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Nonlinear modes in binary bosonic condensates with pseudo–spin-orbital coupling
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We consider an effectively one-dimensional binary Bose-Einstein condensate (BEC) with nonlinear repulsive
interactions and linear spin-orbit (SO) and Zeeman-splitting couplings. In the presence of the trapping harmonic-
oscillator (HO) potential, we report the existence of even, odd, and asymmetric spatial modes. They feature
alternating domains with opposite directions of the pseudospin, i.e., antiferromagnetic structures, which is
explained by the interplay of the linear couplings, HO confinement, and repulsive self-interaction. The number
of the domains is determined by the strength of the SO coupling. The modes are constructed analytically in the
weakly nonlinear system. The dynamical stability of the modes is investigated by means of the Bogoliubov–de
Gennes equations and direct simulations. A notable result is that the multi-domain-wall (DW) structures are
stable, alternating between odd and even shapes, while the simplest single-DW structure is unstable. Thus, the
system features a transition to the complex ground states under the action of the SO coupling. The addition of
the Zeeman splitting transforms the odd modes into asymmetric ones via spontaneous symmetry breaking. The
results suggest possibilities for switching the binary system between states with opposite (pseudo)magnetization
by external fields, and realization of similar stable states and dynamical effects in solid-state and nonlinear-optical
settings emulated by the SO-coupled BECs.
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I. INTRODUCTION

An important application of Bose-Einstein condensates
(BECs) is their use for emulating a variety of fundamental
effects originating in the realm of condensed-matter physics,
in a form which is much easier to handle in atomic gases [1].
In particular, much attention was recently attracted by the
implementation of linear couplings between two components
of a binary BEC, which emulate the spin-orbit (SO) interac-
tions in solid-state settings, with the respective spinor order
parameter mapped into the two-component wave functions of
mixtures of different states of the same atomic species [2].
Besides the fundamental interest concerning the dynamics of
spinor BECs, the system represents a testbed for the study of
artificial gauge fields, which is another topic of rapidly growing
interest [3]. To a great extent, the possibility of emulating
condensed-matter effects in ultracold gases was brought to the
focus of the current research by experiments [4] demonstrating
the action of Abelian and non-Abelian synthetic gauge fields
in BECs [5].

In addition to simulating condensed-matter phenomena, the
studies of SO-coupled BECs reveal new matter-wave effects,
produced by the interplay of the SO coupling and the mean-
field nonlinearity induced by atomic collisions. Such effects
include sophisticated vortical [6] and monopole [7] structures,
multidomain patterns [8] and patterns produced by long-range
interactions [9], tricritical points [10], skyrmions [11], solitons
[12,13], interaction with optical lattices [14], etc. Note that the
system of coupled Gross-Pitaevskii equations (GPEs) derived
in Ref. [12] is tantamount to that describing the copropagation
of two polarizations of light in twisted nonlinear optical fibers
[15]; hence, an additional link between completely different
physical settings is the possibility to emulate birefringent
optical fibers by the SO-coupled condensates, and vice versa.

Furthermore, a recent report on the optical implementation of
a model simulating massive Dirac fermions [16] indicates the
further relevance of the results reported below to nonlinear
guided-wave optics.

The variety of expected effects in SO-coupled BECs may
be greatly enriched when three (or more) atomic levels are
employed to define relevant components and interactions
between them [3]. In particular, tripod atomic schemes
give rise to coupled GPEs featuring various nonlinear terms
which do not amount to the usual self-phase and cross-phase
modulation [17]. Such systems open possibilities for nonlinear
control of SO-coupled BECs by means of resonant laser
illumination.

While spinor BECs typically give rise to two phases with
opposite polarizations of pseudospins, and to mixtures of such
phases [2,8,10], not every form of the SO coupling results in
energy splitting between the phases. For such a situation, the
role of the nonlinearity is crucially important, as it lifts the
degeneracy and induces the phase separation (cf. Ref. [18]).

