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Bipolarons and multipolarons consisting of impurity atoms in a Bose-Einstein condensate
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The variational Feynman formalism for the polaron, extended to an all-coupling treatment of bipolarons, is
applied for two impurity atoms in a Bose-Einstein condensate. This shows that if the polaronic coupling strength
is large enough, the impurities will form a bound state (the bipolaron). As a function of the mutual repulsion
between the impurities, two types of bipolaron are distinguished: a tightly bound bipolaron at weak repulsion and
a dumbbell bipolaron at strong repulsion. Apart from the binding energy, the evolution of the bipolaron radius and
its effective mass are also examined as a function of the strength of the repulsive interaction between the impurities
and of the polaronic coupling strength. We then apply the strong-coupling formalism to multiple-impurity atoms
in a condensate, which leads to the prediction of multipolaron formation in the strong-coupling regime. The
results of the two formalisms are compared for two impurities in a condensate, which results in a general
qualitative agreement and a quantitative agreement at strong coupling. Typically, the system of impurity atoms in
a Bose-Einstein condensate is expected to exhibit the polaronic weak-coupling regime. However, the polaronic
coupling strength is, in principle, tunable with a Feshbach resonance.
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I. INTRODUCTION

In recent years systems related to ultracold gases have suc-
cessfully been applied as quantum simulators for many-body
theories [1]. A specific example is a Bose-Einstein condensate
(BEC) with an impurity atom of which the Hamiltonian can
be mapped onto the Fröhlich polaron Hamiltonian, provided
the Bogoliubov approximation is valid [2–4]. The polaron is a
well-known concept in solid-state physics, where it represents
the quasiparticle that consists of an electron in a polar or
ionic lattice, dressed with the self-induced polarization cloud,
which is described by the lattice vibrations or phonons [5]. In
the context of ultracold atomic gases the electron is replaced
by an impurity atom, and the role of the phonons is played
by the Bogoliubov excitations of the condensate. Hitherto, the
Fröhlich Hamiltonian has resisted analytical diagonalization,
making it the subject of various approximation schemes
[6]. A polaronic system typically exhibits different coupling
regimes characterized by a quasifree polaron at weak coupling
and a bound state in the self-induced potential at strong
coupling. The variational all-coupling treatment, as developed
by Feynman to describe the ground state of the polaron [7],
reveals the transition between the coupling regimes and nicely
interpolates between the Fröhlich perturbative result at weak
coupling [8] and the Landau-Pekar strong-coupling result
[9,10]. For a single impurity in a Bose-Einstein condensate the
application of the Feynman all-coupling theory also revealed
the transition between the different coupling regimes [11,12].

Recently, there have been reports on the immersion of
a single impurity in an ultracold gas [13–17]. For neutral
impurity atoms in a BEC the system is expected to be in
the weak polaronic coupling regime. For a 6Li impurity
in a Na condensate, for example, the polaronic coupling
strength α is of the order of 10−3 [11], which is well
within the weak-coupling regime. However, the polaronic
coupling strength is, in principle, externally tunable and
can be increased by means of a Feshbach resonance. The
feasibility of interspecies Feshbach resonances has recently

been demonstrated in various ultracold mixtures (see, for
example, Refs. [18–21]). An experimental study of the BEC
impurity polaron with a variable coupling strength could shed
light on discrepancies between different predictions of the
polaronic dynamic response properties [22–24].

Considering multiple impurities in a Bose-Einstein con-
densate unveils a whole range of interesting phenomena. The
presence of the Bose-Einstein condensate induces an effective
interaction between the impurities [25,26]. At weak polaronic
coupling the application of the many-polaron formalism, as
developed in Refs. [27,28], leads to a description of the ground-
state properties and the response to Bragg spectroscopy of
ultracold weakly interacting binary mixtures [29]. If the pola-
ronic coupling is strong enough, the BEC-induced interaction
can lead to the clustering of the impurities, also known as
a multipolaron [30,31]. The possibility of the formation of a
multipolaron at strong polaronic coupling is also well known in
the solid-state context [32–36]. A special case is the formation
of a bound state of two electrons, commonly known as the
bipolaron [37–39]. Bipolarons have attracted much attention
because of their possible role as an unconventional pairing
mechanism for high-temperature superconductivity [40,41].

In this work, we consider a few impurities in a Bose-
Einstein condensate and examine the formation of a multi-
polaron. We start in Sec. II by showing how the Hamiltonian
of impurity atoms in a BEC can be mapped onto the Fröhlich
Hamiltonian, provided the Bogoliubov approximation is valid.
Then, in Sec. III, the all-coupling variational path-integral
approach, as developed by Feynman in Ref. [7] for a single
polaron and extended in Ref. [42] for two electrons in a polar
or ionic lattice, is applied to two distinguishable impurities in
a condensate. This allows us to examine the polaron-bipolaron
transition and the bipolaron ground-state properties such as
the radius and the effective mass. In Sec. IV a strong-coupling
treatment for multiple impurities in a BEC, based on the
Landau-Pekar strong-coupling approach, is considered. This is
first applied for two impurities in a condensate to examine the
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polaron-bipolaron transition and the polaronic properties and
then to multiple impurities to study the formation of a larger
multipolaron. Finally, in Sec. V, we compare the results of the
two presented formalisms for two distinguishable impurities
in a BEC, and in Sec. VI we conclude.

