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Nonadiabatic Coulomb effects in strong-field ionization in circularly polarized laser fields
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We develop the recently proposed analytical R-matrix (ARM) method to encompass strong-field ionization
by circularly polarized fields, for atoms with arbitrary binding potentials. Through the ARM method, the effect
of the core potential can now be included consistently both during and after ionization. We find that Coulomb
effects modify the ionization dynamics in several ways, including modification of (i) the ionization times, (ii) the
initial conditions for the electron continuum dynamics, (iii) the “tunneling angle” at which the electron “enters”
the barrier, and (iv) the electron drift momentum. We derive analytical expressions for the Coulomb-corrected
ionization times, initial velocities, momentum shifts, and ionization rates in circularly polarized fields, for
arbitrary angular momentum of the initial state. We also analyze how nonadiabatic Coulomb effects modify (i)
the calibration of the attoclock in the angular streaking method and (ii) the ratio of ionization rates from p− and
p+ orbitals, predicted by Barth and Smirnova [Phys. Rev. A 84, 063415 (2011)] for short-range potentials.
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I. INTRODUCTION

Single and double ionization in circularly polarized strong
laser fields is a sensitive probe of attosecond dynamics [1–6].
Strong-field ionization is often viewed as electron tunneling
from atoms and molecules through the barrier created by the
laser field and the core potential. The adiabatic approximation,
frequently used to describe tunneling, implies quasistatic
electric field and zero electron velocity immediately after
ionization (at the tunnel exit). This adiabatic picture is used for
the interpretation of current experiments in circularly polarized
laser fields [1–6] within the two-step model. This model
merges quantum and classical approaches by combining (i) the
adiabatic approximation for the quantum ionization step with
(ii) the classical trajectories calculation after tunneling. In this
second step, an ensemble of classical trajectories is launched
outside the barrier; the distribution of initial velocities parallel
and perpendicular to the direction of the instantaneous laser
field is centered around 0, as predicted by the adiabatic
tunneling theory.

However, strictly speaking, in circularly polarized laser
fields the tunneling barrier is rotating. This rotation manifests
itself in the nonadiabatic electron response, which becomes
significant in the regime of the Keldysh parameter γ � 1.
Nonadiabatic effects change tuneling from essentially one-
dimensional, characteristic of the static limit [4,7], to two-
dimensional. As shown in [8], for short-range potentials
substantial deviations from the adiabatic approximation arise
already for γ 2 � 0.5, which also questions the validity of
this approximation for the long-range core potentials under
similar conditions. We note that γ 2 � 0.5 is a typical regime
for recent experiments with laser radiation around 1600–
1300 nm and systems with ionization potential Ip ∼ 10 eV
(see, e.g., [9]).

Here we provide a rigorous analytical framework for
treating the effects of long-range potential and laser field
on equal footing and include nonadiabatic effects due to the
long-range potential. In particular, we show that nonadiabatic
Coulomb effects lead to a nonzero initial velocity both
parallel and perpendicular to the direction of the instantaneous
laser field even for the central electron trajectory (for which

the ionization rate maximizes), when it emerges from the
classically forbidden region.

We find that the nonadiabatic Coulomb effects modify the
ionization dynamics in several ways, including modification
of (i) the ionization (exit) times, (ii) the initial conditions for
electron continuum dynamics, (iii) the “tunneling angle,” at
which the electron “enters” the barrier, and (iv) the electron
drift momentum. We derive analytical expressions for the
ionization times, initial velocities, momentum shifts, and
ionization rates in circularly polarized fields for arbitrary
angular momentum of the initial state. We also analyze how
the nonadiabatic Coulomb effects modify (i) the calibration of
the attoclock in the angular streaking [1–4] method and (ii) the
ratio of ionization rates from p− and p+ orbitals obtained for
short-range potentials in [8].

Our tool is the gauge-invariant, analytical R-matrix (ARM)
method, which we recently developed [10] for linearly polar-
ized fields. The strength of the ARM method is the ability
to treat consistently the effects of long-range potential and
the laser field [10] as well as multielectron effects [11]. The
main idea of the R-matrix method was adopted from the
study of collision processes and nuclear resonance reactions
[12], where the primary purpose was to isolate the strongly
interacting kernel from the region where these interactions
were significantly weaker and can be considered in asymptotic
approximation. In this sense, the R-matrix approach developed
in collision physics meets a crucial requirement of strong-field
physics, in that it can be used to separate the region of the
configuration space, where the Coulomb forces are much
stronger than the laser field, from the outer region, where
the Coulomb potential quickly becomes almost negligible
compared to the driving laser field. We note that a fully
numerical time-dependent R-matrix approach for strong-field
dynamics was developed and successfully applied in [13].

In [10], a detailed analysis and benchmarking of the
ARM method was provided for strong linearly polarized laser
fields, including the derivation of analytical results for the
instantaneous ionization amplitudes and the subcycle ioniza-
tion rates for single-active-electron systems. With suitable
approximations, the results for the cycle-averaged ionization
rates from [10] agree with those obtained by Perelomov, Popov,

013421-11050-2947/2013/88(1)/013421(20) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.063415
http://dx.doi.org/10.1103/PhysRevA.88.013421


JIVESH KAUSHAL AND OLGA SMIRNOVA PHYSICAL REVIEW A 88, 013421 (2013)

and Terentév (PPT) [14]. For hydrogen-like atoms and ions,
the PPT rates (with the new correction factor derived in [15])
were shown to be accurate for arbitrary values of the Keldysh
parameter.

The difference between our problem in circularly polarized
fields and the case of the linearly polarized fields analyzed
in [10] lies in the fundamentally two-dimensional character of
tunneling, i.e., the time-varying angles between the position
vectors, the electron velocity vp(t), and the laser vector
potential A(t). As a consequence, certain approximations
in [10] that were helpful in deriving a physically transparent
solution for the linearly polarized field are not always adequate
in the case of circularly polarized fields. Here, we refine the
ARM method and extend it to strong circularly polarized fields.
We show that an appropriate choice of the boundary between
the inner and the outer regions allows one to build the hierarchy
of interactions and show how the long-range effects can be
included consistently within the iterative approach.

Our strategy can be summarized as follows. Following [10],
we introduce an “R-matrix” sphere of radius a, which splits
the configuration space into the inner and outer regions.

A. The inner region: In the inner region the Coulomb
field dominates, and the effects of the laser field on the
inner region wave function can be included in the quasistatic
approximation. Further approximation, such as using the field-
free wave function is justified for fields significantly smaller
than κ3, where κ = √2Ip, Ip is the ionization potential.

B. The boundary: The Bloch operator is used to “pass” the
information about the electron wave function from the inner
region to the outer region. The outer region Green’s function
is used to propagate the outer region wave function from this
boundary to the detector. The boundary value is given by the
inner region wave function at the surface of the “R-matrix”
sphere. Boundary matching ensures that the final result does
not depend on the choice of the boundary value a.

C. The outer region: In the outer region, the Coulomb
potential is weak and can be included in the Eikonal-Volkov
approximation (EVA) [16]. It has been shown previously [17],
that the EVA is adequate for the soft-core potentials, i.e., for
long-range potentials outside the singularity region.

D. Propagation in the outer region: This involves inte-
gration over the surface of the R-matrix sphere (θ ′, φ′) and
over all times (t ′) of “transition” through the boundary. Due
to the large action S of the electron in the strong laser field,
the integrals are taken from the highly oscillating function
P (θ ′,φ′,t ′)e−iS(θ ′,φ′,t ′) and are accumulated in the vicinity of
their respective stationary (saddle) points θ ′

s , φ
′
s , and t ′s , defined

by the solutions of the equations ∂θ ′S = 0, ∂φ′S = 0, and
∂t ′S = 0, respectively, where the subscript denotes the deriva-
tive with regard to (w.r.t.) that variable. The action is given by
S = SSFA + GC , where the strong-field approximation (SFA)
action is associated with the dynamics in the laser field and
short-range potential, and GC is the action associated with the
interaction with the long-range potential of the core under the
EVA [16] and describes Coulomb-laser coupling [18]. Since
only a vicinity of saddle points contributes to the integral,
we do a Taylor expansion of GC around SFA saddle points
θ ′(0)
s , φ′(0)

s , and t ′(0)
s . After this expansion the integral over the

surface of the sphere is calculated exactly. The integral over
t ′ is evaluated using the saddle-point method. The actual, full

saddle point t ′s (shifted from t ′(0)
s due to long-range effects)

is found within the iterative approach. Formally, nonadiabatic
effects in ionization rates arise due to the deviations from
the stationary trajectory included via Taylor expansion of
GC . Nonadiabatic Coulomb effects also manifest itself in the
photoelectron spectra and will be considered in our subsequent
paper [19].

E. Iterative approach to saddle-point equation for t ′: By
construction, in the outer region GC presents a perturbation to
the SFA action SSFA and therefore can only slightly shift the
SFA saddle point t ′(0)

s , which corresponds to the stationary SFA
action: ∂t ′S

SFA = 0. Thus, as a first correction to the saddle
point, due to the interaction with the long-range potential,
t ′(1)
s = t ′(0)

s + �t ′(0)
s , where �t ′(0)

s can be found by iterations
with respect to GC . The first iteration includes only linear
terms in �t ′(0)

s ∼ O(GC). In our approach we keep only
the first-order correction terms consistently throughout. The
saddle-point equation ∂t ′S = 0 can be expanded around t ′(0)

s :
∂t ′S

SFA(t ′(0)
s ) + �t ′(0)

s ∂2
t ′S

SFA(t ′(0)
s ) + ∂t ′GC(t ′(0)

s ) = 0, yielding

�t ′(0)
s = − ∂t ′GC (t ′(0)

s )

∂2
t ′S

SFA(t ′(0)
s )

. Note that since the SFA action is

stationary, ∂t ′S
SFA(t ′(0)

s ) = 0, the shift due to �t ′(0)
s will

only change the value of the SFA action in the second
order w.r.t. GC : S(t ′(1)

s ) = SSFA(t ′(0)
s ) + GC(θ ′(0)

s ,φ′(0)
s ,t ′(0)

s ) +
O((�t ′(0)

s )2). However, t ′(1)
s will contribute to the pre-

exponential factor P (θ ′,φ′,t ′) in the integral.
Below we detail our method and show how it can be used

to obtain ionization amplitudes and ionization rates using both
the time-domain and the frequency-domain approaches. The
time-domain approach is technically simpler and allows one
to consider temporal dynamics of ionization, including the
time evolution of electron momentum distributions [19] and
ionization rates.

The paper is organised as follows. Section II introduces ba-
sic equations. Section III develops the time-domain approach.
Section IV discusses the physical picture arising from the
theory developed in Secs. II−III. In Sec. IV, we describe
modifications of the ionization dynamics due to Coulomb
effects. These include (i) Coulomb corrections to ionization
times, (ii) initial conditions for electron continuum dynamics
(iii) calibration of the attoclock in the angular streaking
method, and (iv) Coulomb corrections to the “tunneling
angle,” including the Coulomb corrections to the ratio of
ionization rates from p− and p+ orbitals obtained for the
short-range potentials in [8]. Section V concludes the work.
Appendix A presents additional calculations related to the
boundary matching. Appendix B develops the frequency-
domain approach, pioneered in the PPT work on short-range
potentials. This approach requires more involved algebra
but allows the most straightforward connection to the PPT
results. Appendix C extends the time-domain method in
Sec. III to introduce observables characterizing subcycle ion-
ization dynamics. Appendixes D and E present miscellaneous
calculations.