In this work we study nonlinear modes originating from
degenerate linear eigenstates in the SO-coupled binary BEC
loaded into a harmonic-oscillator (HO) trap, finding a full set
of such nonlinear states. We produce basic spatial patterns
which exist in the case when the Rashba [19] and Dresselhaus
[20] couplings have equal strengths. The patterns are built
of alternating domains with opposite directions of the pseu-
dospin, with each state characterized by zero or nonzero total
(pseudo)magnetization. The number of domains is determined
by the strength of the SO coupling. The most essential new
results concern the stability of the competing states, which is
determined by the total magnetization. In contrast to previously
studied settings, we demonstrate that the multi-domain-wall
(DW) patterns may be stable while the single DW is not; hence,
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the system’s ground state shifts to the complex patterns. We
also report a possibility of the dynamical switching between
different stable patterns.

II. THE MODEL

We consider the two-component effectively
one-dimensional (1D) BEC described by spinor
� = col{ψ1,ψ2}, whose components ψ1 and ψ2 represent
pseudospin components |↑〉 and |↓〉. The dynamics of the
system is governed by the Hamiltonian H = H0 + Hint, where,
in scaled units, H0 = ∫ +∞

−∞ �†H�dx, H = (1/2)(−∂2
x +

x2 + �σ3) + iκσ1∂x , with Pauli matrices σ3,1, and x2/2 is the
axial trapping potential [21]. Zeeman splitting � is induced
via a constant magnetic field acting along the z axis, while the
SO coupling, accounted for by coefficient κ , results from a
combined effect of the Rashba and Dresselhaus couplings and
is determined by intensities and wavelengths of laser beams
which couple the relevant atomic levels. The interaction terms
for the underlying energy-level scheme are represented by

Hint =
∫ +∞

−∞
[(g1/2)(|ψ1|4 + |ψ2|4) + g|ψ1|2|ψ2|2]dx

[17]. The derivation of the 1D model from the full
three-dimensional (3D) one follows the scenario of
introducing a tight HO potential of the transverse confinement
and factorizing the wave functions into the ground state of
that potential and a free longitudinal wave function, which has
been elaborated in detail [22]. The structure of the SO-coupled
system does not imply any problem in implementing this
scenario, provided that it leads to the usual cubic nonlinearity.
The situation may be different for relatively dense BECs,
when the resulting 1D model features deviations from the
cubic interactions (for the binary condensate without the SO
coupling this situation was elaborated in Ref. [23]), which
may be a subject for separate analysis [24].

The 1D Hamiltonian gives rise to coupled GPEs,

i∂tψj = −1

2
∂2
xψj + x2

2
ψj + iκ∂xψ3−j − (−1)j

�

2
ψj

+ (g1|ψj |2 + g|ψ3−j |2)ψj , j = 1,2, (1)

which conserve the total number of atoms, N = N1 + N2,
with N1,2 = ∫ +∞

−∞
∣∣ψ1,2

∣∣2
dx. Below we consider the generic

situation (g �= g1) and keep N as a free parameter, fixing
positive coefficients g1 and g, which account for the intra-
and interspecies repulsive interactions, respectively. Stationary
modes of Eqs. (1) with chemical potential μ correspond to
�(x,t) = e−iμt�(x), where spinor � = col{φ1,φ2} obeys the
system

μφj = −1

2
φ′′

j + x2

2
φj + iκφ′

3−j − (−1)j
�

2
φj

+ (g1|φj |2 + g|φ3−j |2)φj , (2)

with φ′
j ≡ dφj/dx. In the free space (no trapping potential)

and in the absence of the linear coupling, the commonly known
condition for the immiscibility of the binary condensate is g >

g1 > 0 [25,26]. The trapping potential and Zeeman splitting
shift the transition to the miscibility from g = g1 to larger
values of g [27]. Note that, unlike the equations considered in

Ref. [12], model (1) is specific to the SO-coupled system, as
it did not occur previously in fiber optics. In principle, there
is a chance to implement this system in nonlinear optics too,
but in a different context, using settings such as the recently
reported Dirac model [16], which is obtained from Eq. (2) by
neglecting the kinetic-energy terms.

