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Exploring exchange mechanisms with a cold-atom gas
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Fermionic atoms trapped in a double-well potential are an ideal setting to study fundamental exchange
mechanisms. We use exact diagonalization and complementary analytic calculations to demonstrate that two
trapped fermions deliver a minimal model of the direct-exchange mechanism. This is an ideal quantum simulator
of the Heisenberg antiferromagnet, exposes the competition between covalent and ionic bonding, and can
create, manipulate, and detect quantum entanglement. Three trapped atoms form a faithful simulator of the
double-exchange mechanism that is the fundamental building block behind many Heisenberg ferromagnets.
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Recent experimental advances allow investigators to con-
fine up to ten atoms in a trap and address their quantum
state [1,2]. This innovation enables the Heidelberg group to
isolate two distinguishable fermions in a one-dimensional well
and tune the interaction strength to induce fermionization [3],
presenting a unique opportunity to study the fundamental
physics of short-range repulsion [4–11]. This could allow
experimentalists to realize an analog to the Stoner model
for itinerant ferromagnetism [12,13]. However, many real-
life solids are best described by spins that are localized in
real space. These are commonly described by the Heisen-
berg model that predicts the direct- and double-exchange
mechanisms behind the emergence of antiferromagnetism
and ferromagnetism, respectively. Here we take advantage
of the ability of the Heidelberg group to trap either two or
three fermions in the double well potential to realize the
first exact quantum simulators for the direct-exchange and
double-exchange mechanisms. This allows us to not only study
the minimal building block of Heisenberg magnetism but also
build a quantum simulator to expose the competition between
covalent and ionic bonding, and study quantum entanglement
manipulation and detection.

The direct-exchange mechanism has previously been real-
ized in double quantum dot systems [14–17] and cold-atom
gases in an array of double-well potentials [18–20]. We now
exploit the experimental flexibility of the Heidelberg group to
isolate just two atoms and expose the phase behavior. We use
exact diagonalization to deliver the full energy spectrum and
a perturbative approach to gain an intuitive understanding of
the phase behavior. The flexibility of the setup allows us to
build the first quantum model of the fundamental covalent
and ionic bonding mechanisms in molecules and crystals,
allowing us to address the long-standing question of their
relative contributions to chemical bonds [21]. A thorough
understanding of the exchange energy also allows us to
define a new protocol to create, control, and detect quantum
entanglement [22,23].

The isolated double-exchange mechanism has not yet been
realized experimentally. A faithful quantum simulator of
the double-exchange mechanism is not only important for
understanding Heisenberg ferromagnets but also describes
the 90◦ superexchange mechanism and can be extended to
larger systems through a quantum virial or cluster expansion
[24,25]. Through exact diagonalization and a complementary
perturbative analysis we demonstrate how the cold-atom gas

will probe the double-exchange mechanism with changing
barrier height, interaction strength, and the ellipticity of the
external trapping potential. This modifies the degeneracy of
the ground state leading to a quantum phase transition that we
expose with a statistical tunneling probe.

I. FORMALISM

We start from two-component Fermionic atoms with
each species indexed by a pseudospin σ ∈ {↑ ,↓}. The
atoms are trapped by an external harmonic potential
with Hamiltonian Ĥ = −∇2/2 + [ω2

⊥(x2 + y2) + ω2
‖z

2]/2 +
VB exp(−ωBz2) + g(r↑ − r↓)n̂↑(r↑)n̂↓(r↓), setting h̄ = m =
1 throughout. The parabolic trapping potential has a variable
ellipticity that we associate with a length scale a‖ = 1/

√
ω‖.

The Gaussian barrier VB exp(−ωBz2) will split the system
into two wells. Throughout this paper we set its width with
ωB = 5ω‖. We use two complementary techniques to analyze
the system: (i) exact diagonalization to expose the full energy
spectrum, and (ii) perturbation theory to deliver an intuitive
description.

In exact diagonalization [26], we work in the eigenbasis
of the noninteracting Hamiltonian. We express the orbitals in
this basis as linear combinations of the Gaussian-type orbitals
(GTOs) [27] of the harmonic trapping potential without the
central barrier. Labeling these GTOs by the standard quantum
numbers {nx,ny,nz}, we include 0 � (nx,ny) < 4 and 0 �
nz < 50. Including basis functions with higher nz is necessary
to capture the effect of the central barrier on the orbitals.