II. BASIC EQUATIONS

Following [10], we introduce the Bloch operator L̂−(a) to
split the configuration space into the inner and outer regions.
Parameter a represents the radius of the R-matrix sphere; the
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inner region is inside the sphere, the outer region is outside
of the sphere. The standard Hamiltonian Ĥ including both
Coulomb VC(r) and laser-field interaction VL(t),

Ĥ = p̂2

2
+ VC(r) + VL(t), (1)

used in the Schordinger equation,

i
∂ψ(r,t)

∂t
= Ĥψ(r,t). (2)

ψ(r,t = t0) = ψg(r), (3)

can be modified to

i
∂ψ(r,t)

∂t
= ĤBψ(r,t) − L̂−(a)ψ(r,t), (4)

where ĤB = Ĥ + L̂−(a). Following arguments developed in
[10], we can express the solution in the outer region via the
solution in the inner region as

|ψout(t)〉 = i

∫ t

t0

dt ′ ÛB(t,t ′)L̂−(a)|ψin(t ′)〉, (5)

where for the outgoing solution, we use L̂−(a) and the
governing equation for the evolution operator ÛB(t,t ′) is

i
∂

∂t
ÛB(t,t ′) = ĤB(t)ÛB(t,t ′). (6)

In our time-domain approach, detailed in the next section,
we start the analysis from the expression for the ionization
amplitude ap(T ) = 〈p|ψout(T )〉 (see [10] for discussion):

ap(T ) = i

∫ T

t0

dt ′
∫

dr′
∫

dr′′ 〈p|UB(T ,t ′)|r′〉

× 〈r′|L̂−(a)|r′′〉〈r′′|ψin(t ′)〉. (7)

Taking into account the explicit form of the Bloch operator in
coordinate representation,

〈r′|L̂−(a)|r′′〉 = δ(r − a)δ(r′ − r′′)B̂, (8)

B̂ψ(r,t) =
(

d

dr
+ 1

r

)
ψ(r,t)

∣∣∣∣
r=a

, (9)

we can rewrite Eq. (7) as

ap(T ) = i

∫ T

t0

dt ′
∫

dr′ GB(p,T ; r′,t ′)

× δ(r ′ − a)B(a,θ ′,φ′,t ′), (10)

where the function B(a,θ ′,φ′,t ′) represents the inner-region
wave function at the partition surface r ′ = a for all times t0 <

t ′ < T ,

B(a,θ,φ,t ′) =
(

d

dr
+ 1

r

)
ψin(r,t ′)

∣∣∣∣
r=a

, (11)

and GB(p,T ; r′,t ′) = 〈p|ÛB(T ,t ′)|r′〉 is the Green’s function
for the modified Hamiltonian ĤB for propagating from the
boundary r ′ = a instead of the origin. As shown in [10],
the error incurred in approximating this exact Green func-
tion with the Eikonal-Volkov approximated Green’s function

GEVA(p,T ; r′,t ′) defined on the EVA states [16],

GEVA(p,T ; r′,t ′) = 1

(2π )3/2
e−ivp(t ′)·r′− i

2

∫ T

t ′ dτ v2
p(τ )

× ei
∫ t ′
T

U (rL(τ ;r′,p,t ′))e−iG0p(rL(T ;r′,p,t ′)),

(12)

is exponentially small. In the above expression we have defined

rL(τ ; r,p,t) = r +
∫ τ

t

dζ vp(ζ ), (13)

the characteristic trajectory along which the Coulomb correc-
tion is calculated as a perturbation to the Volkov electron [16]
and vp(t) = p + A(t) is the kinetic momentum.

III. THE TIME-DOMAIN APPROACH

We use Eq. (10) for the ionization amplitude and Eq. (12)
to obtain

ap(T ) = i

(2π )3/2

∫ T

t0

dt ′
∫

dr′ e−ivp(t ′)·r′
e− i

2

∫ T

t ′ dτ v2
p(τ )

× e−iGC (p,T ;r′,t ′)δ(r ′ − a)B(a,θ ′,φ′,t ′), (14)

with the Coulomb phase term defined as

GC(p,T ; r′,t ′) =
∫ T

t ′
dτ U (rL(τ ; r′,p,t ′)). (15)

Since the time T of observation is sufficiently far, so that we
can consider T → ∞ for all practical purposes, we have made
the approximation as in [10], ignoring the distortions of the
phase front from the plane wave, G0p → 0 [16] in Eq. (12).

A. Transition through the boundary r ′ = a

The function B(a,θ ′,φ′,t ′) reflects the value of the inner-
region wave function at the boundary r ′ = a. In the inner
region the Coulomb field dominates and the effects of the
laser field on the inner region wave function ψin(r′,t ′) can
be included in the quasistatic approximation. Following [10],
the boundary is placed in the asymptotic region E0a/Ip 	
1 	 κa of the ground-state wave function, where κ = √2Ip,
and E0 is the amplitude of the laser field. In this region the
error in approximating the polarized wave-function with the
field-free initial wave-function is of the order of ∼E0a

2/κ [20].
Thus, for sufficiently weak fields such that E0/κ

3 	 1/a2κ2

the inner region wave function ψin(r′,t ′) can be substituted
by the field-free bound-state wave function, without affecting
the boundary matching. This approximation was first used in
the PPT method [14]. The asymptotic radial part of this wave
function is given by

ϕκ�(r ′) = Cκ�κ
3/2 e−κr ′

κr ′ (κr ′)Q/κ . (16)

Due to the invariance of the boundary term under the addition
of a function b0/r ′, we can choose b0 appropriately to get

B(a,θ ′,φ′,t ′) =
(

d

dr ′ − b0 − 1

r ′

)
ϕκ�(r ′)

∣∣∣∣
r ′=a

= −κϕκ�(a) (17)
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for b0 = Q/κ . Using Eq. (17) and evaluating the δ function
over r ′,

ap(T ) = iκa2

(2π )3/2

∫ T

t0

dt ′
∫

d�′ e−ivp(t ′)·ae−iSSFA(p,T ;t ′)

× e−iGC (p,T ;a,t ′)ϕκ�(a)N�mP m
� (cos θ ′)eimφ′

, (18)

where N�m =
√

2�+1
4π

(�−|m|)!
(�+|m|)! , a = a(sin θ ′ cos φ′ x̂ + sin θ ′

sin φ′ ŷ + cos θ ′ ẑ). We use A(t) = −A0(cos ωt x̂ + sin ωt ŷ).
The SFA phase is given by

SSFA(p,T ; t ′) = 1

2

∫ T

t ′
dτ v2

p(τ ) − κ2

2
(t ′ − t0). (19)

Note that in the outer region, the long-range interaction
of the electron with the core is described by the phase
term GC(p,T ; r′,t ′), and involves integration of the Coulomb
potential along the electron trajectory in the laser field. The
trajectory originates from point a on the boundary at time t ′
[Eq. (13)].

B. Iterative approach to solution of saddle-point equations

The calculation of the ionization amplitude ap(T ) involves
integration over all starting points of the trajectory on the
sphere and all times t ′ of “transition” through the boundary
r ′ = a. The integrand of Eq. (18) can be written in the form
P (θ ′,φ′,t ′)e−iS(θ ′,φ′,t ′), where the prefactor P (θ ′,φ′,t ′) reflects
the value of the inner-region wave function at the boundary
r ′ = a, and the exponent is given by the electron action. The
action S(θ ′,φ′,t ′) consists of two parts, S = SSFA + GC , where
SSFA is the SFA action [Eq. (19)] associated with the ionization
dynamics in the short-range potential, and GC [Eq. (15)] is the
term responsible for the long-range interaction with the core,
describing the Coulomb-laser coupling [18].

Due to the large value of the action S for the electron in a
strong laser field, the integrals are accumulated in the vicinity
of stationary (saddle) points θ ′

s , φ′
s , and t ′s , which satisfy the

equations

∂S

∂θ ′ = 0,
∂S

∂φ′ = 0,
∂S

∂t ′
+ a

∂vp(t ′)
∂t ′

= 0, (20)

where the saddle point in time has an additional term avp(t ′),
which, as we show in Appendix B 1, is a result of propagation
from a finite boundary and comes from the exact evaluation of
the surface integral.

To solve these equations, we recall that, by construction,
in the outer region GC presents a perturbation to SSFA and
therefore can only shift the SFA saddle points θ ′(0)

s ,φ′(0)
s and

t ′(0)
a satisfying the equations

∂SSFA

∂θ ′ = 0,
∂SSFA

∂φ′ = 0,
∂SSFA

∂t ′
+ a

∂vp(t ′)
∂t ′

= 0. (21)

Thus, the saddle points for the total action S = SSFA + GC can
be written as

θ ′
s = θ ′(0)

s + �θ ′
s , φ′

s = φ′(0)
s + �φ′

s , t ′a = t ′(0)
a + �t ′a,

(22)

where �θ ′
s , �φ′

s , and �t ′a are the small corrections to the
SFA saddle points and can be found perturbatively. Subscript

a in �t ′a indicates that the time �t ′a and the time t ′(0)
a are

affected by the position of the boundary due to the boundary-
dependent term a

∂vp(t ′)
∂t ′ in Eqs. (20) and (21). In the first order

of perturbation w.r.t. GC , all deviations from the SFA saddle-
point solutions are proportional to GC : �θ ′

s ∼ O(GC), �φ′
s ∼

O(GC), and �t ′a ∼ O(GC). In our analysis we consistently
keep only terms of the order ∼O(GC), and therefore, only the
SFA saddle points can enter the argument of GC(p,T ; a,t ′) and
the SFA action. Indeed using Eq. (21) we obtain

GC(p,T ; a,t ′) = GC

(
p,T ; r′(0)

s ,t ′(0)
a

)+ O
(
G2

C

)
, (23)

SSFA(p,T ; a,t ′) = SSFA
(
p,T ; r′(0)

s ,t ′(0)
a

)+ O
(
G2

C

)
. (24)

However, the corrected saddle-point solution for time will
contribute to the pre-exponential factor P (θ ′,φ′,t ′), since
∂P (θ ′,φ′,t ′)

∂t ′ 
= 0. It is straightforward to show that θ ′(0)
s = θv(t ′)

and φ′(0)
s = φv(t ′), where θv(t ′) and φv(t ′) describe the direction

of electron velocity at time t ′.

C. Integration over the surface of the sphere

Because of the large value of the action, only a vicinity
of saddle points contributes to the integral. We do a Taylor
expansion of GC around points θ ′(0)

s , φ′(0)
s , and t ′(0)

a [only the
saddle point in time is affected by the boundary term avp(t ′)]
up to quadratic terms:

GC(p,T ; a,t ′) = GC

(
p,T ; r′(0)

s ,t ′(0)
a

)
+ (a − r′(0)

s

) · ∇GC

(
p,r′(0)

s ,t ′(0)
a

)
+ (t ′ − t ′(0)

a

)
∂t ′GC

(
p,T ; r′(0)

s ,t ′(0)
a

)
+ 1

2

(
t ′ − t ′(0)

a

)2
∂2
t ′GC

(
p,T ; r′(0)

s ,t ′(0)
a

)
. (25)

The term involving mixed derivative (a − r′(0)
s )(t ′ − t ′(0)

a )
∇∂t ′GC(p,T ; r′(0)

s ,t ′(0)
a ) ∝ O(G2

C) is omitted from Eq. (25),
as a higher order correction, since ∇GC(p,r′(0)

s ,t ′(0)
a ) is

multiplied to t ′ − t ′(0)
a ∝ O(GC). The term involving second

derivatives w.r.t. spatial coordinates on the surface of the
sphere 1

2 (a − r′(0)
s )

2
�GC(p,T ; r′(0)

s ,t ′(0)
a ) is equal to 0 for

Coulomb potential, since �U (r) = δ(r) and the argument of
U in GC(p,T ; r′(0)

s ,t ′(0)
a ) is trajectory starting at the surface

and propagating outside of the sphere; this trajectory never
reaches the origin. Note that ∇GC = −�p, where �p is
the modification of the canonical momentum arising due to
electron interaction with the long-range potential of the core:

�p(t ′,T ) ≡ −∇GC = −
∫ T

t ′
dτ

U ′∥∥r′ + ∫ τ

t ′ dζ vp(ζ )
∥∥

×
[

r′ +
∫ τ

t ′
dζ vp(ζ )

]
, (26)

where U ′ represents a derivative of U w.r.t. its argument.
Indeed, �p(t ′,T ) is given by the integral from the force
F = −∇U , calculated along the electron trajectory

�p(t ′,T ) ≡
∫ T

t ′
dτ F

[
r′ +

∫ τ

t ′
dζ vp(ζ )

]
. (27)
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It is convenient to rewrite the time derivative of
GC(p,T ; r′(0)

s ,t ′(0)
a ) as [16]

∂t ′GC

(
p,T ; r′(0)

s ,t ′(0)
a

)
= −vp

(
t ′(0)
a

) · ∇GC

(
p,T ; r′(0)

s ,t ′(0)
a

)− U (a)

= −[−vp · �p
(
t ′(0)
a ,T

)+ U (a)
]
. (28)

Substituting Eq. (25) into the expression for ap(T ), and eval-
uating the integral over φ′ and θ ′ exactly (see Appendix B 1),
we obtain

ap(T ) = N�m(−i)�(−1)mϕκ�(a)
2iκa2

√
2π

e−iGC (p,T ;r′(0)
s ,t

′(0)
a )

×
∫ T

t0

dt ′ e− i
2

∫ T

t ′ dτ v2
p(τ )+iκ2(t ′−t0)/2

× e−i(t ′−t
′(0)
a )∂t ′GC (p,T ;r′(0)

s ,t
′(0)
a )eimφc

v (t ′)

×P m
�

(
pc

z

vpc (t ′)

)
j�(avp(t ′)), (29)

where φc
v(t ′) is the tunneling angle,

tan φc
v(t ′) = py − �py(t ′,T ) + Ay(t ′)

px − �px(t ′,T ) + Ax(t ′)
, (30)

and pc = p − �p(t ′,T ) is the Coulomb-shifted momentum
at time t ′ corresponding to the asymptotic momentum p
registered at the detector at time T :

�p(t ′,T ) = −∇GC

(
p,T ; r′(0)

s ,t ′
)
. (31)

Note that the tunneling angle is complex. It signifies the
sensitivity of strong-field ionization to the sense of rotation
of the electron in the initial state [8,21].

