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P. Deuar,! T. Wasak,? P. Zin,>* J. Chwedeficzuk,”> and M. Trippenbach®
Unstitute of Physics, Polish Academy of Sciences, Al. Lotnikéw 32/46, 02-668 Warsaw, Poland
2 Institute of Theoretical Physics, Physics Department, University of Warsaw, Hoza 69, PL-00-681 Warsaw, Poland
3Narodowe Centrum Badari Jadrowych, ul. Hoza 69, 00-681 Warszawa, Poland
4Université Paris Sud, CNRS, LPTMS, UMR 8626, Orsay 91405 France
(Received 16 January 2013; revised manuscript received 16 May 2013; published 11 July 2013)

We investigate the factors that influence the usefulness of supersonic collisions of Bose-Einstein condensates
as a potential source of entangled atomic pairs by analyzing the reduction of the number difference fluctuations
between regions of opposite momenta. We show that nonmonochromaticity of the mother clouds is typically the
leading limitation on number squeezing, and that the squeezing becomes less robust to this effect as the density
of pairs grows. We develop a simple model that explains the relationship between density correlations and the
number squeezing, allows one to estimate the squeezing from properties of the correlation peaks, and shows
how the multimode nature of the scattering must be taken into account to understand the behavior of the pairing.
We analyze the impact of the Bose enhancement on the number squeezing, by introducing a simplified low-gain
model. We conclude that as far as squeezing is concerned the preferable configuration occurs when atoms are

scattered not uniformly but rather into two well-separated regions.
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I. INTRODUCTION AND OUTLINE

A supersonic collision of two Bose-Einstein condensates
is a source of strongly correlated atomic pairs, which may be
potentially used to create spatially separated entangled states
of massive particles [1-8]. Such states could be used to extend
the study of the Einstein-Podolsky-Rosen paradox [9,10], local
realism [11], and Bell inequality tests [12] into a regime
where rest mass is non-negligible. In the context of quantum
metrology, usefully entangled states allow one to surpass the
standard quantum limit—the maximum parameter estimation
precision allowed by classical physics [13,14].

Scattering of atomic pairs can lead to reduced fluctuations
of the relative population between two regions of opposite
momenta. This effect, called number squeezing, and a closely
related violation of the Cauchy-Schwartz inequality have
been recently observed in experiments [1,2,15,16]. Number
squeezing, if accompanied by sufficiently high mutual co-
herence between the regions, is indicative of spin squeezing
[17,18]. Spin-squeezed states, which are known to be usefully
entangled from a quantum metrology point of view [14,17,19],
have been recently engineered in a number of experiments
[20-25]. In addition, the perfectly number-squeezed “twin-
Fock” state, which is not spin squeezed but is nevertheless
strongly entangled, has been recently observed by Liicke
et al. [26]. Also, pair-production setups were invented, where
scattering is preferentially directed into only several spatial
modes. These then contain more pairs per mode, and it is more
convenient to bin them and possibly process them further [12].
In [7,27,28] a four-wave-mixing type of process between two
species of atoms was used to populate two counterpropagating
clouds. In [15] a BEC was transferred into the first excited state
of a trapping potential and subsequent two-body collisions
created a “twin-beam” system of correlated pairs. Finally,
another approach used an optical lattice to allow correct phase-
matching conditions into only a few selected modes [16].

In some recent experiments, where atoms scatter into two
well-defined regions, a halo of overlapping spontaneously
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scattered modes and other imperfections such as spatial
inhomogeneity of the mother clouds [29,30] might limit the
amount of number squeezing. An understanding of the main
limitations and tradeoffs involved is important for future
experiments.

We consider in detail the number difference squeezing
between atoms with opposite momenta in a collision of two
nonmonochromatic BECs [1,8]. We simulate the collision
using the positive- P method in the Bogoliubov approximation
[31]. We also introduce a simple yet intuitive model, which
relates the number squeezing to the second-order correlations
between the scattered atoms and demonstrate its validity in a
wide range of parameters. The main conclusion of this work
is that the nonmonochromatic nature of the mother clouds
is the main limiting factor to strong number squeezing in
the scattering halo. We argue that in the presence of many
competing modes, smaller cloud densities are advantageous,
because mode-mixing effects are destructive for the number
squeezing and they become more pronounced with higher
cloud density.

The paper is organized as follows. In Sec. II we introduce a
model, which describes the creation of pairs in BEC collisions.
We discuss the relevant physical parameters and develop an
alternative low-gain model, useful for simulations when the
bosonic amplification of pair scattering can be neglected. In
Sec. III we calculate the second order correlation function
of the scattered atoms and explain how it consists of two
parts: colinear and back-to-back momentum correlations,
like in [32]. In Sec. IV we calculate the number-squeezing
parameter and using a simple Gaussian model relate it to
the second-order coherence of the system. In Sec. V we
present our numerical results in the regime of both high and
low density of the mother BECs and compare these results
with the model. In the course of this analysis, the factors
affecting the number squeezing become apparent. We conclude
in Sec. VI. Some technical details of the calculations and
numerics presented in the main text are discussed in the
Appendices.

©2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevA.88.013617

P. DEUAR et al.

II. THEORETICAL MODEL FOR BEC COLLISION

A single stationary BEC can be split into a superposition
of two counterpropagating wave packets by means of Bragg
scattering [33]. In a center-of-mass reference frame, the
average velocity of each cloud is +v,..—a recoil velocity due
to an absorption and subsequent emission of a Bragg photon.
If the relative velocity 2uy is approximately above the speed
of sound ¢ = /gp/m, i.e., when the Mach (Ma) number

Ma = 2upc/c > 1,

elastic collisions of particles from the two clouds lead to
scattering of atomic pairs out of the BECs. Here p =
N/@4/3n R%F) is the average density of an isotropic condensate
in the Thomas-Fermi approximation with radius Rrp.