To calculate the orbitals of the noninteracting system
including the central barrier we first evaluate the noninteracting
Hamiltonian matrix in the GTO basis. The matrix elements of
the central Gaussian barrier can be conveniently expressed
in terms of hypergeometric functions [28]. Having calculated
the Hamiltonian matrix, we diagonalize it to obtain a list of
orbitals to use in the subsequent calculation that incorporates
the effect of interactions.

We construct the 10 000 Slater determinants with the lowest
noninteracting energy to use as the many-body basis for our
exact diagonalization calculation. To include interactions we
evaluate the four-center integrals in the basis of our orbitals
and construct the Hamiltonian matrix using the Slater-Condon
rules [26]. Finally, we diagonalize the matrix to find the ground
and excited states of the system.
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In a cold-atom gas the Feshbach resonance is used to tune
a contact interaction strength V (r) from the repulsive through
to the attractive regime. To generate a positive scattering
length for a potential with a small effective range we use
the square-well potential g(r) = −gθ (R − |r|) with a radius
R = 0.4a‖. This is significantly less than the width of the
central barrier 2/

√
ωB ≈ 0.9a‖ so that atoms localized in

adjacent wells will not interact, and moreover we ensured that
the energy of the states converged in the limit R → 0. The well
depth g was tuned to generate a positive or negative scattering
length a = R[1 − tan(R

√
g)/R

√
g] and was constrained to

0 � R
√

g < 4.49 to confine at most one bound state. However,
the inclusion of the bound state leads to many molecular states
crossing the lowest-energy open channel [see Fig. 1(a)]. This
requires us to adiabatically track states between calculations
performed at neighboring scattering lengths ai and ai+1, which
can be uniquely followed by connecting states with the correct
spin, inversion symmetry, and angular momentum Lz and the
greatest wave function overlap 〈ψm(ai)|ψn(ai+1)〉, where m

and n are state indices.

II. DIRECT EXCHANGE

We first study two fermionic atoms trapped within the
double-well potential. This is a minimal quantum simulator
of the direct-exchange mechanism, exposes the competition
between covalent and ionic bonding, and allows us to probe
quantum entanglement. These three applications demand a
thorough understanding of the exchange energy that we study
with two complementary approaches: exact diagonalization
and perturbation theory. The exchange energy can be probed
directly in experiment by applying a magnetic field gradient
and measuring the tunneling rate of atoms from the system
[2,4]. The general interacting system with no central barrier
has been studied by Busch et al. [6] so we first address a
perturbative barrier before focusing on a high barrier.

Shallow barrier. We analyze the system analytically with
first-order perturbation theory. For the S = 0 state we start
with two opposite spin atoms in the Gaussian noninteract-
ing ground state of the trapping potential with no central
barrier φσ (r), and for S = 1 we start with two equal spin
atoms with one excited into a state with a node either
in the longitudinal or transverse directions depending on
whether ω‖ or ω⊥ is smaller. Next we introduce the central
barrier that within first-order perturbation theory induces a
change in the energy of

∑
σ

∫
dr|φσ (r)|2VB exp(−ωBz2), and

scattering that according to mean-field theory increases the
energy by 4πa

∫
dr|φ↑(r)|2|φ↓(r)|2. This yields an exchange

energy (energy difference between the S = 0 and S = 1
open channel states) of −� + oa/a‖ with � = min(ω‖,ω⊥) −
VB{[ω‖/(ω‖ + ωB)]1/2 − [ω‖/(ω‖ + ωB)]3/2}, and overlap ma-
trix element o = √

2/πω⊥[1 − 4
√

2VB/π (ω‖ + ωB)]. In-
creasing both the barrier height and interaction strength lowers
the exchange energy. However, exact diagonalization confirms
that the exchange energy is negative for any positive scattering
length, so that a negative scattering length is required for an
S = 1 ferromagnetic ground state in conformance with the
Lieb-Mattis theorem [29].

High barrier. We now focus on a high barrier that presents
a unique opportunity to study a minimal Hamiltonian of

localized spins. We initially exploit exact diagonalization to
deliver the exact ground and excited states before developing
an analytic theory to gain a heuristic understanding of the
system. Finally, we demonstrate the versatility of the setup to
study the competition between covalent and ionic bonding and
quantum entanglement.

