spacing between the
neighboring resonant frequencies becomes smaller, which will
make it easier to cause the frequency-locking interaction.
Therefore, it can be expected that single-frequency lasing can
be easily achieved even in large-sized cavities. In the next
section, we experimentally verify this with a stadium-shaped
semiconductor laser diode.

III. LASING PROPERTIES UNDER cw
PUMPING CONDITION

A. Stadium-shaped semiconductor laser diode

Figure 6 shows the schematic structure of the laser diode
used in the experiment. The radius R of the two half circles
is 25 μm, and the length of the straight segments is 50 μm,
which is about 11 times larger than the stadium-shaped cavity
studied numerically in the previous section. The laser diode
was fabricated by applying a reactive-ion-etching technique to
a graded index separate confinement heterostructure (GRIN-
SCH) single quantum well GaAs/AlGaAs structure that was
grown by metal-organic chemical-vapor deposition. The de-
tails of the layer structure and fabrication process are similar
to those reported in [18]. The laser was soldered on an AlN
(aluminum nitride) submount with high thermal conductivity,
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FIG. 7. Optical spectra obtained for injection current values of
(a) 1.07Ith, (b) 1.3Ith, and (c) 1.6Ith. The inset in (a) shows the
enlargement around the wavelength of 855 nm. The insets in (b) and
(c) show the corresponding logarithmic scale plots, clearly showing
the nonexistence of side peaks.

and the temperature was maintained at 25 ◦C. The optical
output was collected from the major axis of the stadium using
two antireflection coated lenses. One lens was used to collect
light from the laser, while the other one was used to refocus it
onto a multimode optical fiber. The collection efficiency was
∼5.9%, which is sufficient to evaluate the lasing properties.

B. Optical and rf spectra

Under cw condition, the lasing action was confirmed by
the appearance of sharp narrow peaks in the optical spectrum
when the injection current to the laser diode was increased
above 75 mA (=Ith). Figures 7(a)–7(c) show the optical
spectra obtained for various values of the injection current.
The position of the dominant peak is found to be close to the
maximum value of the amplified spontaneous emission (ASE)
spectrum measured below the threshold current. As shown in
Fig. 7(a) and its inset, the multiple peaks appear just above
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FIG. 8. (Color online) rf spectra for the injection current values
of 0.9Ith, 1.3Ith, and 1.6Ith, which are almost on top of each other.

the threshold. However, as the injection current increases, the
dominant peak increases while the intensities of the other peaks
decrease. For the injection current above ≈1.3 Ith, we can
observe a single peak in the optical spectrum. As seen in the
insets of Figs. 7(b) and 7(c), the logarithmic-scale plots of the
spectra provide clear evidence that the side-mode suppression
ratio is more than 20 dB. A slight redshift of the peak is due
to the Joule heating effect of the injection current.

The significant feature of the optical spectra under the cw
condition is the single sharp peak observed for a wide range of
values of the injection current. The full width at half maximum
(FWHM) of the peak is ∼0.06 nm, which is close to the
resolution limit of 0.05 nm of the optical spectrum analyzer
used in this experiment. Additional evidence to support the
occurrence of the single-wavelength lasing can be obtained
by investigating the existence of the mode-beating signals
and the noise enhancement due to multimode fluctuation in
the radio-frequency (rf) spectrum of the output light intensity.
This detection has been frequently used for lasers with small
mode spacing, such as fiber lasers (e.g., see Ref. [34]). In the rf
spectrum measurement, we used a fast response photodetector
with 3 dB bandwidth, 12.5 GHz. Figure 8 shows the rf
spectra of the output intensity for injection current values
of 1.3Ith and 1.6Ith. For purposes of comparison, the noise
spectrum measured below the threshold current is also shown
in the figure. If multimode lasing occurred, the multiple peaks
due to the multimode beating could appear in a wide range
up to 12.5 GHz [35]. However, the power spectra of the
intensity signals do not exhibit any significant enhancement
of the intensity noise caused by the multimode beating and
fluctuation, although a slight increase of the noise due to the
relaxation oscillation can be seen at around 2 GHz. From
these results, we conclude that the stadium-shaped laser stably
operates at a single wavelength.

C. Far-field pattern

In order to identify the lasing mode, we investigated the far-
field emission pattern from the stadium-shaped laser. The far-
field pattern was obtained by rotating the photodetector with a
slit around the stadium laser. The radius of the rotation and the
width of the slit were about 30 cm and 0.5 mm, respectively,
which yielded a resolution of 0.1◦. In the measurement, we
set the collection axis to have a slight angle with respect to
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FIG. 9. (Color online) Far-field pattern of the stadium-shaped
laser (red solid curve) together with the theoretical curve fitted by
using five low-loss cavity modes (green dashed curve).

the horizontal plane where the laser was placed, taking into
account the Lloyd’s mirror interference between the output
light and the reflected light at the GaAs substrate. The tilt
angle was determined so that the output light coupled to the
detector maximally.