D. Integration over time

We are now left with the integral over t ′. We use the
saddle-point method to evaluate this integral. The saddle-point
equation for t ′ is

∂S

∂t ′
= ∂SSFA

∂t ′
+ ∂GC

∂t ′
+ (t ′ − t ′(0)

a

)∂2GC

∂t ′2
+ av′

p(t ′) = 0,

(32)

where the last term, as discussed in Sec. III E, comes from
j�(avp(t ′)). To solve this equation, we expand the derivative of
the SFA action in Eq. (32) up to quadratic terms w.r.t. �t ′(0)

a

and take into account that ∂t ′S
SFA
a (t ′(0)

a ) = 0, yielding

�t ′(0)
a = − ∂t ′GC

(
t ′(0)
a

)
∂2
t ′S

SFA
a

(
t
′(0)
a

)+ ∂2
t ′GC

(
t
′(0)
a

)
� − ∂t ′GC

(
t ′(0)
a

)
∂2
t ′S

SFA
a

(
t
′(0)
a

) � − ∂t ′GC

(
t ′(0)
a

)
∂2
t ′S

SFA
a

(
t
′(0)
s

) . (33)

Here we have used that t ′(0)
s − t ′(0)

a = −ia/κ 	 t ′(0)
s [10]. We

have omitted terms of order of GC in the denominator in the
last term in Eq. (33), since the terms of the first order of GC

are already included in the denominator. Taking into account
Eq. (28) and

∂2
t ′S

SFA
a

(
t ′(0)
s

) = E
(
t ′(0)
s

) · vp
(
t ′(0)
s

)
, (34)

we obtain for the time

�t ′(0)
a = −vp

(
t ′(0)
s

) · �p
(
t ′(0)
a ,T

)+ U (a)

E
(
t
′(0)
s

) · vp
(
t
′(0)
s

) . (35)

Equations (23) and (24) suggest that Coulomb corrections
to the ionization time do not affect the exponent of the
ionization amplitude, but they contribute to the prefactor,
further modifying the tunneling angle:

tan φc
v

(
t ′(0)
a + �t ′(0)

a

)
= py − �py

(
t ′(0)
a + �t ′(0)

a ,T
)+ Ay

(
t ′(0)
a + �t ′(0)

a

)
px − �px

(
t
′(0)
a + �t

′(0)
a ,T

)+ Ax

(
t
′(0)
a + �t

′(0)
a

) . (36)

Up to first order terms w.r.t. to GC , ap(T ) is

ap(T ) = iκa2ϕκ�(a)N�m

√
1

S ′′(t ′(1)
a

)
× e

− i
2

∫ T

t
′(0)
s

dτ v2
p(τ )+iκ2t

′(0)
s /2−iGC (p,T ;r′(0)

s ,t
′(0)
a )

× eimφc
v (t ′(1)

a )P m
�

(
pc

z

vpc

(
t
′(1)
a

)
)

j�

(
avp
(
t ′(1)
a

))
. (37)

E. Boundary matching

We now consider the elimination of boundary dependence
in the results for transition amplitude. In the long pulse, due
to cylindrical symmetry of the problem, the result does not
depend on the position of the detector in the polarization plane
x,y. Thus, without loss of generality we consider the electron
registered at the detector placed in the positive direction of the
x axis, i.e., the electron momentum at the detector py = 0.

1. Complex momentum �p(t ′(0)
a ,T ) at the boundary

To perform boundary matching in Eqs. (35) and (36), we
need to evaluate the momentum �p(t ′(0)

a ,T ) at the boundary

�p
(
t ′(0)
a ,T

) = −
∫ T

t
′(0)
a

dτ ∇U

(
r′(0)
s +

∫ τ

t
′(0)
a

dζ vp(ζ )

)
. (38)

Note that �p(t ′(0)
a ,T ) is a function of the final momentum p.

In this section we consider only p = popt, corresponding to
the momentum at which the probability is maximal, since it is
sufficient to calculate the ionization rates. The photoelectron
spectra will be considered in our subsequent publication
[19]. In the polarization plane the optimal momentum popt =
(popt cos φp,popt sin φp) is given by the radial momentum

popt = A0

√
1 + γ 2

√
1 − ζ0

1 + ζ0
(39)

for any angle φp. The parameter 0 � ζ0 � 1 satisfies the

equation
√

ζ 2
0 +γ 2

1+γ 2 = tanh 1
1−ζ0

√
ζ 2

0 +γ 2

1+γ 2 [8,14,21]. Note that ζ0 �
γ 2/3 for γ 	 1, and ζ0 � 1 − 1/ ln γ for γ � 1 [14]. An
alternative expression for popt is

popt = A0
sinh ωτ

′(0)
i

ωτ
′(0)
i

, (40)

where τ
′(0)
i = Im[t ′(0)

s ], is the imaginary part of the saddle-
point solution for time, also known as the “tunneling time.”
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The advantage of the second expression is that it provides
a compact connection between the optimal momentum and
the tunneling time, however, one has to keep in mind that in
a circular field τ

′(0)
i depends on the final radial momentum

p [8,14,21]:

ωτ
′(0)
i = cosh-1 η, η(p) = A0

2p

[(
p

A0

)2

+ γ 2 + 1

]
, (41)

and thus, in Eq. (40), τ
′(0)
i depends on popt itself.

Since the time t ′(0)
a is complex, the momentum �p(t ′(0)

a ,T )
will also be complex:

�py

(
t ′(0)
a ,T

) = �pre
y (a) + i�pim

y (a), (42)

�px

(
t ′(0)
a ,T

) = �pre
x (a) + i�pim

x (a). (43)

After some algebra (see Appendix A 1) we obtain

�pim
y (a) � O

(
1

κa

)
→ 0, (44)

�pre
x (a) = �pre

x , �pre
y (a) = �pre

y , (45)

�pim
x (a) � O

(
1

κa

)
→ 0, (46)

where the boundary-independent momentum is

�pre = −
∫ T

Re[t ′(0)
s ]

dτ ∇U

(
r′(0)
e +

∫ τ

Re[t ′(0)
s ]

dζ vpopt (ζ )

)
(47)

and the coordinate r′(0)
e , known as the coordinate of exit from

the tunneling barrier, is defined as

r′(0)
e =

∫ Re[t ′(0)
s ]

t
′(0)
s

dζ vpopt (ζ ). (48)

2. Boundary matching for �t ′(0)
a in Eq. (35) and for the

tunneling angle tan φc
v(t ′(0)

a + �t ′(0)
a ) in Eq. (59)

Substituting Eqs. (44), (45), (46), and (47) for �p(t ′(0)
a ,T )

from the previous section into Eq. (35) and taking into account
that in our geometry

Ey

(
t ′(0)
s

) = Ere
y , Ere

y = E0 cosh ωτ
′(0)
i , (49)

Ex

(
t ′(0)
s

) = iEim
x , Eim

x = −E0 sinh ωτ
′(0)
i , (50)

vy

(
t ′(0)
s

) = ivim
y , vim

y = −A0 sinh ωτ
′(0)
i , (51)

vx

(
t ′(0)
s

) = vre
x , vre

x = popt − A0 cosh ωτ
′(0)
i

= a0

τ
′(0)
i

(
sinh ωτ

′(0)
i − ωτ cosh ωτ

′(0)
i

)
, (52)

where a0 = E0/ω
2 is the electron oscillation amplitude,

yielding

E
(
t ′(0)
s

) · vpopt

(
t ′(0)
s

) = ipoptE0 sinh ωτ
′(0)
i = ivim

y poptω, (53)

we obtain

Re
[
�t ′(0)

a

] = −vre
x �pim

x

/
vim

y − �pre
y

poptω
, (54)

Im
[
�t ′(0)

a

] = vre
x �pre

x

/
vim

y − U (a)
/
vim

y − �pim
y

poptω
. (55)

Since U (a)/vim
y � �pim

y � O( 1
κa

) → 0 (see Appendix A 1),
�pim

x � O( 1
κa

) → 0, we obtain a boundary-independent cor-
rection to the real ionization time Re[�t ′(0)

s ] = Re[�t ′(0)
a ] and

imaginary ionization time Im[�t ′(0)
s ] = Im[�t ′(0)

a ]:

Im
[
�t ′(0)

s

]= �pre
x vre

x

vim
y poptω

= −�pre
x

E0

sinh ωτ
′(0)
i − ωτ cosh ωτ

′(0)
i

sinh2 ωτ
′(0)
i

,

(56)

Re
[
�t ′(0)

s

] = − �pre
y

poptω
= −�pre

y

E0

ωτ
′(0)
i

sinh ωτ
′(0)
i

, (57)

where the subscript “s” denotes that the results for corrections
to the SFA saddle point t ′(0)

a are now independent of the
boundary r ′ = a. Thus we can write the saddle point as

t ′(1)
s = t ′(0)

s + �t ′(0)
s . (58)

Matching for the tunneling angle is now trivial, since all
variables entering Eq. (36) are now proved to be boundary
independent:

tan φc
v

(
t ′(0)
a + �t ′(0)

a

) = vy

(
t ′(0)
s

)− �py − �t ′(0)
s Ey

vx

(
t
′(0)
s

)− �px − �t
′(0)
s Ex

. (59)

3. Boundary matching of the remaining terms in Eq. (37)
We first establish the connection (in Appendix A 2):

j�

(
avpc

(
t ′(1)
a

))
e−ir′(0)

s ·�p = j�

(
avp
(
t ′(0)
s

))
. (60)

Next, we consider matching of the EVA phase to the bound
wave function. We follow the approach used in [10] for a
linearly polarized field:

B(a) = κa2ϕκ�(a)eiGC (p,T ;r′(0)
s ,t

′(0)
a )j�

(
avp
(
t ′(0)
s

))
. (61)

The asymptotic bounded wave function in a Coulomb potential
is

ϕκ�(r) = Cκlκ
3/2 e−κr

κr
(κr)Q/κ . (62)

Furthermore, at r ′ = a, we can write (κa)Q/κ as

(κa)Q/κ = e
Q/κ

∫ a

1/κ

dχ

χ = e
−i
∫ t

′(0)
a

t
′(0)
κ

dτ U (
∫ τ

t
′(0)
s

dζ iκ)

= e
−i
∫ t

′(0)
a

t
′(0)
κ

dτ U (
∫ τ

t
′(0)
s

dζ v(ζ ))
, (63)

where t ′(0)
κ = t ′(0)

s − i/κ2 and t ′(0)
a = t ′(0)

s − ia/κ . The second
equality follows from the fact that between t ′(0)

κ and t ′(0)
a , the

velocity of the electron remains almost constant, while the third
equality holds because, finally, we will be using the modulus
of the vector, and under the approximation∥∥∥∥

∫ τ

t
′(0)
s

dζ v(ζ )

∥∥∥∥ ≈ ∥∥v
(
t ′(0)
s

)∥∥(τ − t ′(0)
s

)
= iκ

(
τ − t ′(0)

s

) =
∫ τ

t
′(0)
s

dζ iκ. (64)
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The term given by Eq. (63) can now be matched with the Coulomb phase term GC(p,T ; r′(0)
s ,t ′(0)

a ):

GC

(
p,T ; r′(0)

s ,t ′(0)
a

) =
∫ t

′(0)
a

T

dτ U

(
r′(0)
s +

∫ τ

t
′(0)
a

dζ vp(ζ )

)
=
∫ t

′(0)
a

T

dτ U

(∫ τ

t
′(0)
s

dζ vp(ζ )

)
(65)

to yield, after using the large-argument approximation for j�(avp(t ′(0)
s )),

B(a) = −iCκl

√
κe−κae

−i
∫ t

′(0)
a

t
′(0)
κ

dτ U (
∫ τ

t
′(0)
s

dζ vp(ζ ))
e
i
∫ t

′(0)
a

T
U (
∫ τ

t
′(0)
s

dζ vp(ζ ))(
e−κa−i(�+1)π/2 + eκa+i(�+1)π/2

)
= i�Cκl

√
κe

i
∫ t

′(0)
κ

T
dτ U (

∫ τ

t
′(0)
s

dζ v(ζ ))
(1 + (−1)�+1e−2κa) (66)

which ensures boundary matching for all transition rates and amplitudes.
After boundary matching the final expression for the ionization amplitude is independent of a:

ap(T ) = (−1)mCκ�N�m

√
κ

S ′′(t ′(1)
s

)e− i
2

∫ T

t
′(0)
s

dτ v2
p(τ )+i κ2

2 t
′(0)
s

e
−i
∫ T

t
′(0)
κ

dτ U (
∫ τ

t
′(0)
s

dζ vp(ζ ))
P m

�

(
pc

z

vpc

(
t
′(1)
s

))eimφc
v (t ′(1)

s ). (67)

Here t ′(1)
s is given by Eq. (58). Equation (67) corresponds to

a “single” ionization event (ionization amplitude formed after
one laser cycle), since only one saddle point is included.