Results for a trap with ω‖ = ω⊥ and a barrier with VB =
4ω‖ are shown in Fig. 1(a). The exchange energy flips sign
across unitarity, so that the red S = 0 level is the ground state
for a > 0, and the blue S = 1 level for a < 0. On approaching
unitarity from positive scattering lengths many molecular
bands anticross the open channel from 0 � a‖/a � 3, remov-
ing the energy gap to the other states. Although the interaction
potential harbors just one bound state, these bands correspond
to the molecule being excited within the external trapping
potential. Raising the central barrier increases the energy gap,
presenting a larger range of the open channel to experiments.
This should facilitate experiments that adiabatically transit
across unitarity. Although the two-atom system cannot fall
into a bound state without violating energy conservation, the
closure of the energy gap precludes using this region to explore
quantum entanglement. However, the super-Tonks regime is
free from the molecular bands, making it the ideal venue to
use the system as a quantum simulator and study quantum
entanglement.

We next develop a complementary analytical expressions
for the ground-state energy to gain an intuitive understanding
of the system’s behavior. We model the system by the Hub-
bard Hamiltonian t

∑
σ (c†Lσ cRσ + c

†
Rσ cLσ ) + ε

∑
σ (c†Lσ cLσ −

c
†
Rσ cRσ ) + g(c†L↑c

†
L↓cL↓cL↑ + c

†
R↑c

†
R↓cR↓cR↑), where c

†
L↑ cre-

ates a particle localized in the left-hand well, c
†
R↑ cre-

ats a particle localized in the right-hand well, and ε de-
notes the relative depth of the wells. Diagonalization in
the high-barrier limit t � (ε,go) yields an exchange en-
ergy of −(1 + ε2a2

‖/16a2o2)t2a‖/4ao, where we use WKB
perturbation theory [30] to derive the parameters t =
32ω‖ exp(−2

√
πVB/ωB)/π2 and o = 3ω⊥

√
ω‖/(2π )3/2. We

apply a magnetic field gradient dB/dz adding the term
�H = αz to the Hamiltonian, where α = gJμBdB/dz and
gJ is the g factor. This gives a relative well depth of
ε � [log(2ωBVB/ω2

‖)/ωB]1/2α. We find that the perturbative
analysis matches well to the results of exact diagonalization
around unitarity, as shown in Figs. 1(a) and 1(b).

Covalent versus ionic bonding. The covalent bonding in a
crystal is driven by the negative exchange energy of electrons
being shared between neighboring atoms. Conversely, in ionic
bonding the constituent ions carry different electronegativities,
driving a displacement of electron density that results in bond
polarization and concomitant bonding. Cold atoms present an
ideal simulator of the chemical bonding mechanisms, where
the external potential portrays the atomic pseudopotential, the
fermionic atoms represent the valence electrons, and the tilt
ε represents the relative electronegativity tuning from ε = 0
(covalent) to |ε| ∼ ω‖ (ionic character). Figure 1(b) shows
that the exchange energy is −(1 + ε2a2

‖/16a2o2)t2a‖/4ao,
where in the absence of the tilt the first term −t2a‖/4ao

corresponds to the covalent bonding, and the second term
further lowers the energy in the presence of the tilt and so
corresponds to the ionic contribution. On introducing the tilt
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(a) Energy spectrum (b) Tilted trap
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(c) Qubit control protocol
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FIG. 1. (Color online) (a) Exchange energy from exact diago-
nalization (black lines), with the open channel (red line), the lowest
S = 1 state (blue line), and perturbation theory (green dashed line).
(b) Bottom: Normalized exchange energy of the S = 0 level as a
function of relative well depth ε from exact diagonalization (blue
crosses) and from the Hubbard Hamiltonian (red line). Top: The
density profile (green) in the trap (magenta) at three values of the tilt
and interaction strength. (c) Schematic of the experimental protocol
to study quantum entanglement.

Fig. 1(b), i–ii demonstrates how the bond becomes polarized,
with the increasing density in the lower well, ∼a3

‖ t
2ε/32a3o3,

lowering the net energy quadratically, ∼ε2, conforming with
Pauling’s definition of electronegativity [21,31]. The lowering
of the energy and increasing polarization of the bond could
be detected by tunneling atoms out of the two sides of
the trap. Finally, Fig. 1(b), iii shows that with a < 0 the
atomic density would be counterintuitively pulled into the
higher well.