The measured far-field pattern is shown in Fig. 9, where
the pattern is smoothed out by a moving average to display
the characteristics more clearly. The temperature and injection
current of the laser stabilized to better than ±0.01 ◦C and
0.06 mA, respectively. We confirmed that the pattern was
stationary and stable for the repeated operation of the laser,
and the fluctuation was at most 3% of the measured values.

As shown in Fig. 9, the emission pattern is almost
uniform, but has several local peaks, resulting from complex
interference of the light field emitted from the stadium-shaped
laser. It has been confirmed that the envelope of the pattern can
be well explained by a ray-dynamical model based on Snell’s
and Fresnel’s laws [20]. However, the entire emission pattern
including the local peaks is asymmetric with respect to the
major axis.

At this point, let us numerically verify whether the
asymmetric far-field emission pattern is due to the locking
phenomenon among the nearly-degenerate cavity modes with
different parities, as shown in Sec. II. Here, we assume that
the experimentally measured far-field pattern Iexpt(θ ) can be
fitted by the following far-field pattern I (θ ):

I (θ ) =
∣∣∣∣∣

N∑
j=1

aj e
iφj ψj (θ )

∣∣∣∣∣
2

+ β, (5)

which is the superposition of the wave function at infin-
ity ψj (θ ) of the cavity modes j (j = 1,2, . . . ,N ), whose
wavelengths are around the measured lasing wavelength of
848.75 nm. In the equation, aj and φj denote real amplitude
and phase coefficients, respectively, for mode j , and β repre-
sents the background level due to the spontaneous emission.
The unknown coefficients aj , φj , and β are determined such
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FIG. 10. (a) Distribution of the resonances kR around the lasing
wavelength of 848.75 nm. The mode number j (=1,2,3,4,5) is
assigned in order from the lowest loss mode. The parities of the
modes with respect to the major axis of the stadium are, respectively,
even, odd, even, odd, and odd. (b) Far-field pattern of the lowest-loss
cavity mode (j = 1). (c) The amplitude aj obtained from the fitting
calculation.

that the following evaluation function J takes the minimum:

J [I ] =
∫

C

|I (θ ) − Iexpt(θ )|dθ, (6)

where C denotes the measurement range C ∈ [−80,80].
The wave functions of the cavity modes can be obtained

as the eigensolutions of the Helmholtz equation [∇2 +
n2k2

j ]ψj = 0 under outgoing-wave condition at infinity [3],
where n is the refractive index. kj and ψj denote the
wave number of an eigenvalue and the eigenfunction of the
Helmholtz equation, respectively. As mentioned in Sec. II,
because of leakage from a cavity, the eigenwave number kj

always becomes complex; the real part of kj denotes the
resonance wave number, while the imaginary part represents
the decay rate of the cavity mode.

Figure 10(a) shows the distribution of the dimensionless
wave number kR over the range corresponding to the lasing
wavelength 848.75 ± 0.025 nm. In this calculation, the
boundary element method was used [30]. The effective
refractive index was assumed to be 3.3. We emphasize that
this cavity-mode calculation was performed for the real cavity
size used in the experiment.

First, for comparison purposes, we used a single cavity
mode and carried out the fitting calculation using a Monte
Carlo simulation. The best value of J/J [0] we could obtain
was 0.33, where J [0] = ∫

C
Iexpt(θ )dθ . The large mismatch in

the fitting is due to the symmetric pattern of the cavity modes
and the large amplitude oscillation. As an example, the pattern
of the lowest loss mode is shown in Fig. 10(b). The large
amplitude oscillation is not a peculiar feature of the cavity
mode, but a common feature of all the cavity modes [20].

The value of J can be improved by increasing the number
of the modes in the fitting calculation. The far-field pattern
obtained from the fitting calculation using five low-loss modes
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FIG. 11. Pulse width dependence of the optical spectra. The
intensity is stronger as the color darkens.

(j = 1, . . . ,5) shown in Fig. 10(a) is superimposed with a
green dashed curve in Fig. 9. The pattern is asymmetric, and
the oscillation amplitude decreases because of the interference
among the many cavity modes. The value of J/J [0] is about
0.12, which is three times better than the single-cavity mode.
The amplitude of each cavity mode is shown in Fig. 10(c),
where the mode number j is labeled from the lowest loss
mode in order (e.g., j = 1 denotes the lowest loss mode,
j = 2 denotes the second-lowest loss mode, and so on). We
also confirmed that the fitting pattern is almost unchanged
even when higher loss modes are taken into account in the
fitting calculation. These results suggest that the experimental
far-field pattern can be interpreted as that of the locking
state among the five low-loss modes. A deviation from the
experimental pattern Iexpt may be attributed to the change
in the refractive index upon the current injection, impurities
around the laser cavity, and the use of the two-dimensional
approximation of the wave functions of the cavity modes.

