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We study composite solitons, consisting of domain walls and vortex lines attaching to the walls in two-
component Bose-Einstein condensates. When the total density of the two components is homogeneous, the
system can be mapped to the O(3) nonlinear σ model for the pseudospin representing the two-component
order parameter, and the analytical solutions of the composite solitons can be obtained. Based on the analytical
solutions, we discuss the detailed structure of the composite solitons in two-component condensates by employing
the generalized nonlinear σ model, where all degrees of freedom of the original Gross-Pitaevskii theory are active.
The domain wall pulled by a vortex is logarithmically bent as a membrane pulled by a pin. It bends more flexibly
than the domain wall in the σ model, because the density inhomogeneity results in a reduction of the domain
wall tension from that in the σ model limit. We find, however, that the curvature of the wall bending pulled by a
vortex is still greater than that expected from the reduced tension due to only the density inhomogeneity. Finally,
we study the composite soliton structure for actual experimental situations with trapped immiscible condensates
under rotation, through numerical simulations of the coupled Gross-Pitaevskii equations.
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I. INTRODUCTION

Topological defects or topological solitons are solutions of
systems obeying partial differential equations, and represent
localized structures with their stability being attributable to
nontrivial topology [1]. Vortices in superfluids and supercon-
ductors are an example of line topological defects [2], and it is
believed that the analogous defects exist in the early universe as
cosmic strings [3]. A domain wall is a planar topological defect
separating two different vacua or phases. When a symmetry
group G of a system is spontaneously broken into a subgroup
H , the topologically allowed defect type is determined by the
homotopy properties of the order parameter space (vacuum
manifold) G/H . In a (d + 1)-dimensional space-time, p-
dimensional defects (p < d) exist if the homotopy group
πd−p−1(G/H ) is nontrivial. Thus, for d = 3, planar defects
(domain walls) can be expected if π0(G/H ) �= 0, linear defects
(vortices or strings) can be expected if π1(G/H ) �= 0, and point
defects (monopoles) can be expected if π2(G/H ) �= 0. These
defects can be classified as “singular” or “continuous” in the
sense of whether (a part of) G is recovered at the core of the
defects. The order parameter is not defined at the core of a
singular defect, but it is defined everywhere for a continuous
texture (defects).

Bose-Einstein condensates (BECs) of ultracold atomic
gases provide an ideal system for examining topological soli-
tons in a quantum condensed system [4]. A major advantage of
this system is that the properties of BECs can be quantitatively
described by using mean-field theory, namely, the Gross-
Pitaevskii (GP) model. From an experimental point of view,
cold-atom BECs are a versatile system to study topological
defects, because most of the system parameters are tunable
and optical techniques allow one to engineer the condensate
wave function as well as to visualize the condensates directly.

In the context of a single-component BEC characterized by
a scalar order parameter with broken U(1) symmetry, there
are many papers discussing the properties of solitons and
vortices; see Refs. [5,6] for reviews. In addition, realization of
multicomponent (spinor) BECs with multiple order parameters
provides a ground to study more complex topological solitons
[7], as studied in superfluid 3He [8]. For example, dark-bright
solitons can be excited in two-component BECs [9,10], where
a dark soliton (density dip) of one component can trap a bright
soliton (density hump) of the other component [11]. Exotic
vortices composed of several order parameter components
have been observed experimentally [12–16]. Because the order
parameter space of multicomponent BECs can possess higher
symmetry than U(1) of the scalar BEC, their homotopy groups
πn with different n can become simultaneously nontrivial and
thus different types of topological solitons can coexist. There
has been discussion of the structure, stability, and creation and
detection schemes for various types topological solitons in
multicomponent BECs, including monopoles [17–21], three-
dimensional (3D) skyrmions [22–27], cosmic vortons [28,29],
and knots [30,31].

In this paper, we discuss a 3D composite soliton consisting
of domain walls and vortices in immiscible two-component
BECs, as sketched in Fig. 1. Two-component BECs have been
realized by using a mixture of atoms with two hyperfine states
of 87Rb [32–35] or a mixture of two different species of atoms
such as 87Rb-41K [36,37], 85Rb-87Rb [38], or 87Rb-133Cs [39].
Experiments [35,38] have demonstrated that miscibility and
immiscibility of two-component BECs can be controlled by
tuning the atom-atom interaction via Feshbach resonances.
The domain wall is referred to as a boundary of the phase-
separated two-component BECs and is well defined as a
plane on which both components have the same amplitudes
[40–43]. The vortices can be arranged by applying rotation of
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FIG. 1. (Color online) Schematic illustration of the wall-vortex
soliton configuration in two-component BECs. The two-component
BECs �1 at z > 0 and �2 at z < 0 are separated by the domain
wall at the z = 0 plane. Since penetration of the condensate densities
takes place around the boundary, the domain wall is well defined as a
plane on which both components have the same amplitude, as shown
in the middle panel. We assume that vortex lines are straight and
perpendicular to the wall. Rotation is applied to the two components
with a different rotation frequency �i = �i ẑ.

the confining potential around the z axis to the phase-separated
BECs [6]. We assume that the two components undergo phase
separation in the z > 0 and z < 0 regions, forming a domain
wall lying at the z = 0 plane with edges of the vortex lines
along the z axis attaching to the domain wall.

In our previous paper [44], we pointed out that the
wall-vortex composite soliton in two-component BECs can
be identified as a nonrelativistic analog of the “Direchlet
(D)-brane soliton” found in some field theoretical models
[45–49]. This statement is based on the fact that the GP
equations for two-component BECs can be mapped to the
O(3) nonlinear σ model (NLσM) by introducing a pseudospin
representation of the order parameter [50–52]. NLσM admits
a solitonic object that can have properties similar to those of
the D-brane in string theory [45]. The purpose of this paper
is to discuss in more detail the structure of this composite
soliton in two-component BECs. The generalized NLσM for
two-component BECs includes additional degrees of freedom
compared with the original O(3) NLσM, which modifies some
properties of the composite soliton known in the previous
literature. (i) Vortices consisting of a composite soliton have a
singular core, whereas they are nonsingular in NLσM. (ii) The
density inhomogeneity of the BECs results in reduction of the
domain wall tension from that in NLσM. (iii) The domain wall
attached by a vortex is logarithmically bent, as a membrane
pulled by a pin, and it bends more flexibly than the domain
wall in NLσM. However, the reduced tension caused by (ii)
is insufficient to account for the observed curvature of the
domain wall bending in the presence of a vortex. We also
study the composite soliton structure of rotating immiscible
BECs in a trapping potential through 3D numerical simulations
of the coupled GP equations. To reduce the gradient energy
of the density, the domain wall tends to be parallel to the
rotation axis and forms a vortex sheet [53]. At high rotation
frequency, a lattice of two-dimensional (2D) skyrmions can
form upon the domain wall, which undergoes triangular or
rectangular ordering caused by the effective intercomponent
repulsion realized in the restricted system on the domain wall.

This paper is organized as follows. In Sec. II, we formulate
the problem for two-component BECs and introduce the
pseudospin representation to reduce the GP model to NLσM.
In Sec. III, we examine the structure of wall-vortex composite
solitons based on the analysis of NLσM, where analytic
solutions of these solitons can be obtained. In Sec. IV,
we discuss how the composite solitons in two-component
BECs are modified from the analytic solutions in NLσM and
present the results of 3D numerical simulations for the trapped
immiscible two-component BECs under rotation. We conclude
this paper in Sec. V.