III. ZERO ZEEMAN SPLITTING

At � = 0, Eqs. (1) give rise to an evident solution, ψ1 =
ψ2 = exp(iκx + iκ2t/2)χ (x,t), with function χ obeying the
standard GPE: i∂tχ = [−(1/2)∂2

x + x2/2 + (g1 + g)|χ |2]χ .
Below, we refer to this solution, characterized by nonzero
superfluid velocity, as a current state. At the same time, the
symmetry of system (2) with � = 0 admits solutions of two
other types: an odd mode, with φ2(x) ≡ iφ1(−x), where φ1(x)
and φ2(x) are purely real and imaginary functions, respectively,
and an even mode, with φ1(x) and φ2(x) having opposite
parities, e.g., φ1(x) is even and real, while φ2(x) is odd and
imaginary; see examples in Fig. 1. Odd and even modes cor-
respond to symmetric and antisymmetric distributions of the
pseudomagnetization density, M = (|φ1(x)|2 − |φ2(x)|2)/N ,
whose integral M = ∫ +∞

−∞ Mdx = (N1 − N2)/N defines the
total magnetization.

Possible types of nonlinear modes, which constitute one-
parameter families of solutions, can be identified by the
analysis of bifurcations of the families from the linear limit,
N → 0 (or, alternatively, g1 = g = 0), which leads to the
eigenvalue problem, H�̃ = μ̃�̃ (hereafter, the tilde stands
for the linear limit). It is easy to see that the spectrum of this
separable system is double degenerate: μ̃n = n + (1 − κ2)/2,
n = 0,1,2, . . .. Eigenvectors, �̃n ≡ col{φ̃1,n,φ̃2,n}, can be cho-
sen as arbitrary superpositions of two mutually orthogonal
(〈�̃n,+,�̃n,−〉 = 0 [28]) spinors: �̃n = C+�̃n,+ + C−�̃n,−,

FIG. 1. (Color online) Generic examples of nonlinear modes
bifurcating from the lowest linear eigenstate with n = 0. Left [right]
panels display odd modes for N = 8 [even modes with even φ1(x)
and odd φ2(x) for N = 18]. Top [bottom] row corresponds to κ = 0.1
[κ = 3]. Modes (b)–(d) are stable, while mode (a) is unstable. Other
parameters are g1 = g/2 = 1, � = 0. Different vertical scales for
φ1(x) and φ2(x) in (b) indicate that |φ1(x)| � |φ2(x)|.
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where �̃n,± = e±iκxe−x2/2Hn(x)col{1, ± 1}, and Hn(x) is the
Hermite polynomial.

However, an arbitrary set of constants C± in �̃n does
not correspond to nonlinear eigenmodes. To determine the
respective constraints, which implies lifting the degeneracy
by the repulsive nonlinearity, we introduce expansions μ =
μ̃n + ε2μ(2)

n + · · · and � = ε�̃n + ε3�(3)
n + · · · , which sat-

isfy Eqs. (2) with � = 0 at the leading order with respect to ε,
which characterizes the strength of the nonlinearity. At order
ε3, one has (H − μ̃n)�(3)

n = −Fn + μ(2)
n �̃n, with

Fn =
(

(g1|φ̃1,n|2 + g|φ̃2,n|2)φ̃1,n

(g1|φ̃2,n|2 + g|φ̃1,n|2)φ̃2,n

)
. (3)

The solvability condition for �(3)
n results in two equations,

μ(2)
n 〈�̃n,±,�̃n〉 = 〈�̃n,±,Fn〉, where constant C± are the un-

knowns. Focusing on the lowest linear eigenstate (the one
which corresponds to n = 0), it is straightforward to find
solutions of the latter equations. One solution has C− = 0 and
C+ �= 0, the respective linear mode being φ̃1,n(x) = φ̃2,n(x).
In the nonlinear regime, it keeps the same structure, φ1(x) ≡
φ2(x), representing the current state, as defined above. Another
solution has C+ = ±iC−. In the linear limit, the associated
eigenmode is