II. THE POLARONIC SYSTEM CONSISTING OF
MULTIPLE IMPURITIES IN A BOSE-EINSTEIN

CONDENSATE

The Hamiltonian of NI impurity atoms, in the presence of
a homogeneous Bose gas, is given by

Ĥ =
NI∑
i=1

p̂2
i

2mI

+
∑

�k
E�kâ

†
�kâ�k + 1

2

∑
�k,�k′,�q

VBB (�q) â
†
�k′−�q â

†
�k+�q â�kâ�k′

+
∑
�k,�q

VIB (�q) ρ̂I (�q) â
†
�k−�q â�k +

NI∑
i<j

VII (�̂ri − �̂rj ). (1)

The first term represents the kinetic energy of the impurities of
mass mI and associated momentum operators { �̂pi} and position
operators {�̂ri}. The operator â

†
�k (â�k) creates (annihilates) a

boson with mass mB , wave vector �k, and energy E�k =
(h̄k)2 /2mB − μ, with μ being the boson chemical potential.
These bosons interact mutually, with VBB (�q) being the Fourier
transform of the interaction potential. The Fourier transform
of the impurity-boson interaction potential is VIB (�q) and
couples the boson density to the impurity density

ρ̂I (�q) =
NI∑
i=1

ei �q·�̂ri . (2)

The impurity-impurity interaction is described by the interac-
tion potential VII (�r). For the interparticle interactions we as-
sume contact pseudopotentials: VBB (�r) = gBBδ (�r), VIB (�r) =
gIBδ (�r), and VII (�r) = gII δ (�r). The interaction strengths gBB ,
gIB , and gII are related to the corresponding scattering lengths
aBB , aIB , and aII through the Lippmann-Schwinger equation.
For the boson-boson and the impurity-impurity interactions
the first-order result suffices: gBB = 4πh̄2aBB/mB and gII =
4πh̄2aII /mI . We will only consider repulsive impurities
(aII > 0). For the impurity-boson interaction the Lippmann-
Schwinger equation has to be treated up to second order to
obtain convergent final results:

2πh̄2aIB

mr

= gIB − g2
IB

∑
�k �=0

2mr

(h̄k)2 , (3)

where mr is the reduced mass (m−1
r = m−1

I + m−1
B ).

If a Bose-Einstein condensate is realized, the number of
bosons N0 that occupy the single-particle ground state be-
comes a macroscopic number: N0 � 1 [43]. This is expressed
by the Bogoliubov shift [44], which transforms Hamiltonian
(1) into

Ĥ = EGP + NIN0gIB + Ĥ
(NI )
pol , (4)

where EGP is the Gross-Pitaevskii energy of the homogeneous
condensate [45,46]. The second term in Hamiltonian (4) is the
interaction shift due to the impurities, and the third term is the

Fröhlich Hamiltonian for NI polarons:

Ĥ
(NI )
pol =

NI∑
i=1

p̂2
i

2mI

+
∑

�k
h̄ω�kα̂

†
�kα̂�k +

∑
�k

V�kρ̂I (�q) (α̂�k + α̂
†
−�k)

+
NI∑
i<j

VII (�̂ri − �̂rj ). (5)

The first term of the Fröhlich Hamiltonian represents the
kinetic energy of the impurities. The operator α̂

†
�k (α̂�k) creates

(annihilates) a Bogoliubov excitation with wave number �k and
energy

h̄ω�k = h̄2k

2mBξ

√
2 + (ξk)2, (6)

where the healing length of the Bose condensate was intro-
duced: ξ = 1/

√
8πaBBn0, with n0 = N0/V being the conden-

sate density (we work with unit volume for the homogenous
gas). The third term in the Fröhlich Hamiltonian (5) describes
the interaction between the impurities and the Bogoliubov
excitations with the interaction amplitude

V�k =
√

N0gIB

[
(ξk)2

(ξk)2 + 2

]1/4

. (7)

The last term of the Fröhlich Hamiltonian (5) corresponds to
the interaction between the impurities. The Fröhlich Hamil-
tonian (5) was originally derived to describe the interaction
between an electron (or hole) and the longitudinal optical
phonons in a polar or ionic crystal [8]. A strong repulsion
between the impurity and the bosons can lead to a large
depletion of the condensate in the vicinity of the impurity,
which can break the validity of the Bogoliubov approximation
and the applicability of the Fröhlich Hamiltonian to describe
the system. This typically leads to a bubble state [47].

III. ALL-COUPLING VARIATIONAL TREATMENT
FOR TWO IMPURITY ATOMS IN A BEC

A. All-coupling formalism

We consider the generic polaronic system of two distin-
guishable particles interacting with a bosonic bath through the
Fröhlich interaction, i.e., any system that can be described
by Hamiltonian (5) with NI = 2. The variational all-coupling
single-polaron treatment, as originally developed by Feynman
[7], was extended in Ref. [42] to the case of two polaronic
particles. This approach is based on the Jensen-Feynman
variational inequality for the free energy F [48,49]:

F � F0 + 1

h̄β
〈S − S0〉S0

, (8)

where S is the action of the polaronic system as described
by the Fröhlich Hamiltonian (5), S0 is the action of a
variational trial system with free energy F0, and β is the
inverse temperature T : β = (kBT )−1. Eliminating the degrees
of freedom of the Bogoliubov excitations leads to an effective

013613-2



BIPOLARONS AND MULTIPOLARONS CONSISTING OF . . . PHYSICAL REVIEW A 88, 013613 (2013)

FIG. 1. Schematic picture of the variational trial system for
two polaronic particles, as introduced in Ref. [42]. The black dots
represent the impurity atoms of mass mI , and the larger gray dots
depict the fictitious particles of mass M . The connecting lines
represent harmonic interactions with the corresponding oscillator
strengths indicated.

polaron action containing retardation effects:

S =
∫ h̄β

0
dτ

⎡
⎣ NI∑

i=1

mI

2
ṙ2
i (τ ) +

∑
i<j

VII (�ri − �rj )

⎤
⎦

−
NI∑

j,l=1

∑
�k

|V�k|2
h̄

∫ h̄β

0
dτ

×
∫ h̄β

0
dσGω�k (τ − σ ) ei�k·[�rj (τ )−�rl (σ )], (9)

with Gω�k (u) being the Green’s function of the Bogoliubov
excitations:

Gω�k (u) = cosh[ω�k (h̄β/2 − |u|)]
2 sinh(βh̄ω�k/2)

. (10)

For a single polaron a variational system was suggested by
Feynman that mimics the influence of the interaction with
the Bogoliubov excitations on the impurity by a harmonic
coupling to a fictitious particle of mass M with oscillator
strength κ [7]. The upper bound for the free energy (8) is then
minimized as a function of the variational parameters M and
κ . In Ref. [42] an extension of this trial system was introduced
for the case of two polaronic particles, which is schematically
presented in Fig. 1. As is the case in the Feynman one-polaron
trial system the impurities interact quadratically with fictitious
particles of mass M with oscillator strength κ . Furthermore,
there is a quadratic interaction, with oscillator strength κ ′,
with the fictitious particle of the other impurity. The particles
are separated by the vector �a, and they mutually interact
quadratically with strength K . For κ ′ = K = 0 this reduces
to (twice) the Feynman model system. After transforming
to the eigenmodes the action of the trial system can be
written as