II. THEORETICAL FORMULATION OF
TWO-COMPONENT BECS

We study the detailed properties of composite solitons in
two-component BECs, whose basic configuration is illustrated
schematically in Fig. 1. Two-component BECs are represented
by the order parameters (�1,�2)T = (

√
ρ1e

iθ1 ,
√

ρ2e
iθ2 )T ,

which are the condensate wave functions with density ρj

and phase θj (j = 1,2). They are confined in some trapping
potentials and undergo phase separation, which results in
the domain walls. The quantized vortices can exist in each
component, being created by rotating the system or imprinting
the circulating phase by atom-laser coupling [6]. We first
show that the theoretical formulation of this system can
be mapped to NLσM. This mapping was first discussed
in the two-component Ginzburg-Landau theory for charged
two-component Bose systems [54], which was applied to
two-component BECs by some of the authors [50,51].

The solitonic structure in two-component BECs is given
by the analysis of the two-component GP model. The energy
functional is given by

E[�1,�2] =
∫

dr

⎧⎨
⎩
∑
j=1,2

[
h̄2

2mj

∣∣∣∣
(

∇ − i
2mj

h̄
Ã
)

�j

∣∣∣∣
2

+ (Vj − μj )|�j |2 + gjj

2
|�j |4

]

+ g12|�1|2|�2|2
⎫⎬
⎭ . (1)

Here mj and μj are the mass and the chemical potential,
respectively, of the j th component. The trapping potential is
expressed with an axisymmetric harmonic oscillator as

Vj = 1
2mjω

2
j (r2 + λ2z2), (2)

with an aspect ratio λ, where λ < 1 (>1) represents a
cigar-shaped (pancake-shaped) potential. The coefficients g11,
g22, and g12 represent the atom-atom interactions. They are
expressed in terms of the s-wave scattering lengths a11 and a22

between atoms in the same component and a12 between atoms
in different components as

gjk = 2πh̄2ajk

mjk

, (3)

with m−1
jk = m−1

j + m−1
k . The vector potential Ã is generated

by (i) the rotation of the system Ã = (� × r)/2 [6] or (ii) a
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synthesis of the artificial magnetic field by the laser-induced
Raman coupling between the internal hyperfine states of the
atoms [55].

The two-component GP model can be transformed into a
form similar to that of NLσM by introducing the pseudospin
representation of the order parameter. Here we confine our-
selves to the simple situation with equal masses m1 = m2 = m

and equal trapping frequencies ω1 = ω2 = ω; its derivation in
the case of the general parameters of the system, e.g., the mass
imbalance and the difference of the trapping frequencies, was
considered by Mason and Aftalion [52]. The condensate wave
functions are denoted as(

�1

�2

)
= √

ρei
/2

(
ζ1

ζ2

)
. (4)

Here ζ = [ζ1,ζ2]T is the spin- 1
2 spinor with |ζ1|2 + |ζ2|2 = 1.

The four degrees of freedom of the original wave functions
�j = √

ρje
iθj (of amplitudes ρj and phases θj ) are expressed

in terms of the total density ρ = ρ1 + ρ2, the total phase 
 =
θ1 + θ2, and the polar angle θ and azimuthal angle φ of the
local pseudospin s = (sx,sy,sz) defined as

s = ζ †σ ζ =

⎡
⎢⎣

ζ ∗
1 ζ2 + ζ ∗

2 ζ1

−i(ζ ∗
1 ζ2 − ζ ∗

2 ζ1)

|ζ1|2 − |ζ2|2

⎤
⎥⎦ =

⎡
⎢⎣

sin θ cos φ

sin θ sin φ

cos θ

⎤
⎥⎦ , (5)

where σ is the Pauli matrix, cos θ = (ρ1 − ρ2)/ρ, φ = θ2 − θ1,
and |s|2 = 1. By using these variables, the total energy, Eq. (1),
can be rewritten in the form of the generalized NLσM [51]:

E =
∫

dr
{

h̄2

2m

[
(∇√

ρ)2 + ρ

4

∑
α

(∇sα)2

]
+ Vρ

+ mρ

2
v2

eff + U (ρ,sz)

}
, (6)

where we have introduced the effective velocity field veff =
vg + vs − 2Ã, which arises from the gradient of the total
phase,

vg = h̄

2m
∇
, (7)

and the flux flow of the spinor,

vs = h̄

2mi

∑
j=1,2

(ζ ∗
j ∇ζj − ζj∇ζ ∗

j )

= h̄

2m

sz

s2
x + s2

y

(sy∇sx − sx∇sy) = − h̄

2m
cos θ∇φ. (8)

Here we have also used the relation

h̄2

2m
(|∇ζ1|2 + |∇ζ2|2) − v2

s

4
= h̄2

8m

∑
α

(∇sα)2. (9)

The second term on the right-hand side of Eq. (6) corresponds
to the classical NLσM for a Heisenberg ferromagnet. The
generalized NLσM has several unique features. (i) There is
a gradient term of the total density. (ii) The spin stiffness,
a prefactor of the (∇sα)2 term, depends on the total density
ρ and is generally spatially inhomogeneous. (iii) There is an
additional kinetic-energy term, mρv2

eff/2, associated with the

presence of the superfluid velocity veff �= 0 and the external
vector potential Ã �= 0.

The potential U is a function of the total density ρ and
the z component sz of the pseudospin only, being explicitly
written as

U (ρ,sz) = c0 + c1sz + c2s
2
z , (10)

with

c0 = ρ

8
[ρ(g11 + g22 + 2g12) − 4(μ1 + μ2)], (11)

c1 = ρ

4
[ρ(g11 − g22) − 2(μ1 − μ2)], (12)

c2 = ρ2

8
(g11 + g22 − 2g12). (13)

If g11 �= g22 �= g12 or μ1 �= μ2, the anisotropic terms with
coefficients c1 and c2 break the global SU(2) invariance of the
system. The coefficient c1 can be interpreted as a longitudinal
magnetic field that tends to align the pseudospin along the
z axis. The term with coefficient c2 determines the spin-spin
interaction associated with sz; it is antiferromagnetic for c2 > 0
and ferromagnetic for c2 < 0 [51]. The stationary point of this
potential gives the equilibrium values

ρ = (g22 − g12)μ1 + (g11 − g12)μ2

g11g22 − g2
12

, (14)

sz = (g22 + g12)μ1 − (g11 + g12)μ2

(g22 − g12)μ1 + (g11 − g12)μ2
. (15)

The determinant of the Hessian at that point is given by

∂2U

∂ρ2

∂2U

∂s2
z

−
(

∂2U

∂sz∂ρ

)2

= [(g22 − g12)μ1 + (g11 − g12)μ2]2

4
(
g11g22 − g2

12

) .

(16)

The stationary point is a minimum or a maximum only when
g11g22 − g2

12 > 0. Otherwise, the minimum of the potential
disappears within the range −1 < sz < 1 and the degenerate
energy minima are given by sz = 1 or sz = −1. This situation
corresponds to ferro-magnetization, namely, the phase sepa-
ration of the two-component BECs, which is discussed in the
following text.