F. Ionization rate

To calculate the ionization rate we integrate the ionization
amplitude (corresponding to a single ionization event) over
all momenta using the saddle-point method and divide by the
period of the laser field:

w = ω

2π

∫
dp |ap(T )|2. (68)

In our forthcoming publication [19] we will analyze the
accuracy of saddle point approximation in Eq. (68). As follows
from Eq. (67), the ionization amplitude ap(T ) can be written
in the form ap(T ) = Ppe

−iFp and the integral Eq. (68) can be
calculated using the saddle-point method.

The saddle-point equation

∇p2Im[Fp] = 2∇pIm
[
SSFA

p

]+ 2∇p
(
Im[Fp] − Im

[
SSFA

p

])= 0

(69)

can again be solved iteratively, since the second term is small
by construction. The optimal momentum in SFA solves the
equation

2∇pIm
[
SSFA

p

] = 0 (70)

and is given by Eqs. (39) and (40). Since the correction to
popt are obtained from Eq. (69), they will contribute to the
ionization rate in the second-order w.r.t. GC . We keep only
terms first order in GC and therefore these corrections are
irrelevant and the saddle point for the momentum integral in
the ionization rate is given by the optimal momentum, Eq. (39).
We neglect here small corrections arising from substituting the
pre-exponential factor S ′′

p(t ′(1)
s ) with S ′′

p(t ′(0)
s ) in Eq. (67). S ′′

denotes the derivative of the action w.r.t. the radial momentum.
Finally, using the saddle-point method for the radial integral
and taking into account that integration over φp yields 2π , we

obtain the expression for the ionization rate,

wopt = |Cκ�|2|N�m|2 γ√
η2 − 1

√
π

Im[S ′′(pρ,opt)]

× e
− 4n0

1−ζ2
0

√
ζ2
0 +γ 2

1+γ 2
e2WC1+2WC2

×
∣∣∣∣∣P m

�

(
−�kz

vpc

(
t
′(1)
s

)
)∣∣∣∣∣

2

e−2mIm[φc
v (t ′(1)

s )], (71)

where

Im[S ′′(popt)] = 2ζ 2
0 + γ 2

(
1 + ζ 2

0

)
ω(1 − ζ0)

√(
ζ 2

0 + γ 2
)
(1 + γ 2)

, (72)

WC1 = −
∫ τ ′(0)

κ

0
dτ Re

[
U

(∫ τ

t
′(0)
s

dζ vp(ζ )

)]
, (73)

WC2 =
∫ T

t
′(0)
i

dτ Im

[
U

(∫ τ

t
′(0)
s

dζ vp(ζ )

)]
. (74)

WC1 is a well-known adiabatic Coulomb correction, evaluated
under the barrier along the optimal trajectory [14,15]. Analysis
of Eq. (71) shows that nonadiabatic Coulomb effects modify
the ionization dynamics in several ways. New effects arising
from our analysis include modification of (i) ionization times,
(ii) initial conditions for electron continuum dynamics, and
(iii) the “tunneling angle.”

We discuss these Coulomb effects in detail in the next
section. We show that Coulomb effects modify (i) calibration
of the attoclock [1–4] in the angular streaking method and (ii)
the ratio of ionization rates from p− and p+ orbitals obtained
for short-range potentials in [8]. The photoelectron spectra will
be considered in our subsequent publication [19], where we
will include the effects of WC2, the result of interaction of the
long-range potential with the electron in the continuum and
depart from the saddle point approximation in Eq. (68).

IV. PHYSICAL PICTURE OF IONIZATION
IN LONG-RANGE POTENTIALS

In circularly polarized fields, the electron liberated at
different times will be “directed” by the laser field into
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different angles. This idea is called “angular streaking” and
the corresponding “time-to-angle” mapping is unique for
nearly single-cycle pulses with a stable carrier-envelope phase,
underlying the idea of the attoclock [1–4]. The angular
streaking principle makes single and double ionization in
circularly polarized strong laser fields a sensitive probe of
the attosecond dynamics [1–6].

However, reconstruction of this dynamics requires the
calibration of the attoclock, i.e., establishing the mapping
between the direction of the laser polarization vector at the
time of ionization and the direction of the electron momentum
at the detector. When one strives to achieve the accuracy of,
say, 10 as, using an 800-nm carrier as a clock, one needs to
know this mapping with an accuracy of about 1◦.

Simple analytical calibration can be made if one neglects the
electron interaction with the long-range core potential during
and after ionization. For short-range potentials the mapping is
illustrated in Fig. 1. For the laser field defined as

E(t) = E0[− sin(ωt) x̂ + cos(ωt) ŷ], (75)

the connection between the real part of the ionization time and
the observation angle is [14,21]

ωt
′(0)
i = ωRe

[
t ′(0)
s

] = φp + 2π (r − 1), r ∈ N. (76)

The detector placed along the positive direction of the x axis
will detect the electron liberated at t ′(0)

i = 0, i.e., when the laser
field E(t) = E0ŷ is pointing towards the positive direction
of the y axis. The electron exits the barrier in the negative
direction of the y axis, corresponding to the angle −π/2. The
velocity at the exit, vy(t ′(0)

i ) = 0, vx(t ′(0)
i ) = popt − A0, and

vx(t ′(0)
i ), tends to 0 in the tunneling limit (γ 	 1): vx(t ′(0)

i ) =√
2Ipγ /6. Thus, the angle between the direction of the field at

the moment of ionization and the electron momentum at the
detector is π/2.

How is this mapping affected when the interaction with the
long-range core potential is taken into account?

A. Coulomb correction to the ionization time,
initial electron velocity

Even in the tunneling limit, our analysis shows that due
to the effects of the long-range potential, the electron has
nonzero velocity (−�pre

y ) in the negative direction of the y

axis when the field is pointing in the positive y direction, i.e.,
at t = 0 in our notations. This is by no means surprising and
the corresponding velocity has a very simple explanation: it is
required to overcome the attraction of the Coulomb potential,
which the electron will experience all the way towards the
detector. Had the electron been born with zero velocity in
the long-range potential, it would never have reached the
detector placed in the positive direction of the x axis. One
expects the same result within the adiabatic tunneling picture.
The question is: Is the magnitude of �pre

y consistent with
the adiabatic ionization model, which would suggest that the
electron was liberated slightly before t = 0 but with zero
velocity?

To answer this question, we need to analyze the changes
in the ionization time due to the effects of the long-range
potential. The corrections to ionization times associated with

electron interaction with the long-range potential are given
by Eqs. (56) and (57). The shift of the saddle point in time
Re[�t ′(0)

s ] corresponds to the shift in the direction of the force
of the electric field −E(t) from −π/2 to −π/2 + ωRe[�t ′(0)

s ].
Let us first discuss the initial conditions for the electron

continuum dynamics in the tunneling limit γ 	 1. In this
limit, the electron moves in a static electric field [E(t) = E0 ŷ]
and the momentum shift is accumulated along the electron
trajectory,

y tun(t) = −
[

Ip

E0
+ 1

2
E0
(
t − t

′(0)
i

)2]
ŷ, (77)

where y tun(t ′(0)
i ) = −Ip/E0 is the coordinate of the exit point in

the tunneling limit. Taking into account that U = −Q/(−y),
∇U = −Qŷ/y2, and substituting this trajectory into the
expression for �p, Eq. (47), we obtain

Re[�py] = −Q

∫ T

t
′(0)
i

dτ

(y tun)2
= −0.78

√
2

I
3/2
p

QE0. (78)

It is easy to see that Eq. (57) in the tunneling limit yields
Re[�t ′(0)

s ] = −�pre
y /E0, thus we obtain from Eq. (78)

�t
′(0)
i = −0.78Q

√
2

I
3/2
p

≈ −I
3/2
p . (79)

From Eq. (79), we find that the correction to the ionization time
Re[�t ′(0)

s ] is negative, the electron is born before E(t) points
down, and the Coulomb corrected angle −π/2 + ωRe[�t ′(0)

s ]
has a negative value. At this (earlier) ionization time the
electron velocity is lower than at t

′(0)
i , and in the tunneling

limit:

vx = popt − A0 cos
(
ωt

′(0)
i + ωRe

[
�t ′(0)

s

])− �pre
x

≈ popt − A0 + O
(
G2

C

) ≈ γ
√

2Ip/6 + O
(
G2

C

)
(80)

vy = −�pre
y − A0 sin

(
ωt

′(0)
i + ωRe

[
�t ′(0)

s

])
= −�pre

y − A0ωRe
[
�t ′(0)

s

] ≈ 0 + O
(
G2

C

)
. (81)

Thus, in the tunneling limit γ → 0, the electron velocity
indeed tends to 0 at the exit from the barrier. The effect of
the Coulomb potential is reduced to the modification of the
angle between the direction of the laser field at the moment of
exit E(t ′(0)

i ) and the direction of the final electron momentum
p, registered at the detector. For short-range potentials this
angle is π/2, and for long-range potentials this angle is larger;
in the tunneling limit it is π/2 + ωI

−3/2
p (see Fig. 1).

However, most experiments are currently performed in
the regime of nonadiabatic ionization, when the Keldysh
parameter γ is not that small. In this regime the exit velocities
(with t

′(0)
i = 0),

vx = popt − A0 cos
(
ωRe

[
�t ′(0)

s

])− �pre
x , (82)

vy = −�pre
y − A0 sin

(
ωRe

[
�t ′(0)

s

])
, (83)

become significant already for small γ . The longitu-
dinal electron velocity v‖ along the direction of the
field and the transverse electron velocity v⊥ orthogonal
to the field are also nonzero (Fig. 2). The longitudi-
nal and transverse velocities are obtained from Eqs. (82)
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FIG. 1. (Color online) Kinematics of electron tunneling through the rotating barrier. The right circularly polarized laser field E creates a
tunneling barrier rotating counterclockwise. (a) Short-range potential: The electron observed at the detector placed along the x axis exits the
barrier along the negative direction of the y axis at angle α(0) = −π/2. (b) Long-range potential: The electron observed at the detector placed
along the x axis exits the barrier at the angle α(1) = −π/2 − �α, �α = |ω�t

′(0)
i |, and �t

′(0)
i < 0.

and (83) (�α = |ω�t
′(0)
i |):

v⊥ = vx cos (�α) − vy sin (�α), (84)

v‖ = vx sin (�α) + vy cos (�α). (85)

Ignoring the nonzero initial velocity of the electron will
generally lead to errors in the two-step reconstruction of
time delays in the angular streaking method. In the next
section we illustrate the degree of uncertainty that can arise in
reconstructing the time from the attoclock measurement using
examples of Ar and He atoms.

B. Calibration of the attoclock

The attoclock observable is the angular offset. This angular
offset either can appear due to electron interaction with the
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FIG. 2. (Color online) Initial velocity corresponding to the center
of the velocity distribution: v⊥ [dashed (green) line] [Eq. (84)] and
v‖ [dot-dashed (blue) line] [Eq. (85)] vs frequency for E0 = 3 × 1010

V/m (E0 = 0.06 a.u. and I = 2.6 × 1014 W/cm2) and Ip = 14 eV.
vSFA

⊥ [solid (red) line] shows the result arising in the nonadiabatic
short-range theory (the PPT theory; see [8,14,21]) and in the length-
gauge SFA.

core potential �α, as described above, or can be associated
with other delays, e.g., delays accumulated due to nontrivial
tunneling, polarization, or excitation dynamics, �αU (the
superscript U stands for “unknown,” since the respective
�αU is associated with the dynamics that we may not
know). Since the attoclock can only measure the total offset
�αTot = �αU + �α, to get access to the unknown (e.g.,
tunneling) times one has to calculate the offset �α and subtract
it from the measurable offset �αTot. The uncertainty in the
calculation of �α will lead to the corresponding uncertainty
in reconstructing, say, the tunneling time.