S0 =
∫ h̄β

0
dτ

⎡
⎣μ0

2
ρ̇2

0 +
3∑

j=1

(
μj

2
ρ̇2

j + 1

2
μj�

2
j ρ

2
j

)⎤
⎦ , (11)

with { �ρi} being the coordinates of the eigenmodes of the trial
system and {�i} being the corresponding eigenfrequencies
(�0 = 0 corresponds to a translation of the trial system as

FIG. 2. Schematic presentation of the eigenmodes corresponding
to the eigenfrequencies �1, �2, and �3. The small black dots
represent the impurities, and the larger gray dots depict the fictitious
particles of mass M .

a whole):

�2
1 = M + mI

MmI

(κ + κ ′), (12)

�2
2,3 = 1

2

{
M + mI

MmI

(κ + κ ′) − 2K

mI

±
√[

M − mI

MmI

(κ + κ ′) − 2K

mI

]2

+ 4

mIM
(κ−κ ′)2

}
.

(13)

Since all oscillator strengths are positive, the eigenfrequencies
satisfy the inequalities

�2
1 � �2

2 + �2
3, (14)

�2 � ν � �3 � 0, (15)

where we have introduced the frequency parameter ν =√
(κ + κ ′) /M . In expression (11) the following mass factors

were introduced:

μ0 = 2 (mI + M) , μ2 = 2mIM

(mI + M)
,

μ2 = 1, μ3 = 1. (16)

The corresponding eigenmodes of the trial system are schemat-
ically presented in Fig. 2. The action (11) shows that the
trial system decouples into a free particle and three harmonic
oscillators.

After eliminating the degrees of freedom of the two
fictitious particles of mass M the effective action of the trial
system becomes retarded and can be written as

S0 =
∫ h̄β

0
dτ

[∑
i=1,2

mI

2
ṙ2
i (τ ) − K

2
(�r1 − �r2 − �a)2

]

+ κ2 + κ ′2

4Mν

∫ h̄β

0
dτ

∫ h̄β

0
dσGν (τ − σ )

×
∑

j

[�rj (τ ) − �rj (σ )]2 + κκ ′

Mν

∫ h̄β

0
dτ

×
∫ h̄β

0
dσGν (τ − σ ) [�r1(τ ) − �r2(σ ) − �a]2. (17)

Applying the Jensen-Feynman inequality then results in
an upper bound E for the polaronic contribution to the
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ground-state energy at zero temperature [42]:

E =
3∑

j=1

3

2
h̄�j − 3h̄ν +

∑
�k

VII (�k)ei�k·�ae−k2D12(0)

− 2
∑

�k

|V�k|2
h̄

∫ ∞

0
du e−ω�ku[e−k2D11(u) + ei�k·�ae−k2D12(u)]

− 3

2

�2
1−ν2

�2
1

h̄�1

2
− 3

2

�2
2 − ν2

�2
2 − �2

3

h̄�2

2
− 3

2

ν2 − �2
3

�2
2 − �2

3

h̄�3

2
,

(18)

where the functions D11 (u) and D12 (u) are defined as

D11 (u) = h̄

2mI

[
ν2

�2
1

u

2
+ �2

1 − ν2

�2
1

E (�1,u)

+ �2
2 − ν2

�2
2 − �2

3

E (�2,u) + ν2 − �2
3

�2
2 − �2

3

E (�3,u)

]
,

(19)

D12 (u) = h̄

2mI

[
ν2

�2
1

u

2
+ �2

1 − ν2

�2
1

E (�1,u)

+ �2
2 − ν2

�2
2 − �2

3

F (�2,u) + ν2 − �2
3

�2
2 − �2

3

F (�3,u)

]
,

(20)

with

E (�,u) = 1 − exp [−�u]

2�
, (21)

F (�,u) = 1 + exp [−�u]

2�
. (22)

The next step is to minimize the upper bound E (18) as a
function of the variational parameters {ν,�1,�2,�3,�a}.

1. Bipolaron radius

As an estimate for the bipolaron radius R the root mean
square of the distance between the impurities is used [42]:

R =
√

〈[�r1(τ ) − �r2(τ )]2〉
=

√
a2 + 6D12(0), (23)

with the function D12 (u) as defined in (20).

2. Effective mass of the bipolaron

The effective mass m∗ can be derived from the path-integral
propagation from �ri (0) to �ri (T ) = �ri (0) + �UT for i = 1,2.
The ground-state energy then behaves as

E (U ) = E (0) + m∗U 2

2
. (24)

This procedure was implemented by Feynman to derive the
effective mass of a single polaron at arbitrary coupling [7].
The same treatment for two particles leads to an expression

for the effective mass of the bipolaron:

m∗ = 2mI + 2
∑

�k

|V�k|2
h̄

×
∫ ∞

0
du e−ω�ku[e−k2D11(u) + ei�k·�ae−k2D12(u)]u2k2

z ,

(25)

with functions D11 (u) and D12 (u) as defined in (19) and (20),
respectively.

3. Single-polaron limit

The trial system reduces to (twice) the Feynman one-
polaron trial system for K = κ ′ = 0. For the eigenmodes this
corresponds to �3 = 0 and �1 = �2 = �. This gives, for
functions D11 (u) [Eq. (19)] and D12 (u) [Eq. (20)],

lim
�3 → 0

�1 = �2 = �

D11 (u) = h̄

2mI

[
ν2

�2
u + �2 − ν2

�2

1 − exp [−�u]

�

]

= D (u) , (26)

lim
�3 → 0

�1 = �2 = �

D12 (u) → ∞. (27)

The upper bound for the ground-state polaron energy (18)
becomes in this limit

lim
�3 → 0

�1 = �2 = �

E = 2

[
3

2
h̄ (� − ν) − 3

4

�2 − ν2

�2
h̄�

−
∑

�k

|V�k|2
h̄

∫ ∞

0
du e−ω�kue−k2D(u)

]
. (28)

This is (twice) the upper bound for the ground state of a single
polaron, as derived by Feynman [7]. The effective mass of the
bipolaron becomes in this limit

lim
�3 → 0

�1 = �2 = �

m∗

= 2

⎛
⎝mI + 1

3

∑
�k

|V�k|2
h̄

∫ ∞

0
du e−ω�kue−k2D(u)u2k2

⎞
⎠ ,

(29)

which is (twice) the single-polaron effective mass, as derived
by Feynman [7].