The dynamics of the scattering is governed by the energy-
and momentum-conservation laws vi 4+ v3 >~ 2v2 and v; +
v, >~ 0, where index (1,2) labels the pair members. The
equalities are only approximate, due to the momentum spread
of the initial BEC and finite duration of the collision. These
conservation laws dictate that atoms are scattered onto a
shell of radius v centered around zero, called the scattering
halo. This phenomenon was observed in many experiments
[1-7]. Atoms are usually registered after a long time of free
expansion, when their positions approximately correspond to
the momentum distribution just after the collision.

Since particles scatter in pairs, there is an expectation
that the measured population difference between two op-
posite regions may fluctuate below the shot-noise limit. In
the idealized case of scattering from two plane waves, these
fluctuations are suppressed down to zero, in analogy to the
simplest model of parametric down-conversion. Our study
takes on the task of generalizing this simple picture and
calculating the number squeezing in condensate collisions
assuming a realistic shape and time evolution of the source,
and including the time-dependent interactions with the mean
field after the scattering [34].

A. Collision parameters

To focus on the essential features of the process, we consider
the simplest case of the initial condensate prepared in the
ground state of a spherical trap. Depending on the nonlinearity
and the duration of the collision, the scattering of atoms can
be either spontaneous or enter the Bose enhanced regime.
Therefore, we introduce a dimensionless parameter

Yy = tcol/tnl

to distinguish between these two possible scenarios. Here,
tecol = Rtp/vrec 18 the duration of the scattering process, while
tal :h/(%gﬁ) is the rate of the two-body collisions. The
one-third in the denominator approximately accounts for the
fact that collisions between the atoms take place mostly in
the center of the trap, where the density is high. It has been
demonstrated [34-38] that when y 2 1, the system enters the
stimulated regime.

We perform numerical simulations using parameters of
metastable *He atoms, i.e., m = 6.65 x 10727 kg, a;, =7.5 x
10~° m, and take v, = 10 cm/s. To address both spontaneous
and stimulated regimes we consider the following cases.
In the first, which we call the dilute gas case, the sample
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consists of N = 17540 atoms in the initial BEC, and w =
21 x 928 s7'. Here Ma = 13.12 and y = 0.24, hence the
scattering is spontaneous all along. In the opposite dense gas
case, we take N = 74360 and o = 27 x 1911 s~!, which
gives Ma = 6.56 and y = 1.02, so the bosonic enhancement
becomes significant. In both cases, we simulate the scattering
process until r = 1.7¢,,;—a time at which the collision is
completed. In Fig. 1, cuts through the halo density are shown
for the dense case at the end of the collision. The result was
obtained using the positive-P numerical method, which is
discussed in detail below. Note that although the ensemble
average of the momentum distribution is symmetric around
zero, isolated density grains are present in a single realization,
and they show an evident and massive lack of this symmetry.
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FIG. 1. (Color online) Outcome of a single realization of a
collision of two BECs in the dense y = 1.02 case [in a simulation of
(5,4)]. Shown are cross sections through the density of atoms after
the end of the collision (¢ = 1.6t.,), in the k, — k, momentum plane
(top), and the k, — k, plane (bottom). Clearly, a halo of scattered
atoms is forming, nevertheless the atoms at the opposite regions of
the halo are poorly aligned, which implies the absence of number
squeezing in the system. Data scaled to units of [ko]>. The white
areas are saturated at this color scale; the bold (thin) black contours
are at 0.1 (0.01) of the peak condensate density.
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This is related to increased fluctuations of the population
imbalance between regions with opposite momentum, and will
be investigated further below.

B. BEC wave function

We model the initial trapped BEC by a c-number wave
function ¢y(x), which is a solution of the stationary Gross-
Pitaevskii equation

h2
o(X) = [—%Vz + Virap(X) + glqbo(xﬂ dox). (1)

Here m is the atomic mass, u is the chemical potential,
g = 4nh%a;/m is the interaction strength related to s-wave
scattering length ay, and Vipp(x) = %ma)zx2 is the harmonic
trapping potential with a frequency w. The collision is triggered
by a pair of brief Bragg pulses shined onto the condensate [33].
Consequently, a superposition of two counterpropagating,
mutually coherent atomic clouds is created:

gikoz + e—ikoz

V2

where kg = muv../h is the wave vector associated with the
recoil velocity. After the pulses are applied, the trap is switched
off, and the two condensates begin to move apart, activating
the collision process.