III. TOPOLOGICAL SOLITONS IN THE NONLINEAR σ

MODEL

To understand the properties of a wall-vortex soliton in
a field theoretical model, we consider static solutions of the
topological solitons in the O(3) NLσM [45]. NLσM is a scalar
field theory whose (multicomponent) scalar field defines a
map from a “space-time” to a Riemann (target) manifold. The
energy functional is given as

E[s] = 1

4

∫
dr

[
3∑

α=1

(∇sα)2 + U (s)

]
, (17)

which is also known as the Landau-Lifshitz model governing
the high-spin and long-wavelength limit of ferromagnetic
materials. Here the amplitude of the vector is |s(r)| = 1 at all
instances. The ground state is twofold degenerate, for example,
sz = +1 and −1, where the potential can be described as

U (s) = m2
σ

(
1 − s2

z

)
, (18)
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FIG. 2. (Color online) Stereographic projection from the sphere
to the tangent plane at the north pole.

with mass parameter mσ . This massive NLσM given by
Eq. (17) is essentially equivalent to the truncated version of
the massive hyper-Kähler σ model employed in Ref. [45],
where the analytical solitonic solutions were derived from this
truncated model.

Under several conditions, our model [Eq. (6)] can be
reduced to the same form as Eq. (17) [44]. For a simple
situation, we consider a homogeneous system without a
trapping potential (V = 0) and set the parameters as g11 =
g22 ≡ g and μ1 = μ2 ≡ μ. The anisotropy coefficient c1 in
Eq. (10) then vanishes and the total energy can be written as

E =
∫

dr
{

h̄2

2m

[
(∇√

ρ)2 + ρ

4

∑
α

(∇sα)2

]
+ mρ

2
v2

eff

+ g

2

(
ρ − μ

g

)2

− g − g12

4
ρ2
(
1 − s2

z

)}
, (19)

where the constant term has been omitted. The coefficient
of the last term in Eq. (19) is positive because we consider
the case of g12 > g, giving the mass for the sz field. In the
limit g → ∞, which corresponds to the Thomas-Fermi limit
[4], we can approximate that the total density is fixed at ρ =
μ/g ≡ ρ0 and that the (∇√

ρ)2 term vanishes. The kinetic
energy associated with the superflow veff is assumed to be
negligible for simplicity [56]. By using the healing length
ξ = h̄/

√
2mgρ0 as the length scale, the total energy reduces to

Ẽ = E

gρ2
0ξ

3
	 1

4

∫
dr
[∑

α

(∇sα)2 + m2
σ

(
1 − s2

z

)]
, (20)

with mass

m2
σ ≡

∣∣∣∣1 − g12

g

∣∣∣∣. (21)

Therefore, the following discussion based on Eq. (17) can be
applied approximately to our system. Actually, as explained
later, the additional degrees of freedom in a two-component
BEC system yield only a quantitative modification of the
soliton structure.

To this end, we introduce the stereographic coordinate

u = sx + isy

1 + sz

, (22)

where u = 0 (∞) corresponds to the north (south) pole of the
spin sphere, as shown in Fig. 2. Then each component of the

pseudospin is written as

(sx,sy,sz) =
(

u + u∗

1 + |u|2 , − i
u − u∗

1 + |u|2 ,
1 − |u|2
1 + |u|2

)
(23)

and Eq. (17) becomes

E =
∫

d3x

∑
α |∂αu|2 + m2

σ |u|2
(1 + |u|2)2

. (24)

The solutions of the topological solitons can be obtained
by taking the Bogomol’nyi-Prasad-Sommerfield (BPS) bound
for the total energy [57,58]. Often, by enforcing the case that
the bound is satisfied (“saturated”), one can obtain a simpler
set of partial differential equations to solve the Bogomol’nyi
equations by completing the square. Solutions saturating the
bound are called BPS states, and their energy is proportional
to a topological charge that characterizes the solitons. Here we
summarize the properties of the BPS saturated solutions of the
topological solitons.

A. Vortex configuration

In the case of mσ = 0 in Eq. (17), the Hamiltonian of
the system has O(3) symmetry. Because the symmetry of the
ground state is broken to O(2), the order parameter space is
G/H = O(3)/O(2) 	 S2. Then the second homotopy group
is nontrivial as π2(S2) = Z. This suggests the presence of
pointlike defects such as monopoles and 2D nonsingular
defects such as “2D skyrmions” (coreless vortices) [15,16],
because the former configuration can be mapped to the latter
through stereographic projection.

First, we derive the analytic solutions of the coreless
vortices by taking the BPS bound. We restrict ourselves to
consider static solutions that are translationally invariant along
the z axis. The total energy can be written as

E =
∫

d2x
∂xu∂xu

∗ + ∂yu∂yu
∗

(1 + |u|2)2

= 2
∫

d2x
|∂wu|2 + |∂w̄u|2

(1 + |u|2)2
, (25)

where we have introduced w = x + iy, ∂w = (∂x − i∂y)/2,

and ∂w̄ = (∂x + i∂y)/2. The topological charge Tv ∈ π2(S2) =
Z of the coreless vortices is given by the number of times
that s (or u) winds around S2. By considering the normalized
area element of S2, i.e., [(∇θ ) × (sin θ∇φ)] · dS/4π , such a
winding number can be expressed as

Tv = 1

4π

∫
[(∇θ ) × (sin θ∇φ)] · dS

= 1

8π

∫
[εαβγ sα(∇sβ) × (∇sγ )] · dS, (26)

with the infinitesimal plane dS and the Levi-Civita symbol
εαβγ . By using the relation u = tan(θ/2)eiφ or Eq. (23), Tv can
be rewritten in terms of u as

Tv = 1

π

∫
d2x

|∂wu|2 − |∂w̄u|2
(1 + |u|2)2

. (27)

By substituting with Eq. (27) in Eq. (25), we find that the total
energy can be written as the sum of the topological charge and
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FIG. 3. (Color online) Spin profile of a coreless vortex. The spin
component is given by (sx,sy,sz) = (2x/(1 + r2),2y/(1 + r2),(1 −
r2)/(1 + r2)).

a positive correction:

E = 2πTv + 4
∫

d2x
|∂w̄u|2

(1 + |u|2)2
. (28)

Thus, the energy is bounded by the topological charge E �
2πTv and the equality holds only if

∂w̄u = 0. (29)

This equation is called a Bogomol’nyi equation. It is a first-
order equation whose solution gives a field configuration with
a minimal energy within a fixed topological sector Tv. Equation
(29) also shows that u is a holomorphic function of w only.
Note that u is allowed to have a pole at any point w = wi

because its image on the target S2 is simply the south pole.
The requirement that the total energy is finite, together with
the boundary condition that u has a definite limit as |w| → ∞,
forces u to be a rational map:

uv(w) = f (w)

g(w)
=
∏Nn

i=1

(
w − wn

i

)
∏Ns

i=1

(
w − ws

i

) , (30)

where f and g are polynomials in w with no common factors.
This solution gives the vortex configuration, in which f (w) and
g(w) represent Nn vortices (north poles) and Ns antivortices
(south poles), respectively. The positions of the vortices are
denoted by wn

i and ws
i . We note that the total energy does not

depend on the form of the solution, but only on the topological
charges. In NLσM, the energy is independent of the vortex
positions w

n,s
i ; in other words, there is no static interaction

between vortices.
Figure 3 represents the profile of the spin field for the simple

vortex solution uv(w) = w. The spin orients upward at the
center (sz → 1 as |w| → 0) and it continuously rotates in the
up and down direction as it moves outward radially (sz →
−1 as |w| → ∞). The spin configuration of this continuous
(coreless) vortex is known as a lump in field theory [59], an
Anderson-Toulouse vortex in superfluid 3He [60], or a 2D
skyrmion in spinor BECs [15,16].