In this section we consider the angular offset �α and
analyze the associated uncertainties in the time reconstruction
for three models.

(i) The two-step adiabatic model. This model assumes that
the peak of the photoelectron distribution corresponds to the
electron trajectory with specific initial conditions, namely,
the initial coordinate defined according to the quasistatic
tunneling picture for short-range potentials, or in the limit
of a sufficiently thick barrier (4E0 	 I 2

p): x
qs
e (t ′(0)

i ) = 0,

y
qs
e (t ′(0)

i ) = −Ip/E0. The initial electron velocity is 0 (both
transversal and longitudinal): v

qs
x (t ′(0)

i ) = 0, v
qs
y (t ′(0)

i ) = 0.
(ii) The two-step nonadiabatic model. The peak of the pho-

toelectron distribution corresponds to the electron trajectory.
The initial coordinate is defined according to the PPT theory

y ′(0)
e = ∫ Re[t ′(0)

s ]
t
′(0)
s

dζ [popt + Ay(ζ )] [see also Eq. (48)]. The ini-
tial electron velocity is nonzero in the direction orthogonal to
the field polarization at the time of exit: vx(t ′(0)

i ) = popt − A0,
vy(t ′(0)

i ) = 0 [see Eqs. (39) and (40) for the definition of popt].
This nonzero velocity reflects the presence of a “cross-wind”:
the effect of the second component of the circularly polarized
field. Note that, both orthogonal components of the circular
field are always non-zero in sub-barrier region, when electron
trajectory evolves in complex time.

(iii) The ARM model. The ARM model is a consistent
quantum approach which does not require the knowledge of
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FIG. 3. (Color online) Calibration of the attoclock for an Ar atom with Ip = 15.7 eV. (a) Initial velocities vx [solid (red) line] and vy

[dashed (green) line] resulting from the ARM theory and vx [dot-dashed (blue) line] from the nonadiabatic short-range theories [8,14,21] for
the geometry specified in Fig. 1. (b) Initial coordinate (exit point) in the current implementation of the ARM and the PPT [8,14,21] theories
[solid (red) line] and Ip/E0 in the adiabatic theory [dashed (blue) line]. (c) Angular offset �α corresponding to the ARM [solid (red) line],
nonadiabatic short-range [dashed (green) line], and adiabatic [blue (dot-dashed) line] theories. (d) Uncertainty in the calibration of time in the
attoclock corresponding to (i) the nonadiabatic two-step model [solid (red) line] and (ii) the adiabatic two-step model [dashed (blue) line].

the “initial conditions” to calculate the offset angle. However,
since the ARM method naturally incorporates the concept
of trajectories, the initial conditions can be obtained within
the ARM model, as discussed in the previous sub-section.
Both vx(t ′(0)

i ) and vy(t ′(0)
i ) are nonzero due to the nonadiabatic

Coulomb effects [see Eqs. (82) and (83)].
To ensure that all three models use the same level of

approximation for the electron continuum dynamics, in two-
step models we propagate the trajectories from the point of
exit to the detector using the EVA instead of solving Newton’s
equations exactly. Formally this means that the classical
equation for Coulomb plus laser field (used in the two-step
models),

dr
dt

= v(t),
dv
dt

= −E(t) − Q

r3(t)
r(t), (86)

r(t) = (x(t),y(t)), is solved iteratively. The zeroth-order tra-
jectory (neglecting the Coulomb term) is used in the argument
of the Coulomb potential. For the two-step adiabatic model we
obtain

vADB
x = A0 + �pADB

x , vADB
y = �pADB

y ,
(87)

�αADB = atan
vADB

y

vADB
x

,

where �pADB
x and �pADB

y are defined as (φ = ωt , φT = ωT ,
T → ∞)

�pADB
x = −Qω

A2
0

∫ φT

0
dφ

xADB(φ)

[xADB(φ)2 + yADB(φ)2)]
3
2

, (88)

�pADB
y = −Qω

A2
0

∫ φT

0
dφ

yADB(φ)

[xADB(φ)2 + yADB(φ)2)]
3
2

, (89)

xADB(φ) = − sin φ + φ, (90)

yADB(φ) = cos φ − 1 − γ 2/2. (91)

For the two-step nonadiabatic model we obtain

vPPT
x = popt + �pPPT

x , vPPT
y = �pPPT

y ,
(92)

�αPPT = atan
vPPT

y

vPPT
x

,

where �pPPT
x and �pPPT

y are defined as

�pPPT
x = −Qω

A2
0

∫ φT

0
dφ

xPPT(φ)

[xPPT(φ)2 + yPPT(φ)2)]
3
2

, (93)

�pPPT
y = −Qω

A2
0

∫ φT

0
dφ

yPPT(φ)

[xPPT(φ)2 + yPPT(φ)2)]
3
2

, (94)
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xPPT(φ) = − sin φ + popt

A0
φ, (95)

yPPT(φ) = cos φ − η(popt), (96)

and η(popt) is given by Eq. (41). Note that xADB(φ), yADB(φ)
and xPPT(φ), yPPT(φ) are the respective trajectories in units
of E0/ω

2. While this approximation can slightly affect the
absolute values of the offset angles �α, the error is essentially
identical for all three models. Thus, the time uncertainty,
determined by the relative offset given by two-step models
with respect to the ARM method, is virtually unaffected.

Figure 3(c) shows the angular offsets for Ar atoms for all
three models. The discrepancy between the models increases
with the decrease in the laser intensity, reaching δα ≈ 4.5◦ rel-
ative offset between the adiabatic model and the ARM model
(for E0 = 0.0267 a.u., corresponding to 0.5 × 1014 W/cm2).
The discrepancy is due to the different initial conditions in
these models. We stress that the ARM theory does not require
knowledge of the initial conditions to obtain �α, because it
does not need to split the entire quantum process into two
steps. However, the initial conditions can be obtained from the
ARM theory, if needed.

Figure 3(a) compares the initial velocities resulting from the
ARM and the nonadiabatic short-range theories [8,14,21] for
the geometry specified in Fig. 1. For the adiabatic model both
vx and vy are 0 [not shown in Fig. 3(a)]. The difference in the
initial coordinates in the nonadiabatic theory for short-range
potentials and the adiabatic model is shown in Fig. 3(b).
The initial coordinate in the ARM method is essentially
the same as in the nonadiabatic short-range theory,
since the respective Coulomb correction is an order higher
than the first-order Coulomb effects considered in the current
implementation of the ARM method. The difference in the
offset angle δα maps into uncertainty in the delay time:
δtd = δα/ω [Fig. 3(d)]. The uncertainty in the reconstruction
of the time delay becomes less significant at higher intensities
and ranges from 30 as for low fields to 3 as near the barrier
suppression intensity [Fig. 3(d)]. The uncertainty δtd strongly
decreases if nonadiabatic initial conditions are used in the
two-step model, ranging from 5 as for low intensities to 2 as
for high intensities.

Qualitatively we find the same picture for He atoms (Fig. 4),
however, quantitatively the discrepancy between the different
models is smaller and the time uncertainty is almost negligible
for the highest intensities. For He atoms, using nonadiabatic
initial conditions in the two-step model reduces the uncertainty
to 1.5 as and even less for higher intensities.

C. Coulomb correction to the electron “tunneling angle”

The complex tunneling angle characterizes the direction
of the electron velocity at the complex ionization time t ′(1)

s :

tan φv(t ′(1)
s ) = vy (t ′(1)

s )

vx (t ′(1)
s )

. The ionization rate is proportional to the

imaginary part of the tunneling angle w ∝ e2mIm[φv (t ′(1)
s )], where

m is the magnetic quantum number. In the case of a spherically
symmetric initial state (s state) m = 0 and the ionization rate
does not depend on the tunneling angle, because the electron
density in the initial state is the same in all directions. For
p states, however, the direction of electron tunneling, defined

by the tunneling angle, becomes important. In particular, it
leads to the sensitivity of ionization to the sense of rotation of
the electron in the initial state. For short-range potentials this
effect was predicted and analyzed in [8,21]. In this section we
discuss the nonadiabatic Coulomb corrections to the tunneling
angle and show how the results in [8,21] are affected by the
electron interaction with the long-range core potential.

The tunneling angle in the case of short-range potentials is

tan φv

(
t ′(0)
s

) = py − A0 sin
(
ωt ′(0)

s

)
px − A0 cos

(
ωt

′(0)
s

) . (97)

The Coulomb potential leads to two equally important effects:
(i) the modification of the complex ionization time (t ′(0)

s +
�t ′(0)

s in the long-range potential vs just t ′(0)
s in the short-range

potential) and (ii) the momentum shift due to the deceleration
of the electron by the long-range potential of the core (see
derivation in Sec. III E):

tan φc
v(t ′s) = vy

(
t ′(0)
s

)− �py − �t ′(0)
s Ey

vx

(
t
′(0)
s

)− �px − �t
′(0)
s Ex

. (98)

In this section we focus on the imaginary part of the complex
tunneling angle φc

v(t ′s) = tan-1 (x + iy), since it contributes to
the ionization probability. The imaginary part of φc

v(t ′s) can be
cast in the form

Im
[
φc

v(t ′s)
] = − 1

4 ln ((1 − x2 − y2)
2 + 4x2)

+ 1
2 ln ((1 + y)2 + x2). (99)

Note that the real part x � O(GC) is of the first order with
respect to the long-range potential and therefore the x2 terms
have to be omitted. The ratio between ionization rates for p−
and p+ orbitals is

wp−

wp+
=
∣∣∣∣e−i2φc

v (t ′(1)
s )

ei2φc
v (t ′(1)

s )

∣∣∣∣ = e4Im[φc
v (t ′(1)

s )] =
(

1 + y

1 − y

)2

, (100)

y = vim
y − Im

[
�t ′(0)

s

]
Ere

y

vre
x − �pre

x + Im
[
�t

′(0)
s

]
Eim

x

. (101)

Finally,

y = vim
y + �pre

x vre
x /[popt tanh ωτ ]

vre
x − �pre

x + �pre
x vre

x /popt
. (102)

Figure 5 shows how the nonadiabatic Coulomb effects change
the ratio between the ionization rates for the p+ and p−
orbitals. Modifications come solely from the alteration of the
tunneling angle. The nonadiabatic Coulomb corrections (WC1

and WC2) do not contribute to the ratio of the ionization
rates, as also noted in [8]. The decrease in the p−/p+ ratio
at high frequencies in long-range potentials is consistent with
the opposite propensity rules in one-photon ionization, where
p+ is preferred over p− for right circularly polarized fields.