¢x,1 = 0) = ¢o(x) =) +9-(x), 2

C. Positive- P method

To describe the scattered atoms we introduce a bosonic
operator §(x,t). In the spirit of the Bogoliubov approximation,
we use the linearized equations of motion for the field 5,
assuming that the number of scattered atoms is a small fraction
of the condensate population and the self-interaction of § can
be neglected:

. n? .
ih9,8(x,1) = [—%vz + 2g|¢)(x,t)|2:| S(x,1)

+ g*(x,0)8(x,1). (3)

The coherent mean-field part ¢(x,#) during the collision
evolves according to the time-dependent Gross-Pitaevskii
equation,

hz
ih 3,p(x,1) = [—Evz + g|¢<x,r>|2} px,1). (4

To solve the coupled equations (3) and (4), we use the
stochastic positive- P method [31], where instead of directly
solving Eq. (3) for § we _sample the distribution of two
complex fields ¥ (x,¢) and ¥ (x,7). The Bogoliubov equation
(3) corresponds to a pair of stochastic Itd equations,

. hz 2 2
ihdy(x,1) = <—%V + 2glop(x, 1)l )W(X,t)

+ g (X, DY (x,1)*
+ihg ¢(x,1)E(X,1), (5a)

oo R, )\ ~
ihdy(x.1) = <—%V +2glo(x,1)] )1/f(x,t)

+ g¢* (X, DY (x,1)*
+/ilg p(x,0)E(X,1). (5b)
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Here £(x,t) and E(x,t) are independent, real stochastic
Gaussian noise ﬂelds with zero mean and second moments
given by (§(x,1)&(x/,¢")) = 0 and

EENEX,1)) = EXNEX,1)) = 8(x —X)8(r —1'). (6)

Within the stochastic positive- P method, any physical quantity
can be obtained with the mapping § — v and §T — ¥*, and
replacing quantum averages of normally ordered operators
by stochastic averages [39]. Equations (5) recover the exact
quantum dynamics of Eq. (3) in the limit of an infinite number
of samples.

D. Scattering in the absence of bosonic enhancement

The main goal of this study is to investigate how the
number squeezing between two regions of the halo is affected
by various phenomena which occur during the collision.
Various phenomena influence the dynamics in a complicated
way and it seems very advantageous if we could, at least
theoretically,“turn on/off” some of them to isolate their effects.
For instance, the impact of the BEC mean field on the scattered
particles can be easily “controlled” by including or excluding
the second term of the right-hand sides in lines (5a) and (5b).
Similarly, the mean-field repulsion in the evolution of the
source BEC can be controlled by setting g = 0 by hand in
Eq. (4). One can further simplify the dynamics by modeling
the two counterpropagating condensates with nonexpanding
Gaussians, substituted for ¢(x,?) into Egs. (5).

In this section we propose a simple perturbative model,
which describes the condensate collision in the absence of
bosonic stimulation. We start by introducing a hierarchy of
fields

S(x,1) = ZSU)(x,t). (7

j=0

The lowest-order term S(O)(x,t) is the solution of the free
equation (i.e., without the additional particle creation term
in the Bogoliubov field)

i 39,89(x,1) = Ho(x,0)8V(x,1), (8)

where Hy(x,t) = —%Vz + 2g|¢(x,1)|%. The higher terms of
expansion (7) evolve according to

ih 9,89 (x,1) = Ho(x,1)8V(x,1) + g¢*x,1)8YVi(r,r). (9)

In this approach, the bosonic enhancement appears only in
the higher-order fields and can be excluded by restricting the
dynamics only to the two lowest ones, namely, j = 0 and
j=1

As we argue in [40], the set of two coupled equations for j =
0 and j = 1 can be formally solved by replacing the operators
with complex stochastic fields, i.e., 8/)(x,r) — §)(x,t) and
§Di(x,r) — 8U)(x,1)*. Then, the c-number equivalent of (8)
and (9) is solved numerically from the initial conditions
consisting of §()(x,0) = 0 and setting §(x,0) as a random
complex Gaussian field with zero mean and the variances
(69(x,0*80(x',0)) = 8(x — x’) and (§V(x,0)8(x’,0)) = 0.
It is important to note that—contrary to the positive-P
Equations (5)—the stochasticity is introduced only through
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the initial conditions, very much like in the truncated Wigner
method, but with twice the variance.

With the solutions §@(x,7) and §V(x,r) at hand, one can
reproduce the observables. For instance, the lowest-order
correlation function is given by

STx, 08X, 1)) = 8D (x,1)*sD(X, 1), (10)

where the overbar denotes averaging over the ensemble of
initial conditions.

In the following section, we analyze some formal properties
of the Bogoliubov equation (3) and introduce the second-order
correlation function of scattered atoms, which, as will be
argued in Sec. I'V, determines the amount of number squeezing
in the system.

III. TWO-BODY CORRELATIONS
OF SCATTERED ATOMS

The normalized second-order correlation function of scat-

tered atoms in momentum space is defined as
(88T NS (k)3 (k)

(81 ()3 K)) (81 WN3(K)
Henceforth, we omit the explicit time dependence from the
operator 6(k,7). Note that since the Bogoliubov equation of
motion (3) is linear and the initial state of scattered atoms is a
vacuum, with the help of Wick’s theorem we can write
|GV K + [M(k,K)[*

GOk K)GD(K K)

PN

g?k k) =

Y

gPkKk)=1+

12)

Here, GV is the one-body density matrix of the scattered atoms
defined as

GV K) = (§TK)S(K)), (13)
and M, the anomalous density [36,38], is
Mk.k) = ($(k)S(K)). (14)

In order to find a natural interpretation of the components
of (12) we make some further simplifications in our model,
which are used only in this section. First, consider the fol-
lowing simplified model [35,36,38] of the collision dynamics,
described by the equation

2v72

A h°v
ih 9;0(x,t) = — 5
m

5(x,1) + 28 (x,1)p_(x,1)81(x,1).
(15)

Here, a pair of atoms is taken from counterpropagating
condensates ¢,—defined in Eq. (2)—and placed in the field
of scattered atoms. As compared with Eq. (3), this model
neglects the impact of the mean field of the colliding BECs on
the scattering process, as well as terms proportional to ¢ that
are strongly non-energy conserving in the halo.