B. Domain wall

Next, let us consider the case of mσ �= 0. Assume that
the field configuration s interpolates between two degenerate
ground states, so that sz = −1 for z → −∞ and sz = 1 for
z → ∞. Then, we can have a domain wall between the two

ground states. For such a configuration, we obtain the BPS
bound of the energy as

E =
∫

dz
∂zu∂zu

∗ + m2
σ |u|2

(1 + |u|2)2

=
∫

dz

[ |∂zu + mσu|2
(1 + |u|2)2

− mσ (u∗∂zu + u∂zu
∗)

(1 + |u|2)2

]
. (31)

Here the second term corresponds to the charge of the domain
wall as

Tw = −mσ

∫ +∞

−∞
dz

(u∗∂zu + u∂zu
∗)

(1 + |u|2)2

= mσ

2

∫ +∞

−∞
dz∂zsz = mσ

2
[sz]

z=+∞
z=−∞ . (32)

Under the above boundary condition, the charge becomes
Tw = +mσ . The energy is bounded by the domain wall charge
E � Tw, and the saturated solution satisfies the Bogomol’nyi
equation

∂zu + mσu = 0. (33)

Then we can obtain the BPS wall (kink) solutions

uw = e−mσ (z−z0)−iφ0 , (34)

or, in terms of sz, we have

sz = tanh[mσ (z − z0)]. (35)

We can also consider the related solution with Tw = −mσ

[called the antiwall (antikink) solution], which is obtained
by making the replacement u → u−1 (sz → −sz). Here z0

represents the position of the flat domain wall (sz = 0) whose
translation along the z axis causes the Nambu-Goldstone mode
owing to breaking of the translational invariance. The phase
−φ0 corresponds to the azimuthal angle of the pseudospin s,
causing the breaking of the global U(1) symmetry locally along
the wall. By promoting these two variables to dynamical fields
as z0 → z0(x,y,t) and φ0 → φ0(x,y,t), we can construct an
effective theory of the domain wall. In the relativistic context,
the low-energy dynamics of a single domain in NLσM wall can
be described by the Dirac-Born-Infeld (DBI) action [45,46],
in which the local U(1) gauge fields on the wall are created
by the dual transformation of the localized zero mode of the
phase φ0. This is an important foundation for the reason that
the domain wall in NLσM can be identified as an analog of a
D-brane [45,46,48].

C. Wall-vortex complexes: Analog D-brane solitons

By combining the above two solutions of the topological
solitons, we can construct solutions in which vortices and
domain walls coexist. For a fixed topological sector, namely,
for vortices (a domain wall) parallel (perpendicular) to the
z axis, the total energy [Eq. (24)] can be bounded with the
topological charge as

E � |Tw| + 2π |Tv|. (36)
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FIG. 4. (Color online) The simplest wall-vortex soliton, where a
single vortex along the z axis for z < 0 is connected to the domain
wall. The spin profile is given explicitly by Eq. (39), with mσ = 1.
(a) The profile of sz. The spin texture of (b) the z = 0 plane and (c)
the y = 0 plane. In (c), the wall position given by Eq. (40) is shown
by a solid curve.

The BPS states can be represented in the form of separated
coordinate variables [47],

u(r) = uv(w)uw(z)

=
∏Nn

i=1

(
w − wn

i

)
∏Ns

i=1

(
w − ws

i

) e−mσ (z−z0)−iφ0 , (37)

where uv and uw are satisfied with the Bogomol’nyi equations
(29) and (33), and the forms of the solutions are given by
Eq. (30) and Eq. (34), respectively.

To determine the properties of typical solutions, we plot the
profile for the solutions of a single vortex and a single wall,
expressed as

u(w,z) = e−mσ zw. (38)

Here we choose z0 = 0, φ0 = 0, Nn = 1, Ns = 0, and wn
1 =

0. This is the simplest composite wall-vortex solution. The
corresponding spin profile is written as⎛

⎜⎝
sx

sy

sz

⎞
⎟⎠ =

⎛
⎜⎜⎝

2xe−mσ z

1+|w|2e−2mσ z

2ye−mσ z

1+|w|2e−2mσ z

1−|w|2e−2mσ z

1+|w|2e−2mσ z

⎞
⎟⎟⎠ , (39)

which is shown in Fig. 4. For a fixed |w| = r , we have a
domain wall solution along the z direction but for a fixed z

we have a vortex configuration in the x-y plane. For a fixed
z, the coreless vortex has a scale size exp(mσz); thus, the
size becomes infinity (zero) as z → +∞ (z → −∞). The
wall position, i.e., the isosurface of sz = 0, is described by a
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z = 0 plane y = 0 plane(c)(b)
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x

FIG. 5. (Color online) A wall-vortex soliton to which two vortices
attach. (a) Isosurface of sz = 0 for the solution [Eq. (41)] of NLσM.
The corresponding spin textures s in the z = 0 plane and the y = 0
plane are shown in (b) and (c), respectively. In (c), the wall position
given by Eq. (42) is shown by a solid curve. The wall becomes
asymptotically flat as a result of the balance between the tensions of
the attached vortices.

logarithmic function

z = 1

mσ

ln |w|, (40)

as seen in Fig. 4(c). This situation is equivalent to the
logarithmic bending when a membrane with a tension T is
pulled by a pin at r = 0, where the profile of the membrane is
given by z = (ln r)/T as a problem in mechanics. In the BPS
solution, the tension of the domain wall is Tw = mσ as shown
above.

We can construct solutions in which an arbitrary number
of vortices are connected to a domain wall, using Eq. (37),
because of the absence of any static interaction between
vortices. Figure 5 shows a solution in which two straight
vortices along the z axis are connected to the wall on both
sides. We assume that the vortices have ends at the positions
w = x0 and −x0 on the wall. Then

u(w,z) = e−mσ z w − x0

w + x0
. (41)

The wall position is given by

z = 1

mσ

ln

∣∣∣∣w − x0

w + x0

∣∣∣∣, (42)

which becomes asymptotically flat (z → 0) for |w| → ∞.
It is instructive here to understand schematically the wall

configuration [Eqs. (40) and (42)] in terms of the tension of
the vortices and walls. The wall bending can be interpreted to
be caused by the tension of a vortex attached to the wall. For
the case of Eq. (42), the tensional forces exerted by the two
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vortices balance and the equilibrium position of the wall is
well defined as z = 0 asymptotically. However, for Eq. (40),
the position is ill defined since the force is unbalanced in the
presence of a vortex only on one side of the wall. Similarly,
the wall has an equilibrium position z = z0 when the number
of vortices on one side equals that on the other side, namely,
Nn = Ns in Eq. (37). The stiffness of the wall is represented
by the coefficient m−1

σ in Eqs. (40) and (42) with the wall
tension Tw = mσ . Therefore, the wall is more flexible as the
wall tension mσ decreases.