Quantum entanglement. As the experimental setup offers a
unique level of experimental control we are well positioned to
explore quantum entanglement. The qubit control protocol is
shown in Fig. 1(c). We define the first qubit state as the up-spin
localized in the left-hand well and the down-spin localized in
the right-hand well, denoted |↓↑〉 [Figs. 1(c), ii and 1(c), vi],
and the second qubit state conversely, |↑↓〉 [Fig. 1(c), vi]. In
Fig. 1(c), i the system is prepared into a qubit basis state in
the noninteracting regime in the presence of a magnetic field
gradient gJμBdB/dz > t/a‖ in the Zeeman regime so that
the two spins are driven in opposite directions [2]. With the
configuration in Fig. 1(c), i we form the qubit state |↓↑〉 in

Fig. 1(c), ii. When the tilt is removed the qubit state |↓↑〉 is a
superposition of the singlet and triplet states. With interactions
the system will evolve under Rabi oscillations between the
singlet and triplet states in Fig. 1(c), iii with a Rabi period
2π/E, with E = −t2a‖/4ao. A duration of π/E corresponds
to a SWAP rotation [32] into the qubit state |↑↓〉 shown in
Fig. 1(c), iv, and a duration of 2π/E corresponds to an identity
rotation into the qubit state |↓↑〉 shown in Fig. 1(c), vi. To
detect the qubit states in Figs. 1(c), v and 1(c), vii we apply a
strong magnetic field gradient in the Paschen-Back regime to
empty the right-hand well but leave the left-hand well occupied
since it is shielded by the central barrier. The escaped atom
carries a definite spin, resolving the system onto the qubit
basis, and the remaining atomic spin can then be measured
separately following the protocol in Ref. [2] to identify the
qubit state. Finally, we note that dE/dε|ε=0 = 0 and therefore
the Rabi period is insensitive to the controlling tilt parameter
[33], making this an ideal opportunity to explore entanglement
in a flexible, clean, and stable environment.

III. DOUBLE EXCHANGE

Two trapped atoms with a positive scattering length always
yields an S = 0 ground state [29]; so to realize the simplest
possible ferromagnetic ground state we turn to a three-atom
system. For a sufficiently strong central barrier this delivers
a quantum simulator of the double-exchange mechanism for
ferromagnetism: two atoms are localized in the lowest level of
each well, and a third itinerant atom at a higher energy level
couples their spins. With three atoms there are two possibilities
for the highest occupied orbital: with either with a node longi-
tudinally (nz = 1) or two degenerate modes with a transverse
node (nx,y = 1). To study the emergence of magnetic cor-
relations we use both exact diagonalization and perturbation
theory. We adopt the same perturbation theory as introduced
in the direct-exchange section for a small central barrier and
weak scattering, except now for the three-atom states shown
in Table I. To orient the discussion we focus initially on the
realization of itinerant ferromagnetism before introducing a
central barrier to consider the double-exchange mechanism.

Exact diagonalization delivers the phase diagrams in Fig. 2
that compare well with the perturbation theory predictions. At
VB = 0 the system enters the S = 3/2 state at a/a‖ ≈ 0.45,
which compares favorably to the perturbation calculation
estimate that a/a‖ = √

2/π/3 ≈ 0.84 and a prediction that we
extrapolated from the data of Liu of a/a‖ ≈ 1.1 [8]. We note
that the exact theory has a lower critical interaction strength
than the perturbation theory prediction, which reflects the
situation of the itinerant case [34,35]. The critical interaction
strength is predicted to be independent of trap ellipticity ω⊥/ω‖
by both exact diagonalization and the perturbation theory
calculations. In the high-barrier potential limit we follow the
example from the direct-exchange calculation and model the
system with the Hubbard Hamiltonian, predicting a crossover
at a/a‖ = √

π/2/3 ≈ 0.42. This is in direct agreement with
the results from exact diagonalization.

When ω‖ < ω⊥ it is energetically favorable to occupy lon-
gitudinal modes and when ω‖ > ω⊥ the transverse modes are
preferred. However, the introduction of a central barrier favors
longitudinal states (nz = 1) with a node across the barrier, with
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TABLE I. Lowest-energy states for the three-atom system and their energy calculated in perturbation theory. Both the S = 1/2 and S = 3/2
states are shown, and also the available longitudinal and transverse modes.