B. Two impurities in a Bose-Einstein condensate

We now consider the specific system of two impurity atoms
in a Bose-Einstein condensate. Using the contact pseudopo-
tential with the first-order Lippmann-Schwinger result gives
for the impurity-impurity interaction

∑
�k

VII (�k)ei�k·�ae−k2D12(0) = h̄2aII

2
√

πmID12 (0)3/2 e
− a2

4D12(0) .

(30)
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Introducing the interaction amplitude (7) gives, for the upper
bound for the ground-state energy (18), in polaronic units
(h̄ = mI = ξ = 1),

E =
3∑

j=1

3

2
�j − 3ν + aII

2
√

πD12 (0)3/2 e
− a2

4D12(0)

+ α

2π

(
mB + 1

mB

)2 ∫ ∞

0
dk

{
2mB

mB + 1
− k3

√
k2 + 2

×
∫ ∞

0
du e−ω�ku

[
e−k2D11(u) + sin [ak]

ak
e−k2D12(u)

]}

− 3

2

�2
1 − ν2

�2
1

�1

2
− 3

2

�2
2 − ν2

�2
2 − �2

3

�2

2
− 3

2

ν2 − �2
3

�2
2 − �2

3

�3

2
,

(31)

where α is the dimensionless polaronic coupling parameter:

α = a2
IB

ξaBB

. (32)

The first term in the k integrand on the right-hand side of
expression (31) is a consequence of using the Lippmann-
Schwinger equation up to second order for the impurity-
boson interaction strength (3) in the second term of the total
Hamiltonian (4) and is needed for convergence. A similar
procedure was applied for the single-polaron all-coupling
treatment in Ref. [11]. With the interaction amplitude (7) the
bipolaron effective mass in polaronic units becomes

m∗ = 2 + α

8π2

(
1 + mB

mB

)2 ∫
d�k

√
k2

k2 + 2

×
∫ ∞

0
du e−ω�ku[e−k2D11(u) + ei�k·�ae−k2D12(u)]u2k2

z .

(33)

C. Results and discussion

For numerical calculations it is favorable to introduce a
cutoff Kc for the k integral in (31). Similar to the one-polaron
case, we use the inverse of the van der Waals radius of the
impurity-boson interaction potential for Kc [11]. We introduce
the specific system of 6Li impurities in a Na condensate which
amounts to mB/mI = 3.8227 and ξKc = 200. The considered
system with two distinguishable impurities can, for example,
be realized with two different hyperfine states of the same
atom.

1. Phase diagram

The upper bound for the ground-state energy (31) was
minimized as a function of the variational parameters
{�a,�1,�2,�3,ν} for given values of the coupling parameter α

and the impurity-impurity scattering length aII . If the resulting
upper bound is lower than twice the upper bound for the
one-polaron ground-state energy, we conclude that it is
energetically favorable to form a bipolaron; otherwise, the
system consists of two separate polarons. This procedure
results in the (aII ,α)-phase diagram presented in Fig. 3,
where we have also indicated three regions as a function
of α. For α > 2.71 the formation of a bipolaron is always

1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

α

a II/ξ

1 32

2 polarons

bipolaron

FIG. 3. (Color online) The (aII ,α)-phase diagram for two 6Li
impurities in a Na condensate with α being the polaronic coupling
parameter and aII being the impurity-impurity scattering length. The
solid line indicates the polaron-bipolaron transition. The dotted lines
at α = 1.22, α = 2.71, and α = 3 indicate the boundaries of the
different regions, as discussed in the text.

energetically favorable, irrespective of aII , and the area with
α ∈ [2.71,3] is denoted as region 2 (see Fig. 3). At α = 3
the Feynman all-coupling single-polaron treatment predicts
the transition to the strong-coupling regime [11], and the area
with α > 3 is denoted as region 3. From Fig. 3 it is clear that
for α ∈ [1.22,2.71] (region 1) the bipolaron is only stable at
small values of aII . For α < 1.22 a bipolaron is never formed.
If the bipolaron is stable, the variationally determined vector �a,
separating the impurities in the trial system of Fig. 1, is always
zero in region 1, irrespective of aII , while for α > 2.71 it is
finite at sufficiently large aII , in which case the shape of the
bipolaron can be interpreted as a dumbbell.

2. Bipolaron mass and radius

In Fig. 4 the upper bound (31), the polaronic effective mass
(33), and the inverse bipolaron radius (23) are presented as

1 2 3
−2

−1.5

−1

−0.5

0

0.5

α

E
/[

h̄
2
/(

ξ2
m

I
)]

1 2 3

5

10

15

20

25

α

m
* /m

I

2 2.5 3 3.5
0

0.2

0.4

α

(R
/ξ

)−1

a
II
/ξ = 10

α = 2.71

(a) (b)

(c)

FIG. 4. (Color online) (a) The upper bound of the ground-state
energy, (b) the bipolaron effective mass, and (c) the inverse of the
bipolaron radius are presented as a function of the polaronic coupling
parameter α at aII = 10 for two 6Li impurities in a Na condensate.
The dotted line at α = 2.71 indicates the polaron-bipolaron transition.
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FIG. 5. (Color online) (a) The upper bound of the ground-state
energy, (b) the effective mass (note the semilogarithmic scale), and (c)
the inverse of the bipolaron radius are presented as a function of the
impurity-impurity scattering length aII at α = 2 (region 1 in Fig. 3)
for two 6Li impurities in a Na condensate. The polaron-bipolaron
transition at aII /ξ = 1.3 and the transition of the internal bipolaron
state (see text) at aII /ξ = 0.6 are indicated with the dotted lines.
Also, the upper bound for the ground-state energy of two separate
polarons (E2 pol) and the corresponding effective mass (m∗

2 pol) are
shown.

a function of the coupling parameter α at aII = 10. For α <

2.71 the system consists of two separate polarons, while for
α > 2.71 a bipolaron is formed. For two separate polarons
the bipolaron radius is defined as infinity. As a function of
α the effective mass exhibits an increasing behavior, and for
α > 3 it increases more rapidly, indicating the transition to
the strong-coupling regime, which is also present for a single
polaron [11]. If the bipolaron is stable, the bipolaron radius
decreases as a function of α. This shows that the bipolaron
becomes more tightly bound as the coupling is increased.