IV. OPTICAL SPECTRA UNDER
PULSED-PUMPING OPERATION

Lastly, we discuss what pumping conditions are necessary
for observing the single-wavelength lasing in order to relate
our studies with previous experimental works, in which it
has been reported that multimode lasing can be observed in
stadium-shaped microcavity semiconductor lasers [18,20,23].
For this purpose, we investigated the optical spectra under
pulsed-pumping conditions. In this experiment, the width of
the pulse current applied to the laser diode was set to be in the
range of 0.1–990 μs, while the repetition rate was fixed to be
1 kHz, i.e., the duty cycle was varied from 0.1% to 99%. The
maximum and minimum values of the pulse current were fixed
as 1.3Ith and 0 mA, respectively. The results are summarized
in Fig. 11 by a contour plot in the pulse-width and wavelength
plane, where the gray-colored scale represents the spectral
intensity. We can clearly observe the increase and decrease in
the number of lasing modes as the pulse width is changed.

For a short pulse width of 0.1 μs, a single peak around
853 nm, which is close to the maximum of the ASE spectra,
is observed. As the pulse width gets longer, the other peaks
appear, particularly in the long-wavelength regime around

860 nm. When the pulse width further increases, their peaks
are suppressed, while a peak around 849 nm, corresponding
to the wavelength observed in the case of cw operation,
gradually increases. Finally, only this peak survives, and stable
single-wavelength lasing can be observed.

It is important to note that the pulse width is related to the
time interval during which the cavity modes are excited. We
speculate that the change in the lasing modes from the short
pulse to long pulse region is related to the transient dynamical
behaviors of the lasing modes toward the single-wavelength
lasing state, as numerically demonstrated in Sec. II B1. When
the width of the pumping pulse, i.e., the time of the excitation,
is much shorter than a relaxation time to the lasing state,
the intensities of each lasing mode are so small that gain
competition does not occur among them. Considering that
the spectral measurement is carried out for a long time
interval, the spectrum reflects the time-averaged intensities
of the modes in the early-transient time regime toward the
single-wavelength lasing, and thus it can exhibit multiple
peaks. As the pulse width is longer, a nonlinear interaction
such as gain competition starts to occur, inducing a decrease
of the number of lasing modes. Therefore, in the spectrum, the
number of peaks is observed to decrease. We speculate that
such gain competition can cause a drastic change of dominant
lasing modes over a wide range of the wavelengths, as seen
in Fig. 11. The deformation of the gain spectrum due to the
Joule heating effect of the injection current may also partly
contribute to the change.

We note that a long pulse width of over 900 μs (i.e., 90%
duty cycle) is needed to achieve a stable single-wavelength
lasing in our experiment. The long time scale is partly due
to our measurement method, which requires a long time to
detect the spectral features. Therefore, the observed pulse-
width dependence of the spectrum does not directly reflect the
mode dynamics. However, we believe that our approach could
be useful for qualitatively understanding a transient dynamical
behavior and controlling the lasing states.

V. SUMMARY AND DISCUSSIONS

In summary, we numerically and experimentally investi-
gated the lasing properties of stadium-shaped chaotic micro-
cavity lasers under both cw and pulsed-pumping conditions.
The numerical simulation based on the SB model revealed that
a stable and stationary single-wavelength lasing is generally
observed under cw pumping condition, even when many
cavity modes have positive net gain. The emission pattern
was found to be asymmetric with respect to a symmetry axis
of the stadium-shaped cavity, which was explained as due to
the frequency-locking interaction between nearly-degenerate
cavity modes with different parities. The interesting point is
that the lasing state is formed by the integration of two low-loss
modes due to the frequency locking. The spatial pattern is
extended to the whole area inside the cavity, which can
increase gain competition and suppress the lasing of the other
modes.

We observed single-wavelength lasing with asymmetric
emission pattern in a semiconductor laser diode with a
stadium-shaped cavity under cw condition. We quantitatively
confirmed that the observed asymmetric pattern is better fitted
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by the superposition of five low-loss cavity modes than by a
single cavity mode. On the basis of numerical simulations of
the SB model, we considered that such a superposition is due
to the frequency-locking effect.

We also experimentally observed that under short pulsed-
pumping conditions, multimode lasing is possible. However,
the number of lasing modes decreases as the width of the
pulse current (i.e., the time of excitation) increases, thereby
indicating that after the transient, the stable single-wavelength
lasing state can be achieved under long pulsed-pumping
condition.

We emphasize that the interpretation of our numerical
and experimental results on the single-wavelength lasing is
different from those of previous works [25–27], where single-
wavelength lasing has been explained with a simple picture

based on a single low-loss cavity mode. The asymmetric lasing
emission pattern we observed numerically and experimentally
cannot be fully explained using such a simple picture. Because
the origin of the single-wavelength lasing is the strong modal
interaction resulting from the spreading of spatial patterns
over the whole cavity area due to wave chaos, as mentioned
in Sec. II B3, we expect that single-wavelength lasing can
generally be observed for the other chaotic microcavity lasers
operated in cw pumping.
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