Now let us make a second simplification regarding the
internal dynamics of the two colliding wave packets. In general
the two functions ¢ (x,7) evolve according to Eq. (4), but for
the sake of the present considerations we neglect the nonlinear
term and use the equations of motion of free expansion.
In this case, ¢i(k,r) = ¢o(K)e "% /2m) Such a “reduced
Bogoliubov” model with these two approximations has been
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widely used previously to investigate the dynamics of the
collision [35-38,41-47], and was investigated in some detail
in [34].

Equation (15) can be solved up to the first order in the
perturbative regime, to obtain at times long after the collision
mg

e / / Py ks b (ki) (o)

x8(ki + k3 — k> — k?)8P (k) + k, —k — k).
(16)

MKK) =

The anomalous density M (k,k’) can be interpreted as the prob-
ability amplitude for having one atom with momentum k and
the second with k’. These two momenta come from a coherent
superposition of probability amplitudes describing elementary
collision events (energy and momentum conservation laws
are satisfied) between atoms from the BECs that come with
probability amplitudes ¢.. Since the condensate functions
¢+ in (16) are localized around =k, the anomalous density
M (k,K’) is nonvanishing only when k >~ —k’ and |k| >~ k. In
this sense, M describes scattered atomic pairs, correlated for
opposite momenta. Related arguments have been presented
in [32].

Using similar arguments, we obtain a useful relation that is
valid within Bogoliubov theory in the perturbative regime

GYKK) = / &K’ M* (kK )YMK" K. (17)

As we argued above, the first anomalous density gives the
contribution to the integral when k >~ —k” and the second
when k” >~ —K’, hence the one-body density matrix is nonzero
only if k >~ k’ and |k| >~ k. In conclusion, the scattered atoms
are described either by the colinear part for k >~ K/,

GV kK)P

GOk KGOk K)’
(18)

gﬁf)(k,k/) = ¢gPkK ~k) ~ 1+

or the back-to-back part when their wave vectors are almost
opposite k >~ —K’,
|M(k,K)|?
GOk K)GD(K k)
19)

gk k) =gV K ~ —K)~ 1+

In our numerical simulations we have seen that the above
interpretation of M and GV is valid to a high degree of
accuracy for a wide range of parameters, even when the
assumptions introduced above are not fully valid. Therefore,
throughout the rest of this work, we use the division of the
second-order correlation function into the colinear (18) and
back-to-back (19) parts.

At this stage we are ready to introduce the number-
squeezing parameter and show how it relates to the g®
correlation function in various relevant regimes.

IV. NUMBER SQUEEZING IN A MULTIMODE SYSTEM

In this section we define the number-squeezing parameter
and show how it is related to the second-order coherence of
the system.
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Atoms are registered (and counted) in two bins, say, a
and b, encompassing volumes V,/; in momentum space. The
corresponding atom-number operators read

Aajp = /
v,

a/b

I’k T (K)S (k). (20)

We introduce the number-difference operator 71 = 71, — i, and
define the number-squeezing parameter as follows:
, A%
n=—, 2D

n

where i1 = (fi,) + (7ip) is the total number of particles in both
bins. States that have sub-Poissonian population imbalance
fluctuations n*> < 1 are called number squeezed. In the
symmetric case (7i,) = (fi,), number squeezing is equivalent to
violation of the Cauchy-Schwartz inequality [2], which implies
the presence of nonclassical correlations in the system.

Using Eq. (20) and the definition of g® from Eq. (11), we
obtain that

Gaa + be - 2Gab

n

n? =1+

(22)

where the G;; stands for a twofold integral
Gij = / d’k / FK gk K)nEk)nk).  (23)
Vi Vi

Here n(k) = (5T(k)3(k)). Note that if the two regions a and
b are located on the opposite sides of the halo, G,, and Gy
depend on the colinear correlation function gg), while G, is
a functional of gl()i) .

To handle the integrals (23) and evaluate the number-
squeezing parameter n? for typical situations, let us model the
normalized colinear and back-to-back correlation functions by
Gaussians

8o (K)=14hg [ e @2 )

i=z,t,r
for k ~ Kk’ and
g (kK) =1+ hy, [| e @072 (25)

i=z,t,r

for k >~ —k'. This way we only need to extract the amplitudes
heiypp and the widths Uf]/ ® from the results of the numerical
simulations, similarly to the analysis of the Cauchy-Schwartz
violation in [2]. The Gaussian form is a very good match to
the calculated and also the experimental correlation shapes.

The product runs over three orthogonal directions where
the axis z is along the collision direction, while r and ¢ are
orthogonal to each other and lie in the x-y plane, corresponding
to radial (r) and tangential (#) directions. Additionally, we
model the density n(k) in (23) in the following way. We
assume that the bin widths L, and L, (in the z and ¢ directions,
respectively) are small enough for the density to be practically
constant. This assumption is in our case well satisfied. On the
other hand, the density quickly decays in the r direction. To
account for this drop relatively simply, we model the density
in this direction with a step function, centered around the peak
of the halo. The width w, is deduced from a Gaussian fit to the
radial profile of the halo density obtained numerically.
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As shown in the Appendix C, the assumptions introduced
above lead to the approximate expressions

n
P =1 S (hafE L = b SRS A)26)