In Fig. 5 the upper bound (31), the polaronic effective mass
(33), and the inverse bipolaron radius (23) are presented as
a function of the impurity-impurity scattering length aII at
α = 2 (region 1 in Fig. 3). The energy and the effective mass of
two polarons are also shown. This reveals that the bipolaron is
only stable for sufficiently small values of aII , with a polaron-
bipolaron transition at aII /ξ = 1.3. From Fig. 5 it is clear that
in this case the polaron-bipolaron transition is accompanied
with a discontinuity in the effective mass. The value aII /ξ =
0.6 is also indicated in Fig. 5, which corresponds to another
discontinuity in the effective mass, as well as in the bipolaron
radius. For aII /ξ < 0.6 the bipolaron is relatively small and
heavy, and the ground-state energy and the properties exhibit
a strong dependence on aII compared to the behavior for
aII /ξ > 0.6. This suggests that for aII /ξ < 0.6 the bipolaron
can be considered as a tightly bound particle, while for aII /ξ >

0.6 it consists of a more loosely bound state of two polarons.
Increasing aII results in a less tightly bound bipolaron and
finally in the formation of two separate polarons.

In Fig. 6 the upper bound (31), the polaronic effective mass
(33), and the inverse bipolaron radius (23) are presented as
a function of the impurity-impurity scattering length aII at
α = 2.85 (region 2 in Fig. 3). The energy of two separate
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FIG. 6. (Color online) (a) The upper bound of the ground-state
energy, (b) the effective mass, and (c) the inverse of the bipolaron
radius are presented as a function of the impurity-impurity scattering
length aII at α = 2.85 (region 2 in Fig. 3) for two 6Li impurities in a
Na condensate. The upper bound for the ground-state energy of two
polarons (E2 pol) is also indicated.

polarons is also indicated, which shows that the bipolaron
is always stable, irrespective of aII . Also, here we find that
increasing aII results in a less tightly bound bipolaron. Again,
we can distinguish two regimes in the aII dependence of E and
m∗ but now without a discontinuity at the transition. At small
aII the increase of the ground-state energy and the decrease
of the effective mass as a function of aII are significantly
faster than at higher values of aII , with a transition region
at aII /ξ ≈ 2. As before, this indicates that at small values of
aII the bipolaron can be considered a tightly bound particle,
while at large values it is more appropriately interpreted as
two loosely bound polarons. Moreover, at small values for
aII the variationally determined vector �a, separating the two
impurities in the trial system of Fig. 1, is zero, while for
relatively large aII it is finite. This shows that the loosely
bound polarons at large aII are spatially separated, and the
shape can be interpreted as a dumbbell.

Finally, in Fig. 7 the upper bound (31), the polaronic
effective mass (33), and the inverse bipolaron radius (23) are
presented as a function of the impurity-impurity scattering
length aII at α = 4 (region 3 in Fig. 3). The upper bound
(31) in the limit aII → ∞ is also indicated, which is lower
than the upper bound of the ground-state energy for two
separate polarons. This shows that the bipolaron is always
stable. Also, here we observe two regimes as a function of aII

with a transition at aII /ξ = 0.91 which is accompanied by a
discontinuity in the effective mass and the bipolaron radius,
indicating a transition between a tightly bound bipolaron and
a more loosely bound state of two polarons. Also, in this case
the variationally determined vector �a is zero for the tightly
bound bipolaron and nonzero for the loosely bound state of
two polarons, resulting in a dumbbell bipolaron.

IV. STRONG-COUPLING FORMALISM

We now apply a generalization of the Landau-Pekar strong-
coupling treatment for NI polaronic particles to impurities
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FIG. 7. (Color online) (a) The upper bound of the ground-state
energy, (b) the inverse of the bipolaron radius, and (c) the effective
mass are presented as a function of the impurity-impurity scattering
length aII at α = 4 (region 3 in Fig. 3) for two 6Li impurities in a Na
condensate. The dotted line at aII = 0.91ξ indicates a transition of
the internal state of the bipolaron (see text). The dashed line shows
the upper bound to the ground-state energy in the limit aII → ∞.

in a Bose-Einstein condensate to examine the formation of
multipolarons.

A. Formalism

For the description of the strong-coupling formalism the
product ansatz is used, which states that the total wave function
|�〉 is the product of a part that describes the Bogoliubov
excitations |φ〉 and a part for the impurities |�(NI )〉: |�〉 =
|φ〉|�(NI )〉. Taking the expectation value of the Fröhlich
Hamiltonian (5) with respect to |�〉 and completing the squares
for the Bogoliubov creation and annihilation operators result
in

〈�|Ĥ (NI )
pol |�〉 = K +

∑
�k �=0

h̄ω�k〈φ|
(

α̂
†
�k + V�kρI (�k)

h̄ω�k

)

×
(

α̂�k+
V ∗

�k ρ
†
I (�k)

h̄ω�k

)
|φ〉−

∑
�k �=0

|V�kρ̂I (�k)|2
h̄ω�k

+U,

(34)

where K is the kinetic energy, ρI (�k) is the Fourier transform
of the density, and U is the mutual interaction energy of the
impurities:

K = 〈�(NI )|
NI∑
i=1

p̂i
2

2mI

|�(NI )〉, (35)

ρI (�k) = 〈�(NI )|
NI∑
i=1

ei�k·�̂ri |�(NI )〉, (36)

U = 〈�(NI )|
NI∑
i<j

VII (�̂ri − �̂rj )|�(NI )〉. (37)

The expectation value of Hamiltonian (34) is minimal if the
wave function of the Bogoliubov excitations is chosen as the

vacuum
∣∣φg

〉
for the “displaced” operators:

〈φg|
(

α̂
†
�k + V�kρI (�k)

h̄ω�k

) (
α̂�k +

V ∗
�k ρ

†
I (�k)

h̄ω�k

)
|φg〉 = 0. (38)

This results in the following expression for the ground-state
energy:

E
(NI )
0 = K −

∑
�k �=0

|V�k|2|ρI (�k)|2
h̄ω�k

+ U. (39)

This result can alternatively be derived with a canonical
transformation, as done by Bogoliubov and Tyablikov for a
single polaron [50]. For the impurities we will use a variational
wave function; the resulting energy (39) is then an upper bound
for the ground-state energy.