It should be mentioned here why this wall-vortex composite
soliton has been referred to as a “D-brane” soliton in relativistic
theory [45,46]. On a single D-brane, the Abelian gauge theory
is realized. The present domain wall has a localized U(1)
Nambu-Goldstone mode and it can be rewritten as the U(1)
gauge field on the wall, which is a necessary degree of freedom
for the DBI action of a D-brane. Gauntlett et al. [45] have
shown that Eq. (37) reproduces the “BIon” solutions of the DBI
action for D-branes in string theory by constructing an effective
theory of the domain-wall world volume with collective
coordinates z0(x,y,t) and φ0(x,y,t) in uw(z), where φ0 is
periodically identified as φ0 → φ0 + 2π . In the relativistic
theory, the low-energy effective action for these collective
coordinates is given by

I = −Tw

∫
d3ξ
√−det(Gij + ∂iφ0∂jφ0), (43)

where (ξ 0,ξ 1,ξ 2) = (t,x,y), and Gij = ηij + ∂iz0∂j z0 with
ηij = diag(−1,1,1) is the metric derived from the Minkowskii
metric for a deformed membrane. Using the localized phase
φ0, we can introduce the U(1) gauge field Aj by taking a
dual as

∂iφ0 = εijk∂jAk. (44)

The effective action of z0 and Ai corresponds to the so-called
DBI action of the D2-brane:

I = −Tw

∫
d3ξ
√−det(Gij + Fij ), (45)

where Fij = ∂iAj − ∂jAi is the electromagnetic field strength.
The solution from this effective theory in the background of
a point source with an electric charge and a scalar charge is
known as BIon, and its profile coincides precisely with that of
the wall-vortex soliton in NLσM [45]. Thus, the end points of
the vortex lines in NLσM can be seen as electrically charged
particles within this effective theory [61,62], and the domain
wall can be seen as a D-brane on which fundamental strings
terminate. However, the correspondence needs to be modified
in our nonrelativistic theory, which needs to be considered in
further detail, although this is beyond the scope of the present
paper.

IV. WALL-VORTEX COMPOSITE SOLITONS
IN TWO-COMPONENT BECS

Mapping into NLσM can allow one to identify the domain
wall of the two-component BECs as a nonrelativistic counter-
part of the D-brane soliton. Based on the analytic solutions of
topological solitons in the simplified NLσM, we next consider
the structure of wall-vortex composite solitons in trapped

two-component BECs. The generalized NLσM [Eq. (6)] has
additional terms that are absent in the original NLσM. Here
we discuss the modification of the soliton structure in the
two-component BEC from the analytical solutions of Eq. (37).

For simplicity, we assume the symmetric parameters m1 =
m2 ≡ m and g11 = g22 ≡ g = 4πh̄2a/m. We introduce the
external trapping potential of Eq. (2). To nucleate and stabilize
the vortices in trapped condensates, the system is supposed to
be rotated at a rotation frequency � = �ẑ. To compare the
numerical results with the previous analytical results directly,
we introduce a length scale ξ = h̄/

√
2mgρ(0) and an energy

scale μ = gρ(0), where ρ(0) is the total density at the center
of the trapping potential and can be estimated easily by
applying the Thomas-Fermi approximation [4]. The coupled
GP equation derived from the energy functional of Eq. (1) in
the rotating frame of � can be written as

[−∇2 + Ṽ + |�j |2 + γ |�k|2 − α�̃Lz]�j = �j, (46)

where α = [4πρ(0)aa2
ho]−1, with aho ≡ √

h̄/mω and γ ≡
g12/g. The wave function has been scaled as � → √

ρ(0)�. In
the following discussion, we confine ourselves to the parameter
range γ > 1 for which phase separation occurs. The trapping
potential Ṽ can be written as

Ṽ = α

2

(
ξ

aho

)2

(r2 + λ2z2), (47)

and the rotation frequency is �̃ = �/ω⊥ The wave functions
are normalized as

∫
dr|�j |2 = Nj/[ξ 3ρ(0)]. The numerical

solutions given below are calculated by using the imaginary
time propagation of Eq. (46).

We note that to realize the configuration shown in Fig. 1,
the resulting domain wall should be perpendicular to the
rotation axis. Then, it is desirable for the global shape of the
condensate to be elongated along the rotation (z) axis, because
such a configuration minimizes the interface area between
the two domains to decrease the energy cost from surface
tension. We thus prepare a cigar-shaped trap with λ = 1/4 to
reduce the interface area and to keep the interface parallel in
the x-y plane. As shown in Sec. IV C, however, the domain
wall has a tendency to tilt from the x-y plane when there
are vortices so as to reduce the gradient energy cost of the
singular vortex cores. We fix the intraspecies s-wave scattering
length as a = 5.61 nm and consider that the interspecies one,
a12, is a free parameter in the following. The use of the
interspecies Feshbach resonance will be crucial for realizing
such a situation experimentally [38].

A. Domain wall

We first discuss the structure of a domain wall in two-
component BECs on the basis of the results of NLσM. Domain
wall structures have been also studied by several authors
[42,43]. The position of the domain wall is defined as a
plane on which two components have the same amplitude
|�1| = |�2| (sz = 0). Because the trapping potential does not
play an essential role in the domain wall structure, we consider
a homogeneous system with Ṽ = 0 as well as �̃ = 0. Then
the system is characterized by only one parameter: γ = g12/g.

Let us assume that the wall lies in the z = 0 plane
and impose the following boundary conditions: (�1,�2)T →
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FIG. 6. (Color online) Numerical solutions of a domain wall
in two-component BECs for γ = 2 with the boundary conditions
(�1,�2)T → (1,0)T at z → +∞ and (�1,�2)T → (0,1)T at z →
−∞. (a) Density profile of ρ1 (solid curve) and ρ2 (dashed curve).
(b) Total density ρ = ρ1 + ρ2 (dashed curve) and the z component of
the pseudospin sz (solid curve). There are two characteristic length
scales ξp and ξs in the solution. The results of the variational ansatz
in Eqs. (53) and (54) for the profile of sz and ρ are also plotted as
dotted curves, where �ρ in Eq. (54) is a variational parameter.

(1,0)T at z → +∞ and (�1,�2)T → (0,1)T at z → −∞.
The typical profile of the domain wall solution is shown in
Fig. 6. As z increases from negative to positive, the amplitude
of �2 decreases as it approaches the domain wall, whereas
that of �1 increases from zero with increasing distance from
the domain wall. Representing the solution with total density
ρ = ρ1 + ρ2 and the density difference, i.e., the z component
of the pseudospin sz = (ρ1 − ρ2)/ρ, clarifies that the domain
wall is characterized by two different length scales, as shown
in Fig. 6(b). The two length scales can be derived from the
generalized NLσM [Eq. (19)], whose dimensionless form is
given by

Ẽ =
∫

dr
[

(∇√ρ̃)2 + ρ̃

4

∑
α

(∇sα)2 + ρ̃ṽ2
eff

+ 1

2
(ρ̃ − 1)2 + 1

4
m2

σ ρ̃2
(
1 − s2

z

)]
. (48)

Here, we set ρ̃ = ρ/ρ(0) and ṽeff = (mξ/h̄)veff ; the tilde is
omitted in the following discussion. By assuming that the
system is uniform in x and y directions and veff = 0, we
consider the system spatially dependent only on the z direction.
Using the identity