Here we have introduced the function

ficl/bb _ % [M[\/gerf(uiﬁ) - %(1 - e—Zu?)} 27)

i

and the normalized bin widths are 4™ = L_, /26"

z¢ 10
the z,t directions, while in the radial direction the limited
density manifests itself by u,c.l/ b _ min(L,,w,)/ 20, /%0 The
limiting behavior of f is 1 — u?/3 for small bins u much
narrower than the correlations, and (1/u)/7/2 for large bins
u — oo. The above parametrization is convenient, though
elaborate. However, when bin widths tend to infinity, we obtain
a particularly useful expression
Z Z

=1+ (2;1)3/2%[@0%;10:1 — hpo o0 ™). (28)

Hence, in general, in the multimode system, number squeezing
depends on the number of particles in the bins 7, but also
depends on the correlation amplitudes #; and the widths
of the correlation functions afl/ ®® The situation simplifies
dramatically when the bins are very small. In this case we get

n
N =1+ 2 (et = i), (29)

and the quantum state is number squeezed as long as A} < hpp.

To place this in context, an additional important remark
is in order. If we consider a pure two-mode pair production
model governed by the Hamiltonian H = ab + ath! we obtain
simply n%> = 0. Therefore we see that in a multimode system
one cannot use the intuitions from the two-mode model to
predict such quantities as the number-squeezing parameter,
even when the bins being considered are very small.

V. SIMULATION RESULTS AND ANALYSIS

In this section we perform a systematic study of the number-
squeezing parameter in condensate collisions and identify the
physical phenomena, which have the largest impact on 7?.

A. y =1.02 case

We begin with the case of a dense mother cloud, with y =
1.02, so that the bosonic enhancement comes into play at some
stage during the collision. In Fig. 2 we plot n? as a function
of time for three different bin volumes V (for details on how
the bins are chosen, refer to Appendix A). The solid curves,
which are a result of the simulation of the full positive-P
Equations (5), are compared with the analytical prediction (26)
based on correlation properties. The latter requires both the
height and the widths of the second-order correlation function
as input, and these are extracted from the simulation. The
figure shows very good agreement between that model and
a “direct” evaluation of the number squeezing by counting
the number of particles in the two bins. Note that apart from
early times, n> > 1 so opposite bins do not reveal number
squeezing.
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t [in units of t ]

FIG. 2. (Color online) The number-squeezing parameter > in
the dense y = 1.02 case as a function of time for three different
bin volumes given in k3 units. The solid lines are from a numerical
solution of the full model (5,4). The dashed lines are predictions of
the Gaussian correlation model (26). The dash-dotted horizontal line
denotes the shot-noise level n* = 1.

To check to what extent the number squeezing is a result of
a particular choice of bins, in Fig. 3 we plot n? as a function
of the bin volume V at three times. Again, the agreement
between the model (26) and the simulation is very good.
This figure confirms that the absence of number squeezing
in the scattering halo is a general feature regardless of binning
details.

In the past, it has been conjectured that the quantum
correlations in the halo in such experiments are degraded
by interactions with the mean field, or due to the time
variation for the source cloud. To identify which process is
responsible for such dramatic loss of number squeezing at
later times, we first compare the results of the full positive- P
method with a maximally reduced Bogoliubov method (RBM).
The evolution of the colliding condensates is simplified to
a counterpropagation of the two initial clouds with fixed
shape, and additionally, in Eqgs. (5) we include only the pair

¥=1.02
T

I L L L L
0.001 0.01 0.1
V [in units of k; ]

FIG. 3. (Color online) The number-squeezing parameter 1’ in the
dense y = 1.02 case as a function of bin volume (log scale) calculated
at three different scattering times (in units of #.,). The solid lines are
from a numerical solution of the full model (5,4). The dashed lines are
predictions of the Gaussian correlation model (26). The dash-dotted
horizontal line denotes the shot-noise level > = 1.
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2 ¥=1.02
T

V=0.184

/V=0,00340

,,,,,,,,,, T

'V=0.0000602

| | |
% 05 I 5

t [in units of t ]

FIG. 4. (Color online) The number-squeezing parameter n> in
the dense y = 1.02 case as a function of time for three different
bin volumes (in & units), as predicted by the reduced Bogoliubov
model (RBM) (15,30). The dash-dotted horizontal line denotes the
shot-noise level > = 1.

production term, so it simplifies to (15). Both the mean-field
self-interaction of the BECs and its impact on the scattered par-
ticles are neglected. Free kinetic dispersion is also suppressed,
so that the equations of motion for the condensate field are
ko
2m
The condensates do not spread and the scattering process is
maximally simplified. Figure 4 shows the number-squeezing
parameter as a function of time as predicted by the RBM.
Although n? does not grow as strongly as in Fig. 2, still
the atom-difference fluctuations surpass the shot-noise limit.
Therefore, it is neither the mean-field interaction nor the
spreading of the BECs that have the major impact on the
number-squeezing parameter.