1. Effective mass

The strong-coupling formalism allows a derivation of the
multipolaron effective mass in a similar way as was done for
a single polaron in Refs. [51–54] and for the bipolaron in

Ref. [55]. The total momentum of the polaronic system �̂P is
given by

�̂P = �̂P +
∑

�k
h̄�kα̂

†
�kα̂�k, (40)

with �̂P = ∑NI

i �̂pi . This operator commutes with the Fröhlich
Hamiltonian (5), and the total momentum is thus a constant

of motion: 〈 �̂P〉 = �P . We make this explicit by means of a
Lagrange multiplier �v which physically represents the velocity
of the system and consider the operator

Ĥ
(NI )
pol (�v) = Ĥ

(NI )
pol − �v ·

(
�̂P +

∑
�k

h̄�kα̂
†
�kα̂�k − �P

)
(41)

for minimization. The effective mass m∗ of the multipolaron
can then be determined from the relation �P = m∗�v. The
impurity variational wave function |�(NI )〉, with 〈 �̂P 〉 = 0,
has to be adapted to a wave function with finite averaged

momentum 〈 �̂P 〉 = NImI �v; we use

� ′(NI ) ({�ri}) = exp

[
imI �v · ∑ �ri

h̄

]
�(NI ) ({�ri}) . (42)

Taking the expectation value of Ĥ
(NI )
pol (�v) with respect to the

product wave function |φ〉|� ′(NI )〉 and introducing the wave
function |φg〉 for the Bogoliubov excitations, as in (38), result
in

E(NI )(�v) = K + U − NI

mIv
2

2
+ v · �P −

∑
�k �=0

|V�k|2|ρI (�k)|2
h̄ω�k − h̄�v · �k ,

(43)

with K , ρI (�k), and U as defined in (35), (36), and (37),
respectively. Minimizing expression (43) with respect to �v
and performing a Taylor expansion for small �v gives, for the
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effective mass,

m∗ = NImI + 2h̄2
∑
�k �=0

|V�k|2|ρI (�k)|2
(h̄ω�k)3

k2
z , (44)

with kz being the z component of �k.

2. Variational impurity wave function

For NI distinguishable particles we consider the following
normalized variational wave function:

�(NI ) ({�ri}) =
NI∏
i=1

1

(πλ2)3/4
exp

[
− (�ri − �ai)

2

2λ2

]
, (45)

which consists of NI Gaussians with standard deviation λ,
centered at �ai . For a single impurity in a condensate a numerical
calculation of the wave function revealed a good agreement
with a Gaussian wave function if the polaronic coupling is
strong enough [56]. The corresponding expectation values are

K = NI

3h̄2

4mIλ2
, (46)

U =
NI∑
i<j

∑
�k

VII (�k)e− k2λ2

2 +i�k·(�a1−�a2), (47)

ρI (�k) = exp

[
−k2λ2

4

] NI∑
i=1

ei�k·�ai . (48)

Wave function (45) can be extended to the case of identical
impurities by using a Slater determinant for fermions or the
appropriate symmetrized wave function for bosons.

3. Single-polaron limit

If all the impurities are infinitely separated, we expect the
multipolaron to reduce to individual polarons. For the impurity
wave function (45) this corresponds to the limit |�ai − �aj | →
∞ ∀ i �= j . The upper bound for the polaron ground-state
energy (39) becomes in this limit

lim
|�ai − �aj | → ∞

∀ i �= j

E
(NI )
0 = NI

(
3h̄2

4mIλ2
−

∑
�k �=0

|V�k|2
ε�k

e− k2λ2

2

)

= NIE
(1)
0 . (49)

This equals NI times the strong-coupling result for the upper
bound for the ground-state energy of a single polaron E

(1)
0 , as

expected. The effective mass of the multipolaron (44) becomes
in this limit

lim
|�ai − �aj | → ∞

∀ i �= j

m∗ = NI

⎛
⎝mI + 2h̄2

∑
�k �=0

|V�k|2
(h̄ω�k)3

e− k2λ2

2 k2
z

⎞
⎠

= NIm
∗
pol. (50)

This is NI times the strong-coupling result for the effective
mass of a single polaron m∗

pol, again as expected.

4. Impurities in a Bose-Einstein condensate

We now consider the specific polaronic system consisting of
impurities in a BEC. Introducing the Bogoliubov dispersion

(6), the interaction amplitude (7), and the variational wave
function (45) for NI distinguishable impurities in the upper
bound for the ground-state energy (39) gives, in polaronic
units (h̄ = mI = ξ = 1),

E
(NI )
0 = 3NI

4λ2
+ 2aII

(2π )1/2 λ3

NI∑
i<j

exp

[
− (�ai − �aj )2

2λ2

]

− 2αμ

π

∫ ∞

0
dk k2 exp

[ − k2λ2

2

]
k2 + 2

NI∑
i,j

sin[k|�ai − �aj |]
k|�ai − �aj | ,

(51)

where a contact pseudopotential with the first-order
Lippmann-Schwinger result was used for the impurity-
impurity interaction. We also introduced expression (32) for
the dimensionless polaronic coupling parameter α and the
dimensionless mass factor,

μ = (mB + mI )2

4mBmI

. (52)

In the strong-coupling regime the mass parameter mB/mI and
the coupling parameter α combine to a single dimensionless
coupling parameter αμ. The effective mass of NI impurities
in a BEC in polaronic units can be written as

m∗ = NImI + 4αμm2
B

π2

∫
d�k |ρI (�k)|2

(2 + k2)2

k2
z

k2
. (53)

B. Results

1. Bipolaron

First, we examine two impurities in a Bose-Einstein
condensate (NI = 2) and the formation of a bipolaron. The
bipolaron radius, estimated by the mean-square distance
between the impurities (23), gives, for the impurity variational
wave function (45),