∑
α

(∇sα)2 = 1

1 − s2
z

[(∇sz)
2 + (sy∇sx − sx∇sy)2], (49)

we can write the energy of the problem as

Ez =
∫

dz

[
(∂z

√
ρ)2 + ρ

4

(∂zsz)2

1 − s2
z

+ 1

2
(ρ − 1)2 + 1

4
m2

σ ρ2
(
1 − s2

z

)]
. (50)

The stationary solutions of the system satisfy the equations

−∂2
z

√
ρ√

ρ
+ 1

4

(∂zsz)2

1 − s2
z

+ 1

2
m2

σ ρ
(
1 − s2

z

)+ ρ = 1, (51)

ρsz(∂zsz)2(
1 − s2

z

)2 + (∂zρ)(∂zsz) + ρ
(
∂2
z sz

)
1 − s2

z

+ m2
σ ρ2sz = 0. (52)

The asymptotic form of the profile can be obtained by lin-
earizing with respect to ρ and sz around the ground state value
ρ = 1 and sz = ±1 as ρ ∼ 1 − e±z/ξρ = 1 − e±√

2z and sz ∼
∓1 ± e±z/ξs = ∓1 ± e±√

2mσ z for z → ∓∞. This gives the
characteristic length scales ξρ = 1/

√
2 and ξs = 1/(

√
2mσ ) in

units of ξ . A similar structure with two characteristic lengths
can be seen also in the vortex solutions of two-component
BECs [63]. In the strongly segregating limit g12 → ∞, the
domain wall is characterized by a single length scale ξρ

because ξs vanishes.
Generally, the domain wall solution in NLσM is written as

Eq. (34). In terms of the condensate wave function, the domain
wall solution can be written as �1 = f1d (z − z0)e−iφ0/2 and
�2 = f2d (z − z0)eiφ0/2, where fjd is a real function with wall
center z0 and phase φ0, which can be identified as the relative
phase between two components φ0 = φ = θ2 − θ1. The fixing
of z0 is due to the breaking of translational invariance by the
given wall solution, whereas φ0 is due to the breaking of global
U(1) around the domain wall, i.e., a narrow overlapping region
of the two-component wave functions, and consequently there
appears a U(1) Nambu-Goldstone mode localized around the
wall. This feature satisfies a part of the requirement discussed
in Secs. III B and III C that the domain wall in two-component
BECs can be referred to as a D-brane soliton [44].

It is instructive to consider the analytical form of the domain
wall solution. The domain wall in NLσM of Eq. (20) under the
g → ∞ (ξρ → 0) limit has a single characteristic length ξs ,
where the profile is given by Eq. (34) or (35). When the spatial
gradient of ρ is small enough for γ � 1, the profile of sz in the
generalized NLσM must follow that in NLσM. We find that
the domain wall solutions in Fig. 6 also follow correctly this
profile function with slightly modified mass m′

σ :

sz = tanh(m′
σ z). (53)

We make a fit of the numerical solution to Eq. (53) to extract
the fitting value of m′

σ , which is plotted as a function of γ

in Fig. 7(a). The mass parameter is almost in agreement with
the values given in Eq. (21) in the σ model limit, although it
begins to slightly deviate as γ increases. Thus, the domain wall
in two-component BECs can be regarded as the same solitonic
object in the original NLσM, including the quantitative details
of the structure.

The remaining total density can be described by the ansatz

ρ = 1 − �ρsech

(
z√
2ξρ

)
, (54)

where �ρ is a variational parameter. According to Fig. 7(a), it
is reasonable to put m′

σ ≈ mσ in Eq. (53) as sz = tanh(mσz) =
tanh(z/

√
2ξs); in other words, sz is assumed to be given by

Eq. (35) with z0 = 0. Inserting Eqs. (35) and (54) into the
energy of Eq. (50) and minimizing the energy with respect
to �ρ , we obtain the domain wall profile semianalytically as
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FIG. 7. (Color online) (a) The relation between m′
σ and γ . The

circles are obtained by fitting Eq. (53) to the numerical solution with
the fitting parameter m′

σ . We show the result for the σ -model limit
mσ = √|1 − γ | by the solid curve for comparison. (b) Tension of
a domain wall as a function of mσ = √|1 − γ |. The solid curve
represents the results calculated from the ansatz of Eqs. (35) and
(54), where the energy is optimized with respect to the variational
parameter �ρ . The dots show the results calculated with numerical
solutions. The dashed line represents the tension Tw = mσ in the
σ -model limit.

shown in Fig. 6(b). The ansatz of Eqs. (35) and (54) agrees
with the numerical result almost perfectly. This minimized
energy per unit area [Eq. (50)] in the presence of a domain
wall represents the tension of the wall, Tw = Emin

z , which is
an extended version of Eq. (32) for two-component BECs.
The tension is simply given by Tw = mσ in the σ model case,
whereas it is significantly reduced in the BEC case because
of the additional contribution of the total density, as shown in
Fig. 7(b).

B. Axisymmetric structure of wall-vortex complex

We next consider an axisymmetric wall-vortex soliton in
trapped two-component BECs. As shown in Fig. 1, the �1

(�2) domain is placed at z > 0 (z < 0) and each component
is assumed to have a straight vortex line at the center. The
axisymmetric solution �j = fj (r,z)einj θ with real function fj ,
polar angle θ, and vortex winding number nj can be obtained
by numerically solving the coupled GP equations,[

−
(

∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2
− nj

r2

)
+ Ṽ + f 2

j + γf 2
k

]
fj = fj .

(55)

The parameters are the ratio of the coupling constants, γ ≡
g12/g, and the winding number, nj . Here we assume for
simplicity that both components have the same particle number
N , and we set m = m87Rb, ω = 20 × 2π Hz, and N = 105.

Before proceeding, we present some notes on the numerical
solutions. In the energy-minimization process of the numerical
simulations, the chemical potential is usually fixed in a
homogeneous problem without a trapping potential, so that
the particle number of each component is not conserved. Thus,
the pressure difference between two components, originating
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FIG. 8. (Color online) Numerical solutions of the axisymmetric
wall-vortex soliton obtained by the GP equation. (a) Profile of the
total density for (n1,n2) = (0,1) and γ = 2. (b) Semilog plot of the
wall position for several values of γ = g12/g. Each plot can be fitted
by the logarithmic function z = A ln r + B, with A = 2.59, 1.91, and
1.62 for γ = 2, 4, and 8, respectively, where the fitting is made by
using the data for r > 5 to avoid the contribution of the singular vortex
core. (c) Effective tension determined from the relation Teff = A−1

[see Eq. (57)] as a function of γ . The circles are obtained from the
numerical fitting. The solid curve corresponds to the σ -model limit:
Teff = mσ = √|1 − γ |; the dashed curve is the domain wall tension
obtained by the variational approach, shown as the solid curve in
Fig. 7(b). (d) Profile of the total density for (n1,n2) = (1,1).

from the asymmetry of the solution, leads to a decrease
in the population of the energetically unfavorable vortical
component during the imaginary time evolution. Eventually,
the vortex-free component fills all space as a final equilibrium
solution. To obtain the desired solution, we have to adjust the
chemical potential difference to balance the pressure between
the two components, which is a troublesome task. Thus, we
perform the numerical minimization by fixing the particle
number in each component in the presence of the trapping
potential, which is an experimentally relevant situation.