�̃0 = e−x2/2 col {cos(π/4 + κx),i cos(π/4 − κx)} ,

which extends into the abovementioned odd nonlinear mode,
with φ2(x) ≡ iφ1(−x). Finally, the third solution, with C+ =
±C− and

�̃0 = e−x2/2 col {cos(κx),i sin(κx)} ,

represents even modes in the nonlinear regime. Importantly,
no other solutions exists in the weakly nonlinear system.

Thus, we have identified three families of nonlinear modes
bifurcating from the lowest eigenstate n = 0. Numerically
found examples of the nonlinear modes from these families
are shown in Fig. 1. While, as said above, one should expect
the immiscibility due to the repulsive interactions, most modes
feature the striped antiferromagnetic structure, represented by
alternating domains of states |↑〉 and |↓〉, rather than two large
domains separated by a single DW, which is the case in the
conventional binary BEC [27,29]. It is seen that the number
of the domains increases with the SO-coupling strength, the
single DW being present only in Fig. 1(a). This patterning
is precisely explained by the spatially periodic factors in the
above analytical solutions. In qualitative terms, the interplay
of the HO trap with the SO coupling gives rise to scale
l ∼ 1/κ that determines the periodicity of the striped patterns
in Fig. 1 (the analytical solutions yield l = π/κ). It is relevant
to mention that multidomain patterns were also reported in
Ref. [30] in the spinor (three-component) BEC under the action
of an external magnetic field (without the SO coupling). An
essential difference of our system is that the transition between
different numbers of domains is controlled by the intrinsic
strength of the SO coupling, rather than by an additionally
introduced magnetic field. For the SO-coupled system with
spin 2, two-dimensional multidomain patterns were reported
in Ref. [31], but the stability of those patterns (which is the
main subject of the present analysis) was not studied.

FIG. 2. (Color online) Examples of stable nonlinear modes
bifurcating from the first excited (n = 1) linear eigenstate (rather
than from the ground state with n = 0; cf. Fig. 1). (a) Odd and
(b) even modes for g1 = g/2 = 1 and � = 0.

A similar analysis has been performed for higher-order
nonlinear modes, i.e., for ones stemming from excited states
of the linear system (n � 1, see above). They also feature the
multi-DW structure of the odd and even types, with the number
of domains increasing with the strength of the SO coupling;
see the examples displayed in Fig. 2.

In view of the coexistence of many multi-DW patterns, their
stability is a crucial issue. Here we mean the experimentally
relevant dynamical stability, determined by the Bogoliubov–de
Gennes (BdG) equations derived from Eqs. (1), rather than the
thermodynamic stability. The spectrum of the BdG equations
was found by means of standard methods for the solution of the
corresponding eigenvalue problem [26], and the results were
verified by direct simulations of the perturbed evolution of the
modes. A surprising conclusion is that the simplest pattern
with the single DW, shown in Fig. 1(a), is unstable, contrary
to the situation in the ordinary binary BEC [27,29], while the
multi-DW patterns, displayed in Figs. 1(b)–1(d), are stable.
This finding may be explained by the fact that stable structures
are those which comply with the abovementioned spatial scale
l naturally selected by the system. In direct simulations of the
perturbed evolution (see Fig. 3), the unstable single-DW state
spontaneously develops strong oscillations, in agreement with
the oscillatory instability predicted by the BdG analysis. The
resulting formation of robust dynamical modes in the form of
breathers is a physically relevant result too.