V. CONCLUSION

We have evaluated strong-field ionization rates and am-
plitudes for circular fields taking into account nonadiabatic
barrier dynamics of a Coulomb potential using the recently
developed ARM technique. The ionization rates for atoms
in arbitrary potentials in circular fields for long-range po-
tentials have been derived rigorously, extending the work
in [8] and [10] and in [14] and [22]. The ARM approach
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FIG. 4. (Color online) Calibration of the attoclock for a He atom with Ip = 24.6 eV. (a) Initial velocities vx [solid (red) line] and vy

[dashed (green) line] resulting from the ARM theory and vx [dot-dashed (blue) line] from the nonadiabatic shortrange theories [8,14,21] for
the geometry specified in Fig. 1. (b) Initial coordinate (exit point) in the current implementation of the ARM and the PPT [8,14,21] theories
[solid (red) line], and Ip/E0 in the adiabatic theory [dashed (blue) line]. (c) Angular offset �α corresponding to the ARM [solid (red) line],
nonadiabatic short-range [dashed (green) line], and adiabatic [dot-dashed (blue) line] theories. (d) Uncertainty in time reconstruction associated
with the nonadiabatic two-step model [solid (red) line] and the adiabatic two-step model [dashed (blue) line].

allows for accurate and rigorous analysis of ionization in
strong fields, consistently including Coulomb effects both
during and after ionization. It should be noted that in the
current implementation of the ARM method we have included
Coulomb effects in first-order perturbation to the action. This

0 2 4 6 81

2

3

4

5

6

7

8

Field frequency ω (eV)

Y
ie

ld
 ra

tio
s w

p−/w
p+

BS−2011 (short−range)
ARM (long−range)

FIG. 5. (Color online) Ratio of ionization rates from p− and p+

orbitals for a Ne atom (Ip = 21.5645 eV) and E0 = 7.7 × 1010 V/m
(E0 = 0.15 a.u. and I = 1.6 × 1015 W/cm2), with wp−/wp+ for a
right circularly polarized field: short-range potential [solid (red) line]
[8] and long-range potential [dashed (blue) line].

limits the applicability of the current implementation to the
region of moderate γ . The simplest “postmortem” validity
check can be performed by computing �pre [Eq. (47)] and
comparing it to the SFA velocities. The momentum shifts �pre

should not exceed the SFA velocities.
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APPENDIX A: SUPPLEMENTARY INFORMATION
FOR BOUNDARY MATCHING

1. Complex momentum shifts at the boundary

The goal of this section is to calculate the momentum shift
at the matching point a,

�p(a) = −
∫ T

t
′(0)
a

dτ ∇U

(
r′(0)
s +

∫ τ

t
′(0)
a

dζ vp(ζ )

)
, (A1)
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and show that it does not depend on the position of the
boundary under the matching conditions. We first split the
integral into two parts:

�p(a) = −
∫ Re[t ′(0)

s ]

t
′(0)
a

dτ ∇U

(
r′(0)
s +

∫ τ

t
′(0)
a

dζ vp(ζ )

)

−
∫ T

Re[t ′(0)
s ]

dτ ∇U

(
r′(0)
s +

∫ τ

t
′(0)
a

dζ vp(ζ )

)
. (A2)

Physically, these two parts can be interpreted as accumulated
before,

�pub(a) = −
∫ Re[t ′(0)

s ]

t
′(0)
a

dτ ∇U

(
r′(0)
s +

∫ τ

t
′(0)
a

dζ vp(ζ )

)
, (A3)

and after the tunnel exit,

�pic(a) = −
∫ T

Re[t ′(0)
s ]

dτ ∇U

(
r′(0)
s +

∫ τ

t
′(0)
a

dζ vp(ζ )

)
, (A4)

where the superscripts “ub” and “ic” stand for “under the
barrier” and “in continuum”, respectively. The tunnel exit
defined as the coordinate at time Re[t ′(0)

s ],

r′(0)
e =

∫ Re[t ′(0)
s ]

t
′(0)
s

dζ vp(ζ ), (A5)

is a straightforward extension of Eq. (48). The second part,
�pic(a), does not depend on the boundary. In the following
we show that the first part �pub(a) is negligible under the
matching condition κa � 1.

We first note that �pub
y (a) is purely imaginary, while

�pub
x (a) is purely real. In the same geometry that we use in the

text, t ′(0)
a = iτ ′(0)

a , and the complex under-the-barrier trajectory
is R = r + iρ:

r = −a0
[

cosh φ
′(0)
i − cosh φ

]
ŷ, (A6)

ρ = a0

[
φ

φ
′(0)
i

sinh φ
′(0)
i − sinh φ

]
x̂, (A7)

where φ
′(0)
i = ωτ

′(0)
i and φ = ωξ , and ξ is imaginary inte-

gration time variable. The Coulomb potential takes the form
(details of the analytical continuation of the Coulomb potential
to the complex plane will be addressed in our subsequent
publication [19]):

U (R) = − Q√
r2 − ρ2

. (A8)

The purely imaginary �pub
y (a) is

�pub
y (a) = Q

ω
i

∫ 0

φ
′(0)
a

r dφ

(r2 − ρ2)3/2 . (A9)

The purely real �pub
x (a) is

�pub
x (a) = −Q

ω

∫ 0

φ
′(0)
a

ρ dφ

(r2 − ρ2)3/2 , (A10)

and in both cases, φa = ωτ ′(0)
a . Also, since for the optimal

trajectory r � ρ,

�pub
x (a) � −Q

ω

∫ 0

φ
′(0)
a

ρ dφ

r3
. (A11)

As ρ = 0 at the tunnel entrance (φ = φ′(0)
s = ωt ′(0)

s ) and ρ = 0
at the tunnel exit (φ = 0), the integral is accumulated in the
vicinity of τ ′(0)

a . We make linear expansion of the integrand
around this point,

�pub
x (a) � vre

x

(
t ′(0)
s

) ∫ τ
′(0)
a

0
dξ

τ ′(0)
a − ξ{

κ
(
τ

′(0)
a − ξ

)+ a
}3

= −C
vre

x

(
t ′(0)
s

)
κ

1

κa
, (A12)

where C is a numerical factor:

C =
∫ ∞

0

zdz

(z + 1)3
. (A13)

Thus, �pub
x � O(1/κa) and is negligible under matching

conditions κa � 1.
So far we have considered �p(a) defined through its outer

region value. We can also estimate �p(a) using its inner-region
value. The inner-region value of �p(a) can be calculated using
a static approximation (or short-time propagation), since the
time interval from t ′(0)

s to t ′(0)
a is very small. It is convenient

to estimate �pu
y (a) by evaluating its inner-region value. In a

static field, the momentum in the inner region pin
y (a) is defined

through the energy conservation:

−Ip =
(
pin

y (a)
)2

2
− Q

a
− E0a. (A14)

Thus, pin
y (a) = −i

√
2(Ip − E0a − Q/a) �

−i
√

2(Ip − E0a){1 + Q/[2a(Ip − E0a)]}, yielding
pin

y (a) = −iκ(a) − Q/κ(a)a. The first term is the SFA
velocity at the boundary κ(a) = √2(Ip − E0a) � κ; the
second term is the respective correction associated with
Coulomb effects. Thus, �pin

y (a) � O(1/κa). The vanishingly
small value of the correction at the boundary is not surprising,
since the boundary is placed in the region where the Coulomb
modification to the barrier is already very small.

2. Additional expressions for boundary matching

We derive here the relation

j�

(
avpc

(
t ′(1)
a

))
e−ir′(0)

s ·�p = j�

(
avp
(
t ′(0)
s

))
. (A15)

Since the saddle point t ′(1)
s is close to the SFA saddle point t ′(0)

s ,
we know that the argument of j� is of the order of κa � 1.
So using the large-argument approximation for the spherical
Bessel function, and expanding vpc (t ′) up to first order in �p,
we get

j�

(
avpc

(
t ′(1)
a

)) = j�

(
avp
(
t ′(1)
a

))
eavp(t ′(1)

a )·�p/vp(t ′(1)
a ). (A16)

It can be shown that

j�

(
avp
(
t ′(1)
a

))
= j�

(
avp
(
t ′(0)
a

))[
1 − aω

κ
�t ′(0)

s

√
(ζ 2 + γ 2)(1 + γ 2)

]
.

(A17)

Since the inner region should be treated in the quasistatic
approximation, the second term is vanishingly small.
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Analogous to the boundary matching approximation made
in [20], we obtain

vp
(
t ′(0)
a

) � vp
(
t ′(0)
s

)
. (A18)

Taking into account that by definition

r′(0)
s = a

vp
(
t ′(0)
a

)
vp
(
t
′(0)
a

) (A19)

and

a
vp
(
t ′(1)
a

) · �p

vp
(
t
′(1)
a

) = a
vp
(
t ′(0)
a

) · �p

vp
(
t
′(0)
a

) + O
(
G3

C

)
, (A20)

we obtain Eq. (A15). It must be noted that it was because
of Eq. (A15) that j�(avp(t ′)) was used in Eq. (32), and not
j�(avpc (t ′)).

APPENDIX B: FREQUENCY-DOMAIN APPROACH

1. The wave function

In our frequency-domain approach we start the analysis
with the expression for the wave function in the coordinate
representation ψ(r,t) = 〈r|ψout(t)〉, where |ψout(t)〉 is given

by Eq. (5):

ψout(r,t) = i

∫ t

t0

dt ′
∫

dr′
∫

dr′′ 〈r|UB(t,t ′)|r′〉〈r′|L̂−(a)|r′′〉

× 〈r′′|ψin(t ′)〉. (B1)

Taking into account the explicit form of the Bloch operator in
coordinate representation, Eq. (9), we can rewrite Eq. (B1) as
follows:

ψ(r,t) = i

∫ t

t0

dt ′
∫

dr′GB(r,t ; r′,t ′)δ(r ′ − a)B(a,θ ′,φ′,t ′).

(B2)

After following the arguments in Sec. III A, we can approx-
imate the boundary term B(a,θ ′,φ′,t ′) as in Eq. (17). This
follows from the foresight that when we use the saddle point
for the time integral, we end up studying the dynamics of the
wave function around the pole v(t ′s) = iκ in the momentum
space. This corresponds to a prominent contribution only from
the asymptotic part of the wave function in the region κr � 1
in coordinate space.

Using Eqs. (17) and (25) and evaluating the δ function over
r ′, we now have for the wave function ψ(r,t)

ψ(r,t) = iκa2

(2π )3

∫ t

t0

dt ′
∫

dk
∫ π

0
dθ ′
∫ 2π

0
dφ′ ei(vk(t)·r−vk(t ′)·a)e− i

2

∫ t

t ′ dτ v2(τ )ϕκ�(a)

× e−i
∫ t

T
dτ U (rL(τ ;r,k,t))−iGC (p,T ;r′(0)

s ,t ′)−(a−r′(0)
s )·∇GC (p,T ;r′(0)

s ,t ′)N�mP m
� (cos θ ′)eimφ′

, (B3)

where N�m =
√

2�+1
4π

(�−|m|)!
(�+|m|)! and a = a(sin θ ′ cos φ′ x̂ +

sin θ ′ sin φ′ ŷ + cos θ ′ ẑ). We also take A(t) = −A0(cos ωt x̂ +
sin ωt ŷ).

The point r′(0)
s is defined in spherical coordinates as (a,θ ′(0)

s ,

φ′(0)
s ), where θ ′(0)

s = θv(t ′) and φ′(0)
s = φv(t ′), which gives

r′(0)
s = a

vk(t ′)
vk(t ′)

≈
∫ t ′

t
′(0)
s

dτ vk(τ ). (B4)

The approximation follows from the fact that the saddle point
for t ′ will be quite close to the SFA saddle point t ′(0)

s , and hence
by defining t ′ − t ′(0)

s = a
vk(t ′) , we can redefine the saddle point

r′(0)
s as a classical trajectory. t ′ corresponds here to a zeroth-

order correction in the SFA saddle point when the electron is
propagated from a finite boundary instead of the origin [thus
the saddle point for SSFA + avp(t ′)].

Following Sec. III C, the resulting surface integral is

I�′ =
∫ π

0
dθ ′ sin θ ′

∫ 2π

0
dφ′ e−iv(t ′)·aP m

� (cos θ ′)eimφ′
ei�k·a.

(B5)

The term ei�k·a comes from the Taylor expansion of
the Coulomb phase GC about the saddle-point coordinate
(a,θ ′(0)

s ,φ′(0)
s ). Since the gradient of GC is identified as the

momentum shift, we can see this term as the contribution of the
long-range potential to propagation from the finite boundary
r ′ = a. Including this shift by rewriting the shifted kinetic
momentum as vkc (t) = vk + A(t) − �k, the integral over φ′

is evaluated as

Iφ′ =
∫ 2π

0
dφ′ eimφ′

e−i(vkc (t ′))·a

=
∫ 2π

0
dφ′ eimφ′

e
−avkc

ρ
(t ′) sin θ ′ cos(φ′−φc

v (t ′))−akc
z cos θ ′

= 2πeimφc
v (t ′)Jm

(
avkc

ρ
(t ′) sin θ ′)e−iakc

z cos θ ′
.

The superscript “c” denotes that we are calculating the surface
integral over the Coulomb-shifted momentum and Jn(z) is the
nth-order Bessel function of the first kind.