Next, we simulate the condensate collision using the numer-
ical method which a priori excludes the bosonic enhancement,
introduced in Sec. IID [see Eq. (9)]. In Fig. 5 we compare
the results obtained in the full positive-P simulation and

ih0;¢+(x,1) = (F2i0y — ko)p+(x,1). (30)

n2 ¥=1.02
6,
4 V=0.156
V=0.00289
2r V=0.0000585
-------- \
‘/// TTTTT T s e
= | | |
0 0.5 1 1.5

t [in units of t ;]

FIG. 5. (Color online) The number-squeezing parameter > in
the dense y = 1.02 case as a function of time for three different
bin volumes given in k3 units. The solid lines are from a numerical
solution of the full model (5,4). The dashed lines are predictions of the
model without Bose enhancement (8,9). The dash-dotted horizontal
line denotes the shot-noise level > = 1.
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FIG. 6. (Color online) The peak height of the back-to-back
correlation function Ay, as a function of time for the dense case
y = 1.02. The solid line is from a numerical solution of the full model
(5,4), the dashed line from the model without Bose enhancement
(8,9), while the dotted line comes from the reduced Bogoliubov
model (RBM) (15,30). The dot-dashed line shows the border value
of hy, = 1 when the back-to-back and collinear peaks are equal, and
small-bin number squeezing disappears.

the nonenhanced method. We plot n? as a function of time
for three different bin volumes. Although the growth of the
number-squeezing parameter is less violent in the absence of
bosonic enhancement, still n2 is above the shot-noise limit.
As expected, for short times # < 0.1 the outcomes of the two
methods agree very well—the system is still in the spontaneous
regime.

Finally, in Fig. 6 we draw the peak value of the back-to-
back correlation function, namely, the &y, defined in Eq. (25).
As indicated by Egs. (26) and (28), the number squeezing is
more likely to occur for high Ay, the widths of the correlation
functions being the other factor. We see that all three methods
(full positive- P, RBM, and nonenhanced) give Ay, < i = 1
at long times, a limit below which (29) indicates that small
bins can never be number squeezed.

B. y = 0.24 case

Here we investigate the number-squeezing parameter in the
dilute case, when y = 0.24 and the bosonic enhancement is
absent. First, in Fig. 7 we plot n? as a function of time resulting
from the positive-P method (5) and from the Gaussian
correlation model (26). The agreement is satisfactory, although
the predictions of the model are very noisy. This is a result
of the small number of scattered atoms. When the signal is
low, it is difficult to extract the widths and peak values of the
correlation functions that enter into the model. Nevertheless,
we observe a major difference between the dense and the dilute
case. In the latter, the bins are number squeezed, irrespectively
of their volume and the time.

We confirm that the system is indeed in the spontaneous
regime, by comparing in Fig. 8 the number-squeezing param-
eter as predicted by Eqgs. (5) and the nonenhanced method (9).
We do not observe any major discrepancy between these two
results, and conclude that the system is indeed in the low-gain
regime.
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FIG. 7. (Color online) The number-squeezing parameter n> in
the dilute y = 0.24 case as a function of time for three different bin
volumes given in k3 units. The solid lines come from a numerical
solution of the full model (5,4). The dashed lines are predictions of
the Gaussian correlation model (26). The dash-dotted horizontal line
denotes the shot-noise level n* = 1.

To understand why the number squeezing is present in the
y = 0.24 case, in Fig. 9 we plot the peak of the back-to-back
correlation function as a function of time. We see, that it is
far from reaching the border value of Ay, = he = 1. Also, we
compare this value with the one predicted by the nonenhanced
method (9) and find excellent agreement.

The number-squeezing parameter depends not only on the
peak values of the correlation functions, but also on their
widths. In Fig. 10 we compare the widths of the correlation
function for y = 1.02 and y = 0.24 as a function of time. We
notice that in both situations the back-to-back and colinear
widths are comparable to each other. In the dense case, the
back-to-back widths are slightly larger than the colinear, which
should favor n? < 1 for large bins, as indicated by Eq. (28).

The lack of number squeezing for any bin size for long
times of the y = 1.02 case, must be therefore attributed
to the drop of the peak height hp,. This drop is due to
the nonmonochromatic nature of the parent BECs. Their

T]2 v=0.24
: ‘
Lo VO~
/‘//_\if0.00SSS
0.5 = .
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% 05 I 5

t [in units of t ]

FIG. 8. (Color online) The number-squeezing parameter 1> in
the dilute y = 0.24 case as a function of time for three different
bin volumes given in k7 units. The solid lines result from a numerical
solution of the full model (5,4). The dashed lines are predictions of the
model without Bose enhancement (8,9). The dash-dotted horizontal
line denotes the shot-noise level > = 1.
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FIG. 9. (Color online) The peak height of the back-to-back
correlation function Ay, as a function of time for the dilute case
y = 0.24. The solid line is from a numerical solution of the full
model (5,4), and the dashed line is from the model without Bose
enhancement (8,9). The dot-dashed line denotes the border value of
hw = 1 when the back-to-back and colinear peaks are equal.

momentum spread leads to a nonzero width of the back-to-back
correlation function, which in turn results in scattering into
not exactly opposite momentum modes. The pair of atoms can
end up in nonopposite bins. Nevertheless, when the number
of scattered atoms is low—as in the dilute gas case or at
early times in the dense gas case—there is a high probability
of finding a single or a few correlated pairs in the opposite
regions, which is related to a high value of hyy,. Crucially, the
probability of having some uncorrelated pairs in the opposite
bin is low, because the neighboring bins are mostly empty.
However, when the number of scattered particles grows, the

0.3
0.2
_MQ
S0l
h)
‘g ! ! ! ! ! !
:’ 0 — T T — T T
::;) ol i A O, ¥=0.24 .
< . .\.\ T
= s
005 L _ M\
0 ! ! ! ! ! !
0 0.5 1 150 0.5 1 1.5

t [in units of t ]

FIG. 10. (Color online) The widths of the colinear (left column)
and back-to-back (right column) correlation functions for the dense
(top row) and dilute (bottom row) cases as a function of time, fitted
to the numerical solution of the full model (5,4). The solid black line
is the width in the axial direction o, the dotted red line is in the
tangential direction to the halo center o, while the dashed blue line is
in the radial direction o,. The dot-dashed violet line is the Gaussian
fitted half-width of the halo density w,, which narrows in time due to
energy-time uncertainty principle. All widths are given in ko units.