Spin State(s) Orientation Degeneracy Energy

c
†
000↓c

†
000↑c

†
001↑|0〉 Longitudinal 1 5

2 ω‖ + 3ω⊥ +
√

ω‖
ω‖+ωB

VB

(
2 + ω‖

ω‖+ωB

)
+ a

a‖ ω⊥
√

2
π

(
3
2 − 4

√
2

π

VB
ω‖+ωB

)

S = 1
2 c

†
000↓c

†
000↑c

†
010↑|0〉

Transverse 2 3
2 ω‖ + 4ω⊥ + 3

√
ω‖

ω‖+ωB
VB + a

a‖ ω⊥
√

2
π

(
3
2 − 6

√
2

π

VB
ω‖+ωB

)
c
†
000↓c

†
000↑c

†
100↑|0〉

c
†
000↑c

†
001↑c

†
010↑|0〉

Longitudinal 2 5
2 ω‖ + 4ω⊥ +

√
ω‖

ω‖+ωB
VB

(
2 + ω‖

ω‖+ωB

)
S = 3

2 c
†
000↑c

†
001↑c

†
100↑|0〉

c
†
000↑c

†
010↑c

†
100↑|0〉 Transverse 1 3

2 ω‖ + 5ω⊥ + 3
√

ω‖
ω‖+ωB

VB

the crossover at VB = √
1 + ωB/ω‖(1 + ω‖/ωB)(ω‖ − ω⊥) for

both S = 1/2 (at a = 0) and S = 3/2. A weak central barrier
forces the atoms apart, reducing the effective interaction
strength, meaning that the boundary between the S = 1/2
and S = 3/2 phases has a positive slope of

√
ω‖(ω‖ +

ω⊥)/24
√

π . With a larger central barrier the longitudinal
S = 1/2 state and transverse S = 3/2 state share a phase
boundary with a negative slope giving rise to a characteristic
notch.

The phases are distinguished not only by their spin
quantum number but also by the degeneracy associated with
the orientation of the node in the highest occupied orbital.
The changing degeneracy means that the phases with the same
spin quantum number cannot evolve into one another so there
is a quantum phase transition between the two. In a cold-atom
gas both total spin and symmetry are conserved, so to probe the
phase diagram a tunneling measurement is proposed [2], with
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FIG. 2. (Color online) The phase diagrams predicted by exact
diagonalization (left) and perturbation theory (right) at three different
trap ratios. The phase corresponding to the each color is identified
in each diagram, with “L” indicating a longitudinal phase and “T”
a transverse phase. The arrows show the critical interaction strength
predicted by the Hubbard model.

the gas starting from four atoms, tilting the trap, and tunneling
down to the three-atom configuration with the lowest energy.
At the critical interaction strength the S = 1/2 and S = 3/2
states will be formed with equal likelihood, but taking account
of the degeneracy will boost the formation of the doubly
degenerate states, presenting an ideal tool to characterize the
phases.

The high-barrier perturbation theory provided a perfect
description for the phase behavior predicted by exact diag-
onalization theory in that limit. This demonstrates that the
ferromagnetism is driven by double exchange, consistent with
the observed exponential decay of the interaction matrix
element between one atom localized in the left-hand well
and another localized in the right-hand well. However, the
high-barrier perturbation theory is unable to describe the
system with a low central barrier, where the requirement
to have orbitals with a longitudinal node is incompatible
with the nodeless “transverse” wave functions found in
exact diagonalization and shown in Table I, which are of
itinerant nature. Therefore, the crossover from “transverse” to
“longitudinal” wave functions in the phase diagram denotes the
underlying ferromagnetic correlations changing from itinerant
to localized double exchange.

IV. DISCUSSION

The double well system is the perfect playground to study
the exchange mechanisms of strongly interacting fermions.
We have studied the direct exchange mechanism that is the
fundamental building block of Heisenberg antiferromagnetism
and exposes the competition between covalent and ionic
bonding. The experimental flexibility of the cold atom gas
also presents the ideal arena to study quantum entanglement.
Trapping three fermions delivers the first faithful realization
of the double exchange mechanism. This can provide insights
into Heisenberg ferromagnets and 90◦ superexchange, and be
built up to larger lattices through a cluster expansion.

The exchange mechanisms presented here give a tantalizing
insight into the broad range of effects that can be explored in
the double well potential. The inclusion of a third potential
well would allow investigators to study the Kramers-Anderson
superexchange mechanism [36] behind many antiferromag-
nets. Trapping more atoms should reveal an even/odd effect of
flipping between antiferromagnetic and ferromagnetic ground
states.
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