The �′ integral now is

I�′ = 2π (−i)meimφc
v (t ′)
∫ π

0
dθ ′ Jm

(
avkc

ρ
(t ′) sin θ ′)

×P m
� (cos θ ′)e−iakc

z cos θ ′
sin θ ′. (B6)

We depart here from the method used in [10] of approximating
the θ ′ integral around a given angle according to the direction
of polarization (there, θ ′ ∼ π was a reasonable approximation,
and here θ ′ ∼ π/2). But with the θ ′ ∼ π/2 approximation, not
only do we lose accuracy in our result, but the small-argument
approximation would not be valid for Jm(ab sin θ ′). But we
have used θ ′ ∼ π/2 for the Coulomb correction, as deviation
from a planar trajectory here is suppressed exponentially [23].
Hence we perform an exact analysis, noting that the above
integral has an analytic expression from [24] by using a similar
integral on the product of Bessel functions and the Gegenbauer
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polynomial from [25], which finally gives us

I�′ = 4π (−i)�(−1)meimφc
v (t ′)P m

�

(
kc
z

vkc (t ′)

)
j�(avkc (t ′)). (B7)

Substituting this result into Eq. (B7) and using Appendix A 2,
we get the wave function as

ψ(r,t) = Nlm(−i)�(−1)mϕ(a)
2iκa2

(2π )2

∫ t

t0

dt ′

×
∫

dk eiv(t)·r− i
2

∫ t

t ′ dτv2(τ )eimφc
v (t ′)eiκ2(t ′−t0)/2

× e−i
∫ t

T
dτ U (rL(τ ;r,k,t))−iGC (k,T ;r′(0)

s ,t ′)

×P m
�

(
kc
z

vkc (t ′)

)
j�(avk(t ′)). (B8)

Equation (B8) is an exact expression from the ARM method
under the PPT approximation.

2. Ionization rate

In order to calculate the ionization rate, we need to know
the radial current density, jρ(r,t), defined as

jρ(r,t) = i

2

(
ψ(r,t)

∂ψ∗(r,t)
∂ρ

− ψ∗(r,t)
∂ψ(r,t)

∂ρ

)
. (B9)

Following the procedure of [14], but noting the changes due
to the presence of the Coulomb phase term, we can get the
familiar expression

w(E,ω) = 2π

∞∑
n�n0

∫
dk |Fn(kc,ω)|2

× δ

[
1

2

(
k2 + κ2

(
1 + 1

γ 2

))
− nω

]
(B10)

with

Fn(kc,ω) = ω

2π

∫ 2π

0
dt ′ F (kc,t ′)einωt ′

= 2κa2

(2π )3/2
(−i)�(−1)mN�mϕκ�(a)

×
∫ 2π

0
d(ωt ′) eimφc

v (t ′)P m
�

(
kc
z

vkc (t ′)

)

× j�(avk(t ′))e−i
kρ κ

ωγ
sin(ωt ′−φk )+inωt ′

× ei
∫ t ′
T

dτ U (rL(τ ;a,θ
′(0)
s ,φ

′(0)
s ,k,t ′)). (B11)

The Coulomb phase term is the main difference from the result
for the short-range potential.

3. Derivation of Fn(k,ω)

Unlike the result for short-range potentials [14], we now
have an additional term in the exponential oscillations due to
j�(avk(t ′)), along with the Coulomb corrections. Apart from

the modified, Coulomb-shifted momentum that is a new result
from this analysis, the Coulomb term in the action also includes
motion after ionization, introducing a modification of the result
in [8,14,22], and [26]. As discussed in Sec. III E, we know that
the saddle point in time would be such that v(t ′(0)

a ) ≈ ±iκ , and
as done there, we can use the asymptotic condition for a large
argument (κa � 1) on the spherical Bessel function:

j�(avk(t ′)) = 1

2avk(t ′)
(ei(avk(t ′)−(l+1)π/2) + e−i(avk(t ′)−(l+1)π/2)).

(B12)

The two terms correspond to contributions from the diametri-
cally opposite points on the boundary surface a, from where
we propagate the electron outwards. The point farther from the
detector by a distance of 2a compared to the point nearer causes
an additional exponential decay for propagation from the
former. Such a term did not appear in [10], as there saddle-point
analysis on the k integral was used, thus isolating the electron
wave-function to one particular trajectory, corresponding to
a classical particle motion rather than field evolution. Not
using the saddle point in our case wil naturally lead to
interference effects between the contribution from the two
points, but under the given condition (κa � 1) those effects
will be exponentially small as discussed in [10]. This way,
an interference will be produced on every point throughout
every circular disk for different θ on the sphere r ′ = a.
The contribution of each is weighed by the momentum
distribution, encoded in eimφc

v (t ′)P m
l ( kc

z

vkc (t ′) ). The maximum
contribution comes from the region around the saddle point,
which effectively considers the electron as a particle. However,
since our analysis is exact, the contribution from momenta
about the classical are also included in the above result, as
well as taking into account the case for nonzero perpendicular
momentum (kz 
= 0).

The saddle point corresponding to the boundary-dependent
action SSFA

a = SSFA + avp(t ′) can be derived after Taylor
expansion about the SFA saddle point t ′(0)

s :

t ′(0)
a = t ′(0)

s − i
a

κ
. (B13)

After modifying the SFA saddle point t ′(0)
s through the change

in t ′(0)
a due to the Coulomb phase term, as discussed in

Sec. III, we get the final expression for the n-photon transition
amplitude, to first order in a:

Fn(k,ω) = aϕ(a)

(2π )3/2
(−i)�(−1)m

√
2π∣∣S ′′(t ′(0)

s

)∣∣N�me−iS0(t ′(0)
s )

×P m
�

(
kc
z

vkc

(
t
′(1)
s

))eimφc
v (t ′(1)

s )j�

(
avk
(
t ′(1)
s

))

× ei
∫ t

′(0)
a

T
dτ U (rL(τ ;a,θ

′(0)
s ,φ

′(0)
s ,k,t

′(0)
s )). (B14)

After boundary matching (Sec. III E),

Fn(k,ω) = Cκ�N�m

2π
(−1)m(1 + (−1)�+1e−2κa)

√
ωγ

kρ

√
η2 − 1

e−iS0(t ′(0)
s )+imφc

v (t ′(1)
s )P m

�

(
kc
z

vkc

(
t
′(1)
s

)
)

e
−i
∫ T

t
′(0)
κ

dτ U (
∫ τ

t ′s dζ v(ζ ))
. (B15)
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Since we are interested in |Fn(k,ω)| only, we get

|Fn(k,ω)|2 = |Cκ�|2 ωγ

kρ

2� + 1

16π3

(� − |m|)!
(� + |m|)!

(1 − (−1)�e−2κa)
2√

η2 − 1

∣∣∣∣∣P m
�

(
kc
z

vkc

(
t
′(1)
s

)
)∣∣∣∣∣

2

× e−2mIm[φc
v (t ′(1)

s )]e−2
A0kρ

ω
(η cosh-1 η −

√
η2−1)e2WC1+2WC2 . (B16)

For short-range potentials (U = 0) the above result matches Eq. (17) in [8] precisely.
We see another advantage of the ARM method here: we now do not have a complicated radial r ′ integral and the corresponding

higher order pole in the momentum-space representation of the wave function. The upshot of the analysis in short-range
potentials [8] was that the pole in the momentum-space representation of the wave function was canceled with the zero in the
momentum integral at the same point v(t ′s) = iκ . However, for wave functions corresponding to long-range potentials, we would
have had a (Q/κ + 1)-order pole in the momentum space, leaving a (Q/κ)-order pole in the final momentum integral. Using the
ARM method, the Bloch operator isolates the wave function at the boundary r ′ = a through a δ function, making that integral
straightforward, thus bypassing the pole encountered if the integral was performed over the whole radial domain. At the same
time we also get a more robust result, taking into account the Coulomb correction for the ionization rate both during and after
ionization.

4. N-photon ionization rate

The n-photon ionization rate is

wn(E,ω) = 2π

∫
dk |Fn(k,ω)|2δ

[
1

2

(
k2 + κ2

(
1 + 1

γ 2

))
− nω

]

= |Cκ�|2ωκ
2� + 1

8π2

(� − |m|)!
(� + |m|)!

(
1 − (−1)�e−2κa

)2 ∫ ∞

−∞
dkz

∫ 2π

0
dφk

∫ ∞

0
dkρ

× e−2mIm[φc
v (t ′(1)

s )]

∣∣∣∣∣P m
�

(
kc
z

vk
(
t
′(1)
s

)
)∣∣∣∣∣

2
e
− 2A0kρ η

ω
(tanh−1

√
1− 1

η2 −
√

1− 1
η2 )

A0η
√

1 − 1
η2

e2WC1+2WC2δ

[
1

2

(
k2 + κ2

(
1 + 1

γ 2

))
− nω

]
. (B17)

Using the δ function, the integral over kρ is easily done by substituting kρ = √k2
n − k2

z , where k2
n = 2nω − κ2(1 + 1

γ 2 ). We

modify the definition of ζ = ( 2n0
n

− 1) used in [22] to include the contribution from the trajectory perpendicular to the plane of
polarization, to give

ζeff = 2neff
0

n
− 1, (B18)

where 2neff
0 ω = κ2

eff(1 + 1
γ 2

eff
), κ2

eff = κ2 + k2
z , and γeff = κeff/A0 as defined before. The corresponding values for different

functions of k appearing above are as follows:

η(kn) =
√

1 + γ 2
eff

1 − ζ 2
eff

, (B19)

√
1 − 1

η2(kn)
=
√

ζ 2
eff + γ 2

eff

1 + γ 2
eff

, (B20)

kρn =
√

nω(1 − ζeff),

A0 =
√

nω(1 + ζeff)

1 + γ 2
eff

, (B21)

A0kρnη(kn)

ω
= n = 2neff

0

1 + ζeff
= 2n0

1 + ζ
. (B22)

For kz 	 k, we can make the approximation

tanh-1

√
1 − 1

η2
−
√

1 − 1

η2
= 1

2
ln

1 +
√

1 − 1
η2

1 −
√

1 − 1
η2

−
√

1 − 1

η2
≈ tanh-1

√
ζ 2 + γ 2

1 + γ 2
−
√

ζ 2 + γ 2

1 + γ 2
+
√

ζ 2 + γ 2

1 + γ 2

k2
z

2k2
n

. (B23)
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And since we are comparing our result with [8], we make the following approximation on the Coulomb-corrected angle φc
v :

as the corrections �kx and �ky are generally small, we can expand to first order in these deviations to write φc
v as a sum of the

SFA velocity phase φv , and a small correction δ defined as

tan δ = ε tan φv

1 + (1 + ε) tan φv

, (B24)

where ε = �kx

vx
− �ky

vy
. This way we can split the exponential e−2mIm[φc

v (t ′(1)
s )],

e−2mIm[φc
v (t ′(1)

s )] = e−2mIm[φv (t ′(1)
s )]e−2mIm[δ(t ′(1)

s )]. (B25)

A further expansion of φv(t ′(1)
s ) can be achieved around �t ′(0)

s to get

e−2mIm[φv (t ′(1)
s )] = e−2mIm[φv (t ′(0)

s )] exp

[
−2mIm

{
ω�t ′(0)

s

γ 2

(
ζ − γ 2

1 + ζ

)}]

=
(

kρ − A0e
− cosh-1 η

kρ − A0ecosh-1 η

)m

exp

[
−2mIm

{
ω�t ′(0)

s

γ 2

(
ζeff − γ 2

eff

1 + ζeff

)}]
. (B26)

As the probability of escape of the electron in the direction perpendicular to the field is exponentially suppressed, we can
make the approximation kz 	 kn, which gives us

(
kρ − A0e

− cosh-1 η

kρ − A0ecosh-1 η

)m

≈
⎡
⎣−ζ − (1 − ζ ) k2

z

k2
n

+
√

ζ 2+γ 2

1+γ 2

(
1 + ε(kz)

2

)
−ζ − (1 − ζ ) k2

z

k2
n

−
√

ζ 2+γ 2

1+γ 2

(
1 + ε(kz)

2

)
⎤
⎦

m

= (−1)|m|
(

1 + 1

γ 2

)|m| 1

(1 − ζ 2)|m|

⎛
⎝
√

ζ 2 + γ 2

1 + γ 2
− ζ sgn(m)

⎞
⎠

2|m|

(B27)

to first order in kz and ε(kz) = k2
z

k2
n
( 1−ζ 2

γ 2+ζ 2 ).
The second term in Eq. (B26), when expanded in powers of kz, has a fourth-order dependence on kz:

ζeff − γ 2
eff

1 + ζeff
= ζ − γ 2

1 + ζ

(
1 − k4

z

A2
0(1 + γ 2)2

)
. (B28)

Finally, we are left with

wn(E,ω) = |Cκ�|2 κ

n

2� + 1

4π

(� − |m|)!
(� + |m|)! (1 − (−1)�e−2κa)

2

⎛
⎝
√

ζ 2 + γ 2

1 + γ 2
− ζ sgn(m)