R =
√

〈(�r1 − �r2)2〉 =
√

a2 + 3λ2, (54)

with a = |�a1 − �a2|.
In Fig. 8 the (aII ,αμ)-phase diagram of two distinguishable

impurity atoms in a BEC is presented, and the different regions
as a function of α are also indicated. With each aII a value
(αμ)exist is associated in such a way that for αμ < (αμ)exist
the minimization of the right-hand side of expression (51)
yields no solution at a finite value of λ. If αμ > (αμ)exist,
another value (αμ)stable can be determined, separating a region
with a metastable bipolaron (positive ground-state energy)
for αμ < (αμ)stable from a region with a stable bipolaron
(negative ground-state energy) for αμ > (αμ)stable. In the case
of a metastable bipolaron the impurities are expected to be
expelled from the condensate. However, since the formalism
is only expected to be valid at strong coupling, the physical
relevance of the metastable bipolaron is not obvious. In the
limit aII → ∞ the strong-coupling results for a single polaron
are retrieved: (αμ)exist = 3.57 and (αμ)stable = 3.84 [54]. For
αμ > 3.84 (region 3) the formation of the bipolaron is always
energetically favorable compared to the formation of two
separate polarons, irrespective of aII . For αμ ∈ [3.39,3.84]
(region 2) a stable solution only exists if aII is smaller than
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FIG. 8. (Color online) The solid lines show the (aII ,αμ)-phase
diagram for two distinguishable impurity atoms in a Bose-Einstein
condensate with αμ being the coupling parameter and aII being the
impurity-impurity scattering length as calculated with the strong-
coupling formalism. At strong coupling the bipolaron is stable, and at
sufficiently weak coupling there is no solution. In between there
is a region where the solution results in a positive ground-state
energy, which means the bipolaron is metastable. The dotted lines
at αμ = 1.92, αμ = 3.39, and αμ = 3.84 indicate the boundaries of
the different regions, as discussed in the text.

a critical value, which is relatively large and increases rapidly
as a function of αμ. For αμ ∈ [1.92,3.39] (region 1) a stable
bipolaron also only exists for aII smaller than a critical value,
but now this critical value is relatively low and increases
much more slowly as a function of αμ, compared to the
behavior in region 2. At weaker coupling there is never a stable
solution. Considering the stable solution, the variationally
determined vector �a1 − �a2, which represents the separation
between the two Gaussians in wave function (45), is always
zero if αμ < 3.39; for αμ > 3.39 it is finite at sufficiently
large values of aII , resulting in a dumbbell bipolaron.

In Fig. 9 the upper bound for the ground-state energy (51),
the inverse bipolaron radius (54), and the effective mass (53)
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FIG. 9. (Color online) (a) The upper bound for the ground-state
energy, (b) the inverse bipolaron radius, and (c) the effective mass as
a function of the impurity-impurity scattering length aII at αμ = 4
for two distinguishable impurities in a Bose-Einstein condensate. The
upper bound for the ground-state energy of two polarons E2 pol is also
indicated.

are presented as a function of the impurity-impurity scattering
length aII for two distinguishable impurities in a BEC at αμ =
4. The upper bound for the ground-state energy of a single
polaron is also indicated, which shows that the formation of a
bipolaron is energetically favorable for all finite values of aII .
From Fig. 9 we see that for increasing aII the bipolaron binding
energy decreases, the radius increases, and the effective
mass decreases, showing that the bipolaron becomes less
tightly bound. In the limit aII → ∞ the bipolaron effective
mass becomes twice the effective mass of a single polaron.
Considering the aII dependence of the properties reveals two
regimes with a transition at aII /ξ = 0.85. For aII /ξ < 0.85
there is a relatively strong dependence of the properties on
aII compared to the behavior for aII /ξ > 0.85. Furthermore,
the variationally determined vector �a1 − �a2, representing the
distance between the two centers of the Gaussians in wave
function (45), is only nonzero for aII /ξ > 0.85. This is
consistent with our earlier interpretations in that for aII /ξ <

0.85 the bipolaron is tightly bound, while for aII /ξ > 0.85 it
is a more loosely bound dumbbell bipolaron.

A similar analysis can be made for identical impurities
by antisymmetrizing wave function (45) for fermions or
symmetrizing it for bosons. In the case of two identical bosons
the same qualitative results are retrieved as for distinguishable
impurities. For identical fermions the symmetry of the wave
function results in a vanishing expectation value of the s-wave
contact pseudopotential (47), which implies that at ultralow
temperatures identical fermions behave as noninteracting
particles. The only remaining parameter is the coupling
parameter αμ, and we find (αμ)exist = 3.09 as a minimum
for a solution to exist and (αμ)stable = 3.31 as a minimum to
find a stable solution. Furthermore, if a solution exists, it is
always energetically favorable to form a bipolaron compared
to two separate polarons.

2. Multipolaron

We now examine the multipolaron by minimizing the upper
bound for the ground-state energy (51) for NI = 1,2, . . . ,8
distinguishable impurities. In Ref. [30] a similar procedure
was presented, but the expectation values of the positions of
the impurities were considered to be equal, which corresponds
to the variational wave function (45) with �ai = �aj ∀ i �= j .

In Fig. 10 (a) the resulting phase diagram is presented for
NI = 1,2, . . . ,8 distinguishable impurities in a Bose-Einstein
condensate as a function of the polaronic coupling αμ and
the impurity-impurity scattering length aII . Similar to before
for the bipolaron for each aII a minimum coupling value
(αμ)exist is needed for a solution of the minimization of (51)
to exist at finite λ, and another minimum value (αμ)stable
[(αμ)stable > (αμ)exist] is necessary to find a stable solution.
In the limit aII → ∞ the one-polaron strong-coupling results
are found for any number of impurities: (αμ)exist = 3.57 and
(αμ)stable = 3.84. In Fig. 10(a) only (αμ)stable is presented for
clarity. This shows that if the number of impurities NI is
increased, (αμ)stable decreases, resulting in a larger stability
region. This behavior of a smaller critical coupling value for
the formation of a larger multipolaron was also observed in
Ref. [30].
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FIG. 10. (Color online) In (a) the (aII ,αμ)-phase diagram for NI

distinguishable impurities in a Bose-Einstein condensate with respect
to the formation of a stable multipolaron is presented, with αμ being
the coupling parameter and aII being the impurity-impurity scattering
length. In (b) the upper bound for the multipolaron ground-state
energy per impurity is presented as a function of the impurity-impurity
scattering length aII for distinguishable impurities at αμ = 4.