Figures 8(a) and 8(b) show the profile of the total density
ρ = ρ1 + ρ2 for γ = 2 and the positions of the domain
wall, namely, sz = 0 (|�1| = |�2|), for several values of γ ,
respectively. The vortex in the �2 component near the domain
wall forms a coreless vortex, whose core is filled by the density
of the �1 component and transforms into a singular vortex
with distance from the domain wall. Thus, the total density
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ρ is reduced at the position of the domain wall and vanishes
at the singular vortex core around r = 0 with a z that is less
than some finite negative value. The appearance of the singular
core can be understood from the generalized NLσM. When we
consider the phases θ1 = 0 and θ2 = θ for the case of Fig. 8(a),
for example, we obtain

ṽ2
eff = 1

4
(∇θ2)2(1 − sz)

2 = 1

4r2
(1 − sz)

2. (56)

This kinetic energy density vanishes in the �1 (sz = 1) domain,
whereas it contributes to the energy as ρ̃r−2 in the �2 (sz =
−1) domain. The latter divergent contribution makes a singular
vortex core in the �2 component around r = 0.

This inhomogeneity of ρ implies that the assumption of
uniform total density that is used to derive NLσM in Eq. (20)
is not valid and the solution is expected to deviate from
Eq. (38). Nevertheless, the spin texture of this solution is
almost identical to that in Fig. 4. The plot of the wall position
in Fig. 8(b) can be well fitted by the logarithmic function
z = A ln r + B, as expected from Eq. (40). Here, the offset B is
introduced owing to the deviation of the domain wall position
from a pure logarithmic function of r with no offset, because of
the presence of the vortex core. Thus, the qualitative structural
feature of the wall-vortex composite soliton in two-component
BECs is not changed from the BPS solutions of NLσM.
According to Eq. (40), we apply an analogy of a pulled
membrane to this situation and extract the effective tension Teff

of the domain wall from the numerical fitting with the relation

z − B = 1

Teff
ln r. (57)

This fitting function does not account for the presence of the
velocity field veff . As shown in Fig. 8(c), the value of the
effective tension Teff = A−1 is significantly reduced from not
only Tw = mσ = √|1 − γ | of Eq. (20) in the σ model limit but
also Tw of the BEC domain wall in Fig. 7(b). This means that
the domain wall in this composite soliton can be more flexible
than that in a single domain wall. This further reduction
of the tension may be attributable to the following effects. (i)
The rotational flow of a vortex causes the density inhomogene-
ity, where the density changes as ρ2 ∼ r2/(2 + r2) around the
singular vortex core. The density difference between ρ1 and ρ2

(ρ1 > ρ2 near the wall) can enhance pressure from �1 to �2

and lead to more flexible bending of the wall. (ii) The trapping
potential also gives rise to a density inhomogeneity, and the
pressure balance can be modified radially. Contribution (ii) is
probably minor because Fig. 8(b) shows that the wall is well
fitted logarithmically even for a large r [64].

Figure 8(d) shows the profile of the total density for
(n1,n2) = (1,1). Because of the balance of the vortex tension,
the domain wall becomes flat. This situation corresponds to
x0 = 0 in Eq. (41) in the σ model. There are two singular
vortices that have infinitely thin distribution (δ-functional
form) of vorticity; thus, we have only the domain wall structure
because the relative phase between the two components is
uniform everywhere.

Figure 9 shows the solution for (n1,n2) = (0,2) and
(n1,n2) = (0,3). In these cases, the size of the vortex core
extends radially, and the core is filled by the �1 component
to be identified as the coreless vortex. According to the BPS
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FIG. 9. (Color online) Numerical solutions of the axisymmetric
wall-vortex soliton obtained by the GP equation for γ = 2. Profiles
of the total density for (a) (n1,n2) = (0,2) and (b) (n1,n2) = (0,3).
(c) Profile of ρ1 at r = 0 as a function of z for n2 = 1 (solid curve),
2 (dashed curve), and 3 (dotted curve).

solution of NLσM, u(w,z) = e−mσ zwn2 , the position of the
domain wall is expected to become

z − B 	 n2

Teff
ln r. (58)

A logarithmic fitting z = A ln r + B (for r > 5) of these
solutions gives A =2.59, 4.44, and 6.20 for n2 = 1, 2, and
3, respectively. This is in good agreement with the NLσM
solution but its increase is lower than the expected linear
dependence. This also means that the tensile force for a domain
wall pulled by a multiply quantized vortex in BECs is weaker
than that of a multiply quantized BPS vortex.

Note that, in the case with n2 > 1 in Fig. 9, the total density
does not vanish at the vortex core, as seen in Fig. 9(c). Since the
core size of the multiply quantized vortex becomes large with
increasing n2, for example, ∼[r2/(2 + r2)]n2 , the density of the
vortex-free component can enter the core easily. However, the
vortex core for n2 = 1 is apparently singular without density.
This indicates that there is a critical core size that allows the
filling of the density inside the core. From different points of
view, there is a critical ratio of the chemical potential (μ2/μ1)c
that determines whether the vortex core can be filled with
the other nonvortex component for a given γ [66]. The 2D
simulation shows that the optimized (n1,n2) = (0,1) vortex
state for μ1 = μ2 = 1 and γ = 2 is actually characterized by
an empty vortex core.

C. Nonaxisymmetric structure: A wall with multiple vortices

Next, we remove the axisymmetric condition and calculate
the equilibrium state by using the imaginary time propagation
of Eq. (46) in full 3D space from a suitably prepared initial
configuration. To realize the final equilibrium configuration
as shown in Fig. 1, we prepare the phase-separated state in
which �1 (�2) domains with some phase singularities (seeds
of vortices) are located in the z > 0 (<0) region as the initial
state of the calculation.

The panels of Fig. 10 show the 3D distributions of
the density difference |ρ1 − ρ2| ∝ |sz| of the equilibrium
state for several � values; this presentation is suitable for
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FIG. 10. Configuration of a wall connecting multiple vortices in trapped BECs. The panels show the profile of the density difference
|ρ1 − ρ2| ∝ |sz| (isosurface of |ρ1 − ρ2| = 0.0005) for �̃ = (a) 0.4, (b) 0.5, (c) 0.6, (d) 0.7, and (e) 0.8. The parameter values used are λ = 1/4,
N = 5.5 × 104, and a12 = 2a. The bottom panels show the top view of the top panels. In (f), we show the equilibrium structure for �̃ = 0.8,
λ = 1/4, and a12 = 2a but the particle number N = 1.65 × 105, which is three times as that in (e).

visualizing the region of the vortex core and the domain
wall (surface of ρ1 = ρ2). This configuration is energetically
stable since it is obtained by imaginary time propagation. For
�̃ = 0.40, we obtain the (n1,n2) = (1,1) state. In contrast to
the axisymmetric structure of Fig. 8(c), the end point of the
vortices in each component is spontaneously displaced from
the center, corresponding to x0 �= 0 in Eq. (41). Although the
energy is independent of x0 in the BPS solution of NLσM,
this displacement results from the fact that the vorticity should
be distributed broadly near the domain wall so as to reduce
the associated kinetic energy as well as to reduce the gradient
of ρ. Further, the vortex line is slightly bent because of the
elongated trapping potential [67]. Because our calculation
uses the same rotation frequency �̃ for both components, the
number of nucleating vortices should be the same for both
components [68].