⎞
⎠

2|m|

×
(

1 + 1

γ 2

)|m| 1

(1 − ζ 2)|m| e
− 4n0

1+ζ
(tanh-1

√
ζ2+γ 2

1+γ 2 −
√

ζ2+γ 2

1+γ 2 )

√
1 + γ 2

ζ 2 + γ 2
e−2mIm[δ(t ′(1)

s )]

× e
−2m

ζ−γ 2

1+ζ
Im[ ω�t

′(0)
s

γ 2 ]
e2WC1+2WC2

∫ kn

−kn

dkz e
− 2n0

1+ζ

√
ζ2+γ 2

1+γ 2
k2
z

k2
n

∣∣∣∣P m
�

(
kz

±iκ

)∣∣∣∣
2

(B29)

up to second order in kz. The Coulomb correction is taken out of the integral, on account of its extremely weak dependence on
the kz component of the momentum. The above result is valid for all values of � and m. An m-dependent correction due to the
Coulomb potential is also seen to manifest through its effect on the SFA saddle point t ′(0)

s .
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To compare with [8], we consider the case of � = 1, m = ±1, for which we have P m
� ( kz

±iκ
) = −

√
1 + k2

z

κ2 . To first approximation,

we ignore the k2
z

κ2 term in the prefactor and note that since n � 1, we can approximate the integral as

∫ kn

−kn

dkz e
−n

√
ζ2+γ 2

1+γ 2
k2
z

k2
n ≈

∫ ∞

−∞
dkz e

−n

√
ζ2+γ 2

1+γ 2
k2
z

k2
n = kn

√
π

n

(
1 + γ 2

ζ 2 + γ 2

)1/4

, (B30)

which gives

wn(E,ω) = 3|Cκl|2Ip

8
√

2πn
3/2
0

e2(WC1+WC2)

√
1 − ζ

e
− 4n0

1+ζ
(tanh-1

√
ζ2+γ 2

1+γ 2 −
√

ζ2+γ 2

1+γ 2 )
e−2mIm[δ(t ′(1)

s )]

× e
−2m

ζ−γ 2

1+ζ
Im[ ω�t

′(0)
s

γ 2 ]
(

1 + 1

γ 2

)3/2( 1 + γ 2

ζ 2 + γ 2

)3/4
⎛
⎝
√

ζ 2 + γ 2

1 + γ 2
− ζ sgn(m)

⎞
⎠

2

. (B31)

The main difference from Eq. (19) in [8] is the incorporation
of the Coulomb correction, starting from the tunneling region
and into the continuum until the electron is registered at
the detector, and an orbital-dependent Coulomb correction,
a result that was not expected.

Equation (B31) is equivalent to Eq. (71) obtained within the
time-domain approach. However, here we have a result that is
valid beyond the optimal momentum, whereas in Eq. (71)
we have effectively derived the total ionization rate summed
over all photon orders, which is to be compared with Eq. (6)
in [8]. For Eq. (B31), further discussion of its range requires
a knowledge of �p over all p, and this will be considered
elsewhere.

APPENDIX C: SUBCYCLE IONIZATION AMPLITUDE

We now consider the case of subcycle ionization amplitudes
in the time domain, to replace T → t . The subcycle ionization
amplitude is defined as

ap(t) = i

∫
a

dr 〈p + A(t)|r〉ψ(r,t). (C1)

Back-propagating the solution ψ(r,T ), we can write ψ(r,t) as

ψ(r,t) =
∫

a
dr′ G(r,t ; r′,T )ψ(r′,T ) − i

∫ t

T

dt ′

×
∫

a
dr′ G(r,t ; r′,t ′)δ(r ′ − a)B(a,θ ′,φ′,t ′).

(C2)

The second term represents that part of the wave function
that remains bounded within the confines of the Coulomb
potential near the atom after ionization. But the wave-
function content in that region after ionization is negligible
compared to the current flux in continuum, thus making
the contribution from the former almost 0. So we can write

equation (C1) as

ap(t) = i

∫
a

dr 〈p + A(t)|r〉
∫

a
dr′ GEVA(r,t ; r′,T )ψ(r′,T )

= i

∫
a

dr
∫

a
dr′
∫

dk
e−i(p+A(t))·r

(2π )3/2

ei(k+A(t))·r−ik·r′

(2π )3

× e−i
∫ t

T
dτ U (rL(τ ;r,k,t))e− i

2

∫ t

T
dτ v2(τ )ψ(r′,T )

= 1

(2π )3

∫
a

dr
∫

dk ei(k−p)·r− i
2

∫ t

T
dτ v2

k(τ )

× e−i
∫ t

T
dτ U (rL(τ ;r,k,t))ak(T ).

Before we can perform the integration on r, we need to
address the (r,k) dependence of the Coulomb correction in the
above equation. Similarly to Sec. III, we expand the Coulomb
phase term GC(r,t ; k,T ) = ∫ t

T
dτ U (r + ∫ τ

t
dζ vk(ζ )) about

the appropriate saddle point rs up to quadratic terms in
deviation (a − rs). We need the saddle point for the phase term:

SSFA(r,k,t) = (k − p) · r − 1

2

∫ t

t ′s
dτ v2

k(τ ). (C3)

Therefore,

∇kS
SFA = 0 ⇒ k(0)

s = r − r0

t − t
′(0)
s

(C4)

and

∇rS
SFA
(
r,k(0)

s (r)
) = 0 ⇒ r(0)

s =
∫ t

t
′(0)
s

dτ [p + A(τ )]. (C5)

So the classical trajectory can be written as

r(0)
s =

∫ t

t ′s
dτ vp(τ ). (C6)

After expanding the Coulomb phase term GC(k,T ; r,t) about
the saddle points (r(0)

s ,k(0)
s ) as in Sec. III, we can write the

subcycle transition amplitude as

ap(t) = 1

(2π )3

∫
dk
∫

drei(k−p)·r− i
2

∫ t

T
dτ v2

k(τ )−iGC (rs ,t ;p,T )−i(r−rs )·∇GC (rs ,t ;p,T )ak(T ). (C7)
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Note the argument p in GC : the phase term is evaluated for
the asymptotic momentum p and hence the corresponding
momentum shift from this Taylor expansion �p = −∇GC is
also evaluated for the asymptotic momentum p and not for
the intermediate momentum k on which we have to perform
the integration.

Following our analysis, we first propagate the electron till
the detector after ionization, and to find the momentum shifts
at any point of time during this motion, we propagate it back
through the EVA Green’s function and thus have information
on subcycle momentum shifts also.

We can now write∫ t

T

dτ U

(
r +

∫ τ

t

dζ vk(ζ )

)∣∣∣∣
r=rs ,ks=p

=
∫ t

T

dτ U

(∫ τ

t ′s
dζ vp(ζ )

)
. (C8)

And we can combine this with∫ t ′(0)
κ

T

dτ U

(∫ τ

t
′(0)
s

dζ v(ζ )

)
(C9)

in ap(T ), Eq. (37), to get∫ t

T

dτ U

(∫ τ

t
′(0)
s

dζ v(ζ )

)
+
∫ T

t
′(0)
κ

dτ U

(∫ τ

t
′(0)
s

dζ v(ζ )

)

=
∫ t

t
′(0)
κ

dτ U

(∫ τ

t
′(0)
s

dζ v(ζ )

)
, (C10)

which solves the Coulomb correction for ap(t). The integral
on r in Eq. (C7) yields (2π )3δ(k − p − �p(t,T )), and the
integral on k then gives k = p + �p(t,T ). The Coulomb shift
�p(t,T ) is now added instead of being subtracted, which is
due to the back-propagation of the electron from the detector
with observable (k,T ) to (r,t). We finally get

ap(t) = (−1)m+1Cκ�N�m

√
γ

ωpρ

√
η2 − 1

e
−i
∫ t

t
′(0)
κ

dτ U (
∫ τ

t ′s dζ vp(ζ ))

× e
− i

2

∫ t

t
′(0)
s

dτ v2
p+�p(τ )

eiκ2t
′(0)
s /2

× eirs ·�pP m
�

(
pc

z

vpc

(
t
′(1)
s

)
)

eimφc
v (t ′(1)

s ), (C11)

where we have ignored corrections of the order of O(G2
C)

and greater, which would arise from the Coulomb phase
and the Coulomb-shifted velocity phase φc

v after taking k =
p + �p(t,T ). Expanding

∫ t

t
′(0)
s

dτ v2
p+�p(τ ) up to first order in

�p, it will cancel the spurious term rs · �p. Also, pc is defined
as pc = p − �p(t ′(0)

a ,t) � p − �p(t ′(0)
i ,t) (from discussions

in Sec. A 1) and hence is boundary independent. The final
expression for the subcycle transition amplitude is

ap(t) = (−1)m+1Cκ�N�m

√
γ

ωpρ

√
η2 − 1

e
−i
∫ t

t
′(0)
κ

dτ U (
∫ τ

t ′s dζ vp(ζ ))

× e
− i

2

∫ t

t
′(0)
s

dτ v2
p(τ )+iκ2t

′(0)
s /2

P m
�

(
pc

z

vpc

(
t
′(1)
s

)
)

eimφc
v (t ′(1)

s ).

(C12)

APPENDIX D

We derive here the result

lim
ρ→∞

ρJ1(ρd(kρ,pρ))

d(kρ,pρ)
= 2πδ(kρ − pρ). (D1)

We start from the integral

Iρ =
∫ 2π

0
dφ

∫ ρ

0
dρ ′ ρ ′ei(kρ−pρ )·ρ ′

. (D2)

This integral can be written as

Iρ =
∫ 2π

0
dφ

∫ ρ

0
dρ ′ ρ ′ei(kρρ ′ cos(φ−φk )−pρρ ′ cos(φ−φp))

=
∫ 2π

0
dφ

∫ ρ

0
dρ ′ ρ ′

∞∑
n1=−∞

in1Jn1 (kρρ
′)ein1(φ−φk)

×
∞∑

n2=−∞
(−i)n2Jn2 (pρρ

′)e−in2(φ−φk)

= 2π

∫ ρ

0
dρ ′ ρ ′J0(ρ ′d(kρ,pρ)).

In going from step 2 to step 3, we first perform the integral
over φ and then use the Graf generalization of Neumann
summation. The integral over ρ ′ is simple:∫ ρ

0
dρ ′ ρ ′J0(kρ,pρ) = ρJ1(ρd(kρ,pρ))

d(kρ,pρ)
. (D3)

Therefore

Iρ = 2π
ρJ1(ρd(kρ,pρ))

d(kρ,pρ)
. (D4)

Now, by definition,

(2π )2δ(kρ − pρ) =
∫ 2π

0
dφ

∫ ∞

0
dρ ′ ρ ′ei(kρ−pρ )·ρ ′

= lim
ρ→∞

∫ 2π

0
dφk

∫ ρ

0
dρ ′ ρ ′ei(kρ−pρ )·ρ ′

= lim
ρ→∞ 2π

ρJ1(ρd(kρ,pρ))
d(kρ,pρ)

.

And we get

lim
ρ→∞

ρJ1(ρd(kρ,pρ))
d(kρ,pρ)

= 2πδ(kρ − pρ), (D5)

which is the desired result.

APPENDIX E

We establish the relation

eimφk

(
kρ − A0e

−i(φk−ωt)

kρ − A0ei(φk−ωt)

)m/2

= eimφv (t), (E1)
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where φv(t) = tan−1 vy (t)
vx (t) . We can write

φv(t) = tan−1

(
kρ sin φk − A0 sin ωt

kρ cos φk − A0 cos ωt

)

= tan−1

[
kρe

iφk − A0e
iωt − (kρe

−iφk − A0e
−iωt )

i(kρeiφk − A0eiωt + kρe−iφk − A0e−iωt )

]
.

(E2)

Taking � = ( kρeiφk −A0e
ωt

kρe−iφk −A0e−iωt ), we get

φv(t) = tan−1

[
i
1 − �

1 + �

]

= i tanh−1

(
1 − �

1 + �

)

= i

2
ln

[
1 + 1−�

1+�

1 − 1−�
1+�

]

= − i

2
ln � = − i

2
ln

(
kρe

iφk − A0e
iωt

kρe−iφk − A0e−iωt

)
.

Therefore,

eimφv (t) = exp

[
m

2
ln

(
kρe

iφk − A0e
iωt

kρe−iφk − A0e−iωt

)]

=
(

kρe
iφk − A0e

iωt

kρe−iφk − A0e−iωt

)m/2

= eimφk

(
kρ − A0e

−i(φk−ωt)

kρ − A0ei(φk−ωt)

)m/2

, (E3)

which is the required result.
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