The (aII ,αμ)-phase diagram in Fig. 10(a) for a specific
number NI of impurities is qualitatively the same as for the
bipolaron in Fig. 8. This means the same qualitative regions
can be distinguished as a function of αμ as we did for
the bipolaron in Fig. 8, and we present a general analysis,
valid for every value of NI . In region 3 the formation of the
multipolaron is always energetically favored compared to NI

separate polarons. Furthermore, the variationally determined
locations of the impurities �ai coincide at sufficiently small aII ,
indicating a tightly bound multipolaron, while at sufficiently
large aII we find �ai �= �aj ∀ i �= j , indicating a bound droplet
of NI separate polarons (similar to the dumbbell bipolaron).
In region 2 the minimization of the right-hand side of (51)
yields no stable solution if aII is larger than a critical value,
which is relatively large and increases rapidly as a function of
αμ. In region 1 there is also no stable solution for aII above a
critical value, which is now relatively low and increases slowly
as a function of αμ. In this regime the behavior of the critical
aII as a function of αμ resembles a straight line, and it was
shown in Ref. [30] that in the limit NI → ∞ this line is well
approximated by the boundary for phase separation [57–60]:

aII

ξ
= αμ. (55)

At small αμ there is never a solution.
In Fig. 10(b) the upper bound for the multipolaron ground-

state energy per impurity is presented as a function of
the impurity-impurity scattering length aII at αμ = 4. For
aII → ∞ all curves tend to the single-polaron result. At finite
aII the ground-state energy per particle decreases as NI is

increased, showing that it is energetically favorable for the
impurities to cluster and form a multipolaron.

For the positive impurity-boson scattering length there is a
depletion of the condensate in the vicinity of the multipolaron.
This can be detrimental for the polaronic description since the
Bogoliubov approximation breaks down at large depletion.
This restriction is only important for the tightly bound
multipolaron at small aII . In the case of a loosely bound
droplet of separate polarons at sufficiently large aII the
mean distance between the impurities is of the order of the
healing length, which shows that the depletion is spread out
over a large volume and the Bogoliubov approximation is
not jeopardized. For the tightly bound multipolaron, on the
other hand, these considerations result in a critical number of
impurities above which the system cannot be described by the
Fröhlich Hamiltonian. It was shown in Ref. [30] that for typical
experimental parameters only tightly bound multipolarons
with a few impurities are possible.

V. COMPARISON OF THE BIPOLARON RESULTS
FROM THE TWO FORMALISMS

The results of the strong-coupling formalism of Sec. IV A,
applied to the specific system of two distinguishable 6Li
impurities in a Na condensate (mB/mI = 3.82 and μ = 1.52),
can be compared with the results of the path-integral treatment
of Sec. III. The phase diagrams in Figs. 3 and 8 exhibit a similar
qualitative behavior, and we can compare the three regions
denoted in the figures separately. Both formalisms predict that
there is no formation of a bipolaron if the polaronic coupling
is too weak, and at slightly stronger coupling (region 1) the
bipolaron is only formed at relatively small aII . In region 2 the
all-coupling approach predicts the bipolaron is always formed,
while according to the strong-coupling approach there is no
bipolaron formation at very high values of aII . In region 3 both
formalisms agree on the prediction that the bipolaron is always
formed, irrespective of aII . Quantitatively, the strong-coupling
formalism underestimates the critical coupling parameter for
bipolaron formation, compared to the all-coupling approach.
Note that the strong-coupling approach also underestimates the
critical coupling value for the transition to the strong-coupling
regime, compared to a numerical study [56].

Considering the aII dependence of the properties, both
formalisms reveal two distinct regimes. The behavior at
relatively small aII corresponds to a tightly bound bipolaron
that behaves as a single particle, while at relatively large aII

it is better interpreted as a loosely bound dumbbell bipolaron.
The all-coupling approach predicts a possible discontinuity in
the polaronic properties at this transition which diminishes
as the coupling is increased and ultimately, well in the
strong-coupling regime, vanishes, as also predicted by the
strong-coupling treatment.

VI. CONCLUSIONS

The Feynman all-coupling polaron treatment was applied
for two distinguishable impurities in a condensate. This
showed that if the polaronic coupling is strong enough,
a bipolaron is formed. We also calculated the bipolaron
effective mass and the bipolaron radius. Considering the
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dependence of the polaronic properties on the impurity-
impurity scattering length, aII results in the distinction of
two regimes as a function of aII , a tightly bound bipolaron
that behaves as a single particle at relatively small aII and
a more loosely bound dumbbell bipolaron at sufficiently
large aII . If the coupling is sufficiently strong or weak, this
transition is found to be accompanied by a discontinuity in the
properties of the bipolaron, which becomes less pronounced
as the coupling is increased towards the strong-coupling
regime.

We also applied a strong-coupling treatment to impuri-
ties in a Bose-Einstein condensate. For two distinguishable
impurities in a BEC this leads to similar results, as found
by the all-coupling treatment. This strong-coupling treatment
was then extended for identical impurities. For identical
bosons this results in the same qualitative results as for
distinguishable impurities. For identical fermions the mutual
s-wave interaction vanishes, and above a critical coupling

strength the formation of a bipolaron is always energetically
favored compared to two separate polarons.

The strong-coupling treatment was then applied for more
impurities in a BEC to consider the formation of multipolarons.
We find that the multipolaron becomes stable at weaker cou-
pling as the number of impurities is increased. Furthermore, the
ground-state energy per particle decreases as NI is increased,
which shows that clustering is energetically favorable in the
strong-coupling regime.

Since both formalisms are variational and depend on the
choice of a model system, there is no guarantee that they
describe the actual system. However, the extension of the all-
coupling Feynman approach for the bipolaron not only uses
the model system to describe the system but also incorporates
corrections and is expected to be more accurate compared to
the usual variational principle. Furthermore, the agreement
between the two formalisms at strong coupling indicates that
the physics of the system is captured by the models.
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