When the rotation is further increased, multiple vortices
form a lattice in each component. Then, the domain wall
begins to incline from the z = 0 plane [Figs. 10(b)–10(d)] and
eventually becomes parallel to the rotation axis [Fig. 10(e)],
even though the interface area (energy) increases. This is a
vortex sheet structure [53]. The reason that this vortex sheet
structure is preferred is because the absorption of the vortices
into the domain wall leads to a decrease in the gradient energy
of the singular vortex cores. This effect is also absent in
the composite solitons of NLσM, which is free from the
density gradient energy. Actually, in the Thomas-Fermi limit,
the gradient energy of the vortex core decreases, so that the
structure such as that depicted in Fig. 1 is expected to persist.
The example is shown in Fig. 10(f), where the particle number
is three times larger than that of Fig. 10(e). In this parameter
setting, the domain wall is nearly parallel to the z = 0 plane.

Another interesting property of this system at high rotation
frequencies is that an ordering structure of many interface
defects can emerge owing to the complicated interactions. In
each domain far from the domain wall, singular vortices form
an Abrikosov triangular lattice. However, singular vortices

become coreless vortices near the domain wall and a lattice of
2D skyrmions forms on the domain wall. A typical example
is shown in Fig. 11. It is important to note that ρ1 = ρ2 on the
domain wall, and a miscible state is effectively realized in this
restricted 2D system of immiscible condensates. This effective
2D system can be characterized by the effective 2D coupling
constant geff

12 , which determines the lattice structure of the 2D
skyrmions on the domain wall but is not straightforwardly
related to the fundamental coupling constant g12 of the full
3D system. We note that 2D skyrmions tend to form a square
lattice rather than a triangular one [69]. In the parameter setting
used for Fig. 11, the vortex end points are shifted relative to
each other on the domain wall to form a rectangular lattice of
2D skyrmions. With increasing g12, we can see, by comparing
panels (a) and (b), that the tendency to form a rectangular
lattice from a triangular lattice becomes noticeable. These
features are consistent with the phase diagram of a vortex
lattice in 2D miscible two-component BECs [50,52,69], and
they may originate from the static vortex-vortex interaction
[70], which is absent in the BPS solution. In Fig. 11(b), our
numerical solutions show that the domain wall tends to be
inclined from the z = 0 plane such that shorter sides of the
rectangles of the vortex lattice elongate. This tendency may
be explained by competition between the contributions to the
total energy from the wall and the vortices in trapping systems.
To ensure the energetics, we need to perform numerical
simulations using a much larger system size, which we plan to
attempt in a future work.

V. DISCUSSION AND CONCLUSION

We have shown that a wall-vortex composite soliton,
referred to as a D-brane soliton in field theoretical models,
can be realized as an energetically stable solitonic object in
phase-separated rotating two-component BECs. Based on the
NLσM derived from the two-component GP model, we obtain
the analytic solution of the topological solitons, including
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FIG. 11. (Color online) Equilibrium structure and spin texture
along the 〈sz〉 = 0 plane for �̃ = 0.8, λ = 1/4, N = 1.65 × 105, and
(a) a12 = 2a and (b) a12 = 4a; the parameters in (a) are the same
as those of Fig. 10(f). Left panels show the isosurface of the density
difference |ρ1 − ρ2| as in Fig. 10. Right panels show the distribution of
the pseudospin field s(r) in the plane (a) along the z = 0 plane and (b)
slightly declined from the z = 0 plane, indicated by the bold lines in
the left panels. The color scale shows the magnitude of sz. The circles
and crosses mark the position of �2 and �1 vortices, respectively,
where we only mark those in the y < 0 region for clarity.

domain walls, vortices, and their complexes, by taking the BPS
bound of the total energy, which is a widely used technique in
field theory [1]. The topological solitons in trapped BECs are
found to have almost the same character as the BPS saturated
solution in NLσM. The inhomogeneity of the total density
modifies the profile of the soliton quantitatively through
the reduction of the domain wall tension. The domain wall
pulled by a vortex is logarithmically bent as the BPS wall
in NLσM, but it bends more flexibly than expected by the
tension of the BEC domain wall. Numerical analysis of full 3D
simulations reveals that the complicated energetic constraint
influences the determination of the equilibrium configuration,
affecting the surface tension of the wall, the gradient energy
of the density, and the interactions between vortices and those
between interface defects. This raises the problem of how the
properties of an effective 2D system realized in an interface of
multicomponent condensates can be considered, which can be
affected by extra dimensions (bulk regions).

It should be noted, however, that there is one significant
difference between the wall-vortex composite soliton in BECs

and that in NLσM. In the BECs described by the GP model, the
total density vanishes in the singular vortex core for n2 = 1
because the density of the nonrotating component does not
enter into the vortex core, as seen in Fig. 9(c). The coreless
vortex near the domain wall shrinks to a singular vortex over
a finite distance and thus we can identify a point connecting
a singular vortex and a coreless vortex. This is in contrast to
the case in NLσM, where a coreless vortex extends to infinity
along the thin vortex core avoiding the singularity, since s is
well defined everywhere. Hence, a connecting point is absent
in the wall-vortex soliton. In a field theoretical model, the
connecting point forms a defect called a “boojum,” which
provides the negative binding energy of vortices and a wall
and half of the negative charge of a single monopole [47,48].
Boojums are known as point defects existing on the surface
of the ordered phase; the name was first introduced to physics
by Mermin in the context of superfluid 3He [71]. Boojums
can exist in different physical systems, such as the interface
separating the A and B phases of superfluid 3He [8,72], liquid
crystals [73], the Langmuir monolayers at air-water interfaces
[74], multicomponent BECs with a spatially tuned interspecies
interaction [75,76], and high-density quark matter [77]. In the
present model, boojums can be found at the end points of
vortices on the domain wall, at which the vortices change their
type from singular to coreless. A suitable topological charge
for boojums in two-component BECs can be derived by noting
the analogy with Abelian gauge theory [65]. A detailed study
of the distribution of the boojum charge and the interactions
between boojums remains to be investigated in a future study.

As pointed out in Ref. [44], domain walls in two-component
BECs are useful for simulating some analogous phenomena
of the D-brane physics in a laboratory. One famous exam-
ple is a nonequilibrium dynamics such as brane-antibrane
annihilation, which was proposed as a possible explanation
for the inflationary universe in string theory. In brane-world
scenarios of cosmic inflation, the annihilation may lead to
defect production that could be directly observed in atomic
BECs; the experiment has been performed with superfluid
3He A-B interfaces, but the detection of defects is difficult
[78]. Recently, we proposed that domain-wall annihilation in
two-component BECs actually demonstrates a brane-antibrane
collision and a subsequent creation of cosmic strings, causing
tachyon condensation accompanied by spontaneous Z2 sym-
metry breaking in a 2D subspace [79]. We have also proposed
that, when strings are stretched between the brane and the
antibrane, namely, when the filling component has vortices
perpendicular to the wall, “cosmic vortons” can emerge via
a similar instability [29]. We hope that our work motivates
experimentalists to create composite solitons and study their
real-time evolution.
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