PHYSICAL REVIEW A 88, 013617 (2013)

v=1.02, plane waves
T T

0.5 7

V=0.00253 & 0.0000613

RBM V=0.00241 \V=0.144
|

1
0 05 1 1.5
t [in units of t ;]

FIG. 11. (Color online) The number-squeezing parameter 1’ in
the dense y = 1.02 case as a function of time for several different
bin volumes given in k3 units. Here, the BECs are replaced with
the plane waves. The solid lines come from a numerical solution
of the full model (5,4), while the dashed green line comes from a
reduced Bogoliubov model (RBM) simulation (15,30). The dash-
dotted horizontal lines denote the shot-noise and zero levels.

chance that neighboring bins are empty becomes small, and
uncorrelated atoms spill over into the opposite bin. In this way,
the n2 fluctuations grow, since there is a significant amount of
uncorrelated pairs in the opposite bins. Figure 1, which is
an outcome of a single collision in the dense gas case, is an
illustration of this scenario. There are some clearly visible
regions, where the atoms form a single large speckle, while on
the other side of the halo two distinct speckles are present.

C. Collision of two plane waves

To confirm the conjecture formulated in the previous
paragraph, we simulate a collision of two monochromatic
plane waves. We use the same parameters as in the y = 1.02
dense case, but replace the initial BECs with monochromatic
peaks in momentum space at k = (0,0, & k) [and replace
|¢|* in the evolution equation (4) with the mean density].
This mean density is chosen equal to the peak density in the
usual y = 1.02 case, i.e., (10/7)5. In Fig. 11 we plot n* as a
function of time for three different bin volumes. In all cases, the
number squeezing is near perfect (n> ~ 0.03), despite a huge
total number of scattered atoms ~ 107. The residual slightly
nonzero value of 1> is induced by the presence of a sea of
short-lived particles from virtual scattering events. The RBM,
which does not include this nonresonant effect, gives n2 =0
within statistical accuracy.

We also plot the peak height of the back-to-back function
as a function of time (see Fig. 12). At long times it becomes
indistinguishable from the border value of unity, but at this
stage the number of atoms in the halo and the bin occupation
i is very large. However, from the model (29) one sees that
the minimal, fully squeezed value of n?> = 0 corresponds to
hwy = 1 + 2/0, which is extremely close to unity, so that this
remains consistent with the observed strong number squeezing
in Fig. 11.
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FIG. 12. (Color online) The peak height of the back-to-back
correlation function Ay, as a function of time for the dense case
y = 1.02 and two colliding plane waves. The solid line is from
a numerical solution of the full model (5,4), while the dot-dashed
line denotes the border value of Ay, = 1 when the back-to-back and
colinear peaks are equal.

VI. CONCLUSIONS

We have performed a systematic study of the number-
squeezing parameter between two regions of opposite mo-
menta in the scattering halo formed during collisions of two
BECs. We have shown that the number squeezing depends
strongly on the bin size, density of the mother clouds, mean-
field interactions, and above all on the spectral purity of the
mother clouds. In the dilute case, the number squeezing is
evident, since the number of scattered pairs is low. Therefore,
once a single atom is detected at momentum Kk, there is a high
probability of finding one (and just one) at k' ~ —k. Such
a setup can be useful for investigation of the foundations of
quantum mechanics, and indeed most Bell inequality tests in
quantum optics have been carried out with weak sources where
the granularity of the boson field becomes visible.

On the other hand, having only a single—or a few—
correlated pairs is unattractive from a quantum interferometry
point of view. The dense, or “squeezing” [48] regime is prefer-
able. However, we find here that when the amount of scattered
atoms is high, n* grows rapidly. By performing additional sim-
ulations with plane waves instead of Gaussian condensates, we
have related this behavior to the nonmonochromaticity of the
colliding BECs. As the sources are not pointlike in momentum
space and the back-to-back correlation function has a nonzero
range, the scattered pairs are not perfectly aligned. This in
turn results in imperfect correlation between opposite bins,
which is additionally amplified by the increased number of
stray atoms that enter them from neighboring regions. The
nonmonochromatic nature of the source clouds appears then
to be the effect that underlies most of the degradation of pair
correlations and number squeezing in the halo.

Our results have potential application for the setup and
analysis of existing and future experiments for the production
of correlated atomic pairs from ultracold atom sources, as
these are almost always multimode, i.e., nonmonochromatic to
an appreciable degree. Quasicondensate and one-dimensional
phase-fluctuation aspects can be tamed by an appropriate
choice of the counting bins [15,16,28,49,50]. However,
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additional broad spontaneous halos are observed in some
mode-selective experiments, including directed-beam [16],
dressed-state [51], and four-wave-mixing setups [4,27].

The effect of the width of the mother cloud on short-
time behavior was analyzed by Ogren and Kheruntsyan for
BEC collisions [46] and molecular dissociation [29,30], with
improvement of squeezing as the cloud broadens. An important
point we demonstrate here is that while the short-time behavior
can be squeezed both at low and high densities, any squeezing
is lost if the number of particles grows too far. Thus, as
clouds become denser, the onus on achieving or maintaining
monochromaticity grows. Conversely, if squeezing is lost for
a given geometry, it should be recoverable if the density
is reduced sufficiently so that a significant proportion of
measurements are free of stray unpaired atoms.