Furthermore, we have found that higher-order nonlinear
modes, with the number of domains increasing with strength
of the SO coupling, which bifurcate from the excited linear

FIG. 3. (Color online) The evolution of the unstable nonlinear
mode shown in Fig. 1(a). Under the action of the instability, the mode
spontaneously transforms into a persistent oscillatory state.
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FIG. 4. Stability domains (shaded) for (a) odd and (b) even
nonlinear modes bifurcating from the lowest linear eigenstate, with
n = 0, in the system with the SO coupling in the absence of the
Zeeman splitting. The overlap integral, K , vs the total norm, N , for
(c) odd and (d) even modes. Curves labeled K0.1,1,3 correspond to
κ = 0.1, 1, and 3, respectively. The dashed curve in (d) shows the
total magnetic moment, M , as a function of N for κ = 1. For κ = 0.1
and κ = 3, M does not vary significantly with N . Other parameters
are g1 = g/2 = 1, � = 0.

states, with μ = μ̃1,2,... (see above), may also be stable in the
nonlinear system; see examples of stable higher-order modes
in Fig. 2.

The full stability chart for the odd and even nonlinear modes
originating from μ = μ̃0 is fairly complex, as shown in Fig. 4.
For sufficiently small values of κ and in the linear limit N → 0,
only the even modes are stable. This is readily explained by
the fact that, at small κ , the system admits an obvious even
configuration with almost all atoms falling into a single state;
see Fig. 1(b). For larger κ , the stability diagram features
a zebra-like structure, with alternating stability regions of
the even and odd modes (while the aforementioned current
states are completely unstable; cf. Ref. [32]). The stability
areas for the odd and even modes approximately (but not
precisely) complement each other, which is a consequence
of the competition between coexisting nonlinear modes.

These stability results are the most essential findings
reported in this work, as they demonstrate the previously
unreported transition to complex ground states in the system,
under the action of the SO coupling. In fact, this transition
may be expected in diverse systems beyond the model of the
linearly coupled binary BEC.

The stable patterns are naturally characterized by the total
pseudomagnetization M (M = ±1 means that the condensate
is in a single-domain state), and by the miscibility factor,

K ≡ 4
∫ +∞

−∞
|φ1|2|φ2|2dx

/∫ +∞

−∞
(|φ1|2 + |φ2|2)2dx , (4)

which takes values 0 � K � 1, with K = 0 and K = 1
corresponding, respectively, to the completely immiscible or
miscible state. Note that the immiscibility, K → 0, may be
achieved not only if the phases are spatially separated, but
also if one phase tends to disappear, and the condensate falls
into a single-domain state, as in the case of the even mode in
Fig. 1(b). In the linear limit N → 0, one has M̃ = e−κ2

for
the even eigenstates, and M̃ ≡ 0 for the current and odd ones,
while K̃ = (1 ∓ e−2κ2

)/2 for the odd (−) and even (+) states.
Figure 4(c) shows that the nonlinearity enhances the

immiscibility of the odd modes, although the effect may be sig-
nificantly reduced by the coupling, as curve K3 demonstrates.
The effect of the interplay between the nonlinearity and SO
coupling is more sophisticated for even modes; see Fig. 4(d).
When the SO coupling is sufficiently weak (curve K0.1) or
strong (curve K3), the nonlinear modes preserve properties
of their linear counterparts: at κ = 0.1 the mode is nearly
fully polarized (M0.1 ≈ 1, K0.1 � 1), while the mode with
κ = 3 (M3 � 1, K3 ≈ 0.5) represents a partially miscible
state, where both components are equally represented, with
M close to zero.

The most interesting behavior is observed at intermediate
values of the SO coupling, which corresponds to κ = 1 in
Fig. 4(d). In this case, by changing norm N one draws the
condensate into the immiscible state (curve K1) and, at the
same time, changes M between zero and its extreme value
of +1. Bearing in mind that the BEC nonlinearity may be
controlled via the Feshbach resonance [26], the observed
behavior suggests a possibility of switching between the
different phases with the help of external fields.

IV. SYMMETRY BREAKING DUE TO
THE ZEEMAN SPLITTING

In the linear limit N → 0, the Zeeman splitting [� �= 0
in Eqs. (1)] removes the energy degeneracy. Now, the system
does not admit current states and odd modes, while stable even
modes, characterized by even φ1(x) and odd φ2(x) (or vice
versa), persist at � �= 0. The evolution of the eigenstates under
the action of the increasing Zeeman splitting, �, is illustrated

FIG. 5. (Color online) The bifurcation diagram (left) for κ = 1
and N = 5, in the presence of the Zeeman splitting, �, with the other
parameters as in Fig. 4. Stable (unstable) modes correspond to solid
(broken) fragments of the curves. Panels (a) and (b) show profiles of
stable modes marked by points Pa,b.
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FIG. 6. (Color online) The evolution of a nonlinear mode sub-
jected to an adiabatic change of �. (a) Input and output spatial
profiles. (b, c) Intensity plots. The input at t = 0 is a stable odd
mode at � = 0, with the other parameters as in Fig. 5. In the course
of the simulation, � was adiabatically changed from � = 0 at t = 0
to � = −0.25 at t = 103. As a result, the condensate switches from
the initial odd mode to an even one, as predicted by the diagram in
Fig. 5.

by the bifurcation diagram in the plane of (M,�), shown in
Fig. 5. Starting with the point where an odd (even) mode is
stable (unstable) at � = 0, we observe a transformation of the
stable odd mode into stable asymmetric ones [see an example
in Fig. 5(a)], whose branch approaches the branches of
the even modes. The instability of the even modes per-
sists up to the point where the branches of even and
asymmetric modes merge (points P1,2). At these points,
the asymmetric modes disappear and the symmetric even
ones become stable [an example is shown in Fig. 5(b)].
Thus, a pitchfork bifurcation occurs at points P1,2, which
is a typical example of the spontaneous symmetry breaking
(or restoration) [33].

The bifurcation diagram in Fig. 5 suggests that, by varying
the Zeeman field which induces the Zeeman splitting, one can
perform a controllable switch between two opposite magne-
tizations in the SO-coupled binary system. This suggestion is
confirmed by simulations, as shown in Fig. 6.

V. CONCLUSION

We have reported the existence of even, odd, and asymmet-
ric nonlinear modes in the effectively 1D self-repulsive binary
BEC with the SO and Zeeman splitting, confined by the axial
HO potential. The interplay between the coupling and the
potential gives rise to the modes featuring alternating domains
with opposite directions of the pseudospin, which is explained
analytically in the case of the weak nonlinearity. Noteworthy
findings are the stability of the multi-DW patterns, while the
one with the single DW is unstable, and the stability alternation
between the even and odd structures. The implication of these
results is the transition from simple to complex ground states,
driven by the SO coupling. The inclusion of the Zeeman
splitting results in the transformation of even modes into
asymmetric ones, which suggests a possibility of controllable
switching between states with opposite pseudomagnetization.
These effects, including the transition to the complex ground
states, may be as well expected in other physical settings
emulated by the SO-coupled binary condensates, such as solid-
state media and bimodal guided-wave propagation in optics.

ACKNOWLEDGMENTS

V.V.K. and D.A.Z. acknowledge support of the FCT
(Portugal) Grants No. PEst-OE/FIS/UI0618/2011 and No.
SFRH/BPD/64835/2009. The work of R.D. and B.A.M. was
supported in a part by the Binational (US-Israel) Science
Foundation through Grant No. 2010239.

[1] P. Hauke, F. M. Cucchietti, L. Tagliacozzo, I. Deutsch, and
M. Lewenstein, Rep. Prog. Phys. 75, 082401 (2012).
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Phys. 83, 1523 (2011).

[4] Y.-J. Lin, R. L. Compton, A. R. Perry, W. D. Phillips, J. V. Porto,
and I. B. Spielman, Phys. Rev. Lett. 102, 130401 (2009); Y.-J.
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