Preferable conditions for number squeezing are satisfied
when atoms scatter into well-separated regions, because the
pool of atoms that go into a broad halo is strongly reduced, and
the likelihood of unpaired stray atoms in the measuring bins is
lessened. Such conditions have been demonstrated recently in
twin-beam experiments [15], four-wave-mixing experiments
with two-component matter waves [7,27,28], or with an optical
lattice that selects only a pair of phase-matched modes [16] by
modifying the dispersion relation.
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APPENDIX A: DIVISION OF THE HALO INTO BINS

To calculate the number-squeezing parameter we follow
a similar procedure to that used in recent experiments [1,2].
We take an annular “washer-shaped” region matched to the
position and width of the halo, which excludes regions near the
condensates, and divide it into zones. The matched dimensions
of the washer-shaped region in the various calculations are
shown in Table 1.

TABLE I. The dimensions of the annular region divided into bins
for ? calculations, in units of k.

Small Large Maximum
Figures y radius radius k.|
2,3,5,6,13 1.02 0.671 1.029 0.333
4,6 (RBM) 1.02 0.821 1.179 0.333
7,8,9 0.24 0.826 1.138 0.100
11,12 1.02 0.900 1.100 0.333
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FIG. 13. (Color online) The bin widths (black solid line, axial;
dotted red line, tangential; dashed blue line, radial) as a function of
the total bin volume (dense case y = 1.02) used in the full model
(5,4) simulations.

This annular region is then divided into equisized bins by
making a series of equally spaced cuts in the axial (z), radial,
and tangential directions. Then the number of cuts is varied to
achieve a gradation from large bin sizes covering an angle of
7/2 in the k,-k, plane (eight bins in total, four pairs), to bin
sizes comparable with the dimensions of a single correlation
volume, then on to small bins the size of a single computational
lattice point. The progression of bin dimensions is that we first
reduce the radial bin size to approximately the correlation
length o,, then the tangential and axial (z) sizes to their
correlation lengths in that order. Then we repeat reductions
in the same order down to single-computational-lattice-point
volumes. One example is shown in Fig. 13 for the first
y = 1.02 dense case in the table.

Number squeezing between opposite bins is calculated,
then averaged over all pairs to obtain the displayed values
of n?. One subtlety should be mentioned: At small bin
sizes, mean occupation can vary appreciably as a result of
mismatches between bin shapes and the positions of discrete
lattice points on the computational lattice; some small bins
miss all lattice points altogether. Such an effect does not
appear experimentally, so to exclude potentially disruptive
contributions from atypically discretized bins we exclude some
bin pairs from consideration. The excluded bins are those for
which either bin has an ensemble average occupation less
than half or more than twice the mean bin occupation (when
averaged over all bins).

APPENDIX B: CALCLUATION OF HALO CORRELATIONS

The correlation properties are averaged in a similar way
to that performed in experiments [1,2]. That is, we calculate
the mean correlation function in a region R ; as a function
of interparticle distance Ak in various directions j in the
following way:

ij BPRSTK)ST(k + AK)SK)S(k 4+ Ak))
fR/_ A3k n(k)n(k + Ak)

_2
géc;bb(Ak) =

(BI)
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This region is similar to the annular region used to calculate
number squeezing (as shown in Table I and explained above
in Appendix A) for the j = z direction, but a reduced volume
for the other directions j = ¢,r, where the reduction consists
of additional restriction to within ky/3 of the x and y axes.
However, the washer shape is much wider radially, i.e., it has
the same average radius as in the table, but a radial width of
0.9%.

The averaging method used here is as employed in
experiments because it is convenient for analysis of data
consisting of detected particle positions. It effectively weights
the contribution to the correlations proportionally to the
product of the densities at the two points k and k 4+ Ak, which
is approximately the local halo density squared. Thus, it takes
into account primarily the most relevant, dense, part of the
halo. Then, Gaussian fits are made to obtain the peak values
h and the widths o. During the fitting, points with excessive
statistical uncertainty, or for distances Ak; so large that the
correlation function g begins to rise, are excluded.

APPENDIX C: GAUSSIAN MODEL FOR HALO
CORRELATIONS

We use Gaussian g® functions as in Eqs. (24) and (25) and
approximate the halo by a step function in the radial direction,
ky = Jk2+ k_%. The density is pg when |k, — k;| < wy, and

zero otherwise. Here, k;, is the halo mean radius, and wy, is
the radial halo half-width taken to be </ /2 times the standard
deviation of a Gaussian fit to the true radial profile of the halo
density. We also take the bins to be centered radially at k;, so
the effective integration range in the radial direction extends
from —q, to +q,, where g, = min(L, /2,w;,). Therefore, the
integrals of the correlation functions read

L;/2 L:/2
Gaa/ab = /03/ dkz dk;/. dk; dkt,
—L:/2 —L;/2

qr
x / dk, dk, g5 (k.K').

q
which, using Egs. (18) and (19), gives
Gaajab = ﬁ2[1 + hcl/bbf(uzl/bb)f(ufl/bb)f(ucr:l/bb)]'

Here

flu) = % [\/gu erf(u~/2) — %(1 — e—2u2):|

is a function of the normalized bin widths

amb Loy e — _dr
w T ooame M T e

2t Z,t

This expression is inserted into Eq. (22) to obtain the estimates
of 1? on the basis of correlation and density